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Abstract

We present in this work a sound and complete modal logic called EDLA (Epis-
temic Dynamic Logic of Agency) integrating the concepts of joint action, prefer-
ence and knowledge and enabling to reason about epistemic games in strategic
form. We provide complexity results for EDLA. In the second part of the paper,
we study in EDLA the epistemic and rationality conditions of some classical so-
lution concepts like Nash equilibrium and Iterated Deletion of Strictly Dominated
Strategies (IDSDS). In the last part of the paper we combine EDLAwith Dynamic
Epistemic Logic (DEL) in order to model epistemic game dynamics.

1 Introduction
We present a modal logic integrating the concepts of joint action, preference and
knowledge. Our logic supports reasoning about epistemic games in strategic form
in which agents decide what to do according to some general principles of rational-
ity while being uncertain about several aspects of the interaction such as other agents’
choices, other agents’ preferences, etc. Although epistemic games have been exten-
sively studied in economics in the so-called area of interactive epistemology (see, e.g.,
[1, 10, 9, 3, 11]) and there have been some analysis of epistemic games in modal logic
(see, e.g., [5, 12, 9, 21]), no modal approach to epistemic games in strategic form has
been proposed up to now which addresses all the following issues at the same time:
to provide a formal language, and a corresponding formal semantics, which is suffi-
ciently general to express solution concepts like Nash Equilibrium or Iterated Deletion
of Strictly Dominated Strategies (IDSDS) and to deduce formally the epistemic and ra-
tionality conditions on which such solution concepts are based; to prove its soundness
and completeness; to study its computational properties like decidability and complex-
ity. In this paper, we try to fill this gap by proposing a sound and complete modal
logic for epistemic games interpreted on a Kripke-style semantics. We also provide
complexity results for our logic.

The remainder of the paper is organized as follows. In Section 2 we present our
modal logic of joint actions, preference and knowledge called EDLA (Epistemic Dy-
namic Logic of Agency). Section 3 is devoted to the analysis in EDLA of the epistemic
conditions of Nash equilibrium and IDSDS. In Section 4 we make EDLA dynamic
by extending it with constructions of Dynamic Epistemic Logic (DEL) [13], and we
show that this dynamic version of EDLA allows to express IDSDS in a more compact
way than in the static EDLA. In Section 5 we show how our logical framework can
be applied to the analysis of strategic interaction with imperfect information about the
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game structure. Finally, in Section 6, we compare our approach with some existing
approaches to epistemic games in modal logic.

2 A logic of joint actions, knowledge and preferences
The logic EDLA (Epistemic Dynamic Logic of Agency) is an extension of the logic
DLA (Dynamic Logic of Agency) with modal operators for preference and knowledge
modalities. DLA itself, which was presented in [15, 18], extends dynamic logic by
a modal operator of historic possibility quantifying over possible joint actions of all
agents This operator is borrowed from STIT theory [4]. In [15, 18] the relationships
between DLA and Coalition Logic (CL), and DLA and STIT have been studied. We
will come back to this point in Section 2.3.

2.1 Syntax
The syntactic primitives of EDLA are the finite set of agents Agt , the set of atomic for-
mulas Atm and a nonempty finite set of atomic action names Act = {a1, a2, . . . , a|Act|}.

The language LEDLA of the logic EDLA is given by the following BNF:
ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈i:a〉ϕ | ♦ϕ | Kiϕ | [good]i ϕ

where p ranges over Atm , a ranges over Act , and i ranges over Agt .
It is supposed that every agent performs exactly one action at a time, that all actions

are independent, that actions of different agents are performed in parallel and lead to
a unique successor state. Therefore the formula 〈i:a〉ϕ reads “i performs action a
and ϕ holds afterwards”, and 〈i:a〉> reads “i performs a”. Note that this is slightly
different from the standard PDL reading “there is a possible execution of action a after
which ϕ holds”, which takes into account that there could be different executions of
the same action leading to different successor states. 〈i:a〉> ∧ 〈j:b〉> means that i and
j respectively perform a and b in parallel.

The operator ♦ quantifies over possible joint actions of all agents, that is, over
the strategy profiles of the current game (the terms “joint actions of all agents” and
“strategy profiles” are supposed here to be synonymous). ♦ϕ reads “ϕ holds for some
alternative strategy profile of the current game”, or simply “ϕ is possibly true”.

The classical Boolean connectives ∧,→,↔ and > (tautology) are defined from ⊥,
∨ and ¬ in the usual manner. Moreover, [i:a]ϕ abbreviates ¬〈i:a〉¬ϕ, �ϕ abbreviates
¬♦¬ϕ and K̂iϕ abbreviates ¬Ki¬ϕ. � ϕ means “ϕ is necessarily true”. Therefore
[i:a]⊥ reads “i does not perform action a”, and [i:a]ϕ reads “if i performs a then
ϕ holds afterwards. The following abbreviations are convenient to speak about joint
actions. Sets of agents are called coalitions, noted C1, C2, . . . To every agent i ∈ Agt
we associate the set of all possible ordered pairs i:a, that is, Act i = {i:a | a ∈ Act}.
Besides, we note ∆ the set of all joint actions of all agents (alias strategy profiles), that
is, ∆ =

∏
i∈Agt Act i.

Elements in ∆ are n-tuples noted α, β, γ, δ, . . . Given δ ∈ ∆, we note δi the
element in δ corresponding to agent i. Finally, we note δC = (δi)i∈C the tuple which
consists of the vector of all δi for i ∈ C. Therefore δAgt = δ. Moreover, we write
δ−i = δAgt\{i}.

The following abbreviation will be useful to axiomatize EDLA. For every δ ∈ ∆
and C ⊆ Agt : 〈δC〉ϕ

def=
∧
j∈C〈δj〉ϕ. 〈δC〉ϕ reads “the joint action δC is going to

be performed by coalition C and ϕ will be true afterwards”. For example, 〈i:a, j:b〉ϕ
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abbreviates 〈i:a〉ϕ ∧ 〈j:b〉ϕ, and stands for “the joint action 〈i:a, j:b〉 is going to be
performed, and ϕ will be true afterwards”. As usual [δC ]ϕ def= ¬〈δC〉¬ϕ.

Construction Kiϕ is read as usual “agent i knows that ϕ”, whereas the construction
[good]i ϕ is read “ϕ is true in all worlds which are for agent i at least as good as the
current one concerning the strategy profile that is chosen”. We define 〈good〉iϕ as an
abbreviation of ¬ [good]i ¬ϕ. Operators [good]i are used in EDLA to define agents’
preference orderings over the strategy profiles of the current game. Similar operators
are studied in [7, 6]. We use EKCϕ as an abbreviation of

∧
i∈C Kiϕ, i.e. every agent in

C knows ϕ. Then we define by induction EKkCϕ for all k ∈ N: EK0
Cϕ

def= ϕ and for all
k ≥ 1, EKkCϕ

def= EKC(EKk−1
C ϕ).We define for all n ∈ N, MKnCϕ as an abbreviation

of
∧

1≤k≤n EKkCϕ. MKnCϕ expresses C’s mutual knowledge that ϕ to n iterations, i.e.
everyone in C knows ϕ, everyone in C knows that everyone in C knows ϕ, and so on
until level n.

2.2 Semantics
Frames are tuples F = 〈W,R,∼, E,�〉 where:
• W is a nonempty set of possible worlds or states;

• R : Agt × Act −→ W × W maps every agent-action pair i:a to a transition
relation Ri:a ⊆W ×W between possible worlds;

• ∼ is an equivalence relation on W ;

• E : Agt −→W ×W maps to every agent i an equivalence relation Ei on W ;

• �: Agt −→W ×W maps to every agent i a reflexive and transitive relation �i
on W .

It is convenient to use RδC
=
⋂
i∈C Rδi , and RδC

(w) = {w′ ∈ W | wRδC
w′}.

If Ri:a(w) 6= ∅ then i performs a at w. More generally, if RδC
(w) 6= ∅ then coalition

C performs joint action δC at w. If w′ ∈ RδC
(w) then world w′ results from the

performance of joint action δC by coalition C at w.
If w′ ∼ w then w and w′ correspond to alternative strategy profiles of the same

game. For short, we say that w′ is alternative to w. Given a world w, we use the
notation ∼(w) = {w′ | w′ ∼ w} to denote the equivalence class made up of those
worlds which correspond to alternative strategy profiles of the game of which w is
part. Consider e.g. Agt = {1, 2} and Act = {a, b}. In the frame in Fig. 1 we have
w1 ∼ w2. This means that the strategy profile performed at w1 (viz. 〈1:c, 1:c〉) and the
one performed at w2 (viz. 〈1:c, 1:d〉) are alternative strategy profiles of the same game
defined by the equivalence class ∼(w1) = {w1, w2, w3, w4}. For every C ⊆ Agt , if
there exists w′ ∈ ∼(w) such that C performs δC at w′ then we say that δC is possible
at w (or δC can be performed at w).

wEiw
′ means that, for agent i, world w′ is (epistemically) possible at w, whilst

w �i w′ means that for agent i, world w′ is at least as good as world w. We write
w =i w

′ iff w �i w′ and w′ �i w, and w <i w
′ iff w �i w′ and not w′ �i w.

Frames have to satisfy the semantic constraints S1-S9 in Table 1 in order to be
EDLA-frames. According to Constraint S1, for every world w there exists exactly
one successor of w, viz. the world resulting from the execution of the strategy profile
associated to w. According to the Constraints S2 and S3, every world is associated to
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For every w, v, v′ ∈W and δ, δ′ ∈ ∆ and a ∈ Act and i ∈ Agt , we have:

(S1) If v ∈ Rδ(w) and v′ ∈ Rδ′ (w) then v = v′;

(S2)
⋃
δ∈∆Rδ(w) 6= ∅;

(S3) If δ 6= δ′ then Rδ(w) = ∅ or Rδ′ (w) = ∅;
(S4) If for every i ∈ Agt there is vi such that vi ∼ w and Rδi

(vi) 6= ∅ then there is a v such that v ∼ w
and Rδ(v) 6= ∅;

(S5) If w ∼ v and Rδ(w) 6= ∅ and Rδ(v) 6= ∅, then w = v;

(S6) If wEiv then Ri:a(w) 6= ∅ iff Ri:a(v) 6= ∅;
(S7) If w �i v then w ∼ v;

(S8) If w ∼ v and w ∼ v′ then v �i v′ or v′ �i v;

(S9) If wEiw′ then w ∼ w′.

Table 1: Semantic constraints over EDLA-frames

exactly one joint action of all agents (alias strategy profile). Note that constraints S1
and S2 together ensure that for every world w there is exactly one next (future) world.
According to the Constraint S4, if every individual action in a joint action δ is possible
at w, then their simultaneous occurrence is also possible at w. We suppose determin-
ism for the joint actions of all agents: different worlds in an equivalence class ∼(w)
correspond to the occurrences of different strategy profiles (Constraint S5). Constraint
S6 just says that agents know what they are doing. This is a standard assumption in
interactive epistemology and epistemic analysis of games (see [9] for instance). We
also have two constraints over the relations�i. We suppose that a world w′ is for agent
i at least as good as w only if w′ is a world which is possible at w, i.e. only if w′ and w
correspond to alternative strategy profiles of the same game (Constraint S7). Further-
more, we suppose that every agent has a complete preference ordering over the strategy
profiles of the current game (Constraint S8).1 Finally, we suppose perfect information
about the specification of the game, including the players’ strategy sets (or action reper-
toires) and the players’ preference ordering over strategy profiles. This assumption is
formally expressed by Constraint S9: if worldw′ is epistemically possible for agent i at
w, then w and w′ correspond to alternative strategy profiles of the same game. Perfect
information about the structure of the game is a standard assumption in game theory.
In Section 5, this assumption will be relaxed in order to deal with realistic situations
in which an agent might be uncertain about his own utility and other agents’ utilities
associated to a certain strategy profile, as well as about his own action repertoire and
other agents’ action repertoires.

A frame F is a EDLA-frame if F satisfies constraints S1-S9.
A EDLA-model is a couple M = 〈F, π〉 where F is a EDLA-frame (satisfying

constraints S1-S9) and π : Atm −→ 2W is a valuation function.
Truth conditions for atomic formulas and the Boolean operators are standard. The

truth conditions for the modal operators are:
• M,w |= 〈i:a〉ϕ iff M,w′ |= ϕ for some w′ ∈ Ri:a(w);

• M,w |= ♦ϕ iff M,w′ |= ϕ for some w′ ∈ ∼(w);

• M,w |= Kiϕ iff M,w′ |= ϕ for all w′ such that wEiw′;

• M,w |= [good]i ϕ iff M,w′ |= ϕ for all w′ such that w �i w′.
1Note that, given the properties of ∼, S7 and S8 can be replaced by: ∼ = �i ∪ (�i)−1.
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Figure 1: The equivalence class {w1, w2, w3, w4} represents the classical Prisoner’s
Dilemma game [19]. At w1 agent 1 and agent 2 cooperate, at w4 they both defect, at
w2 1 cooperates and 2 defects, and at w2 1 defects and 2 cooperates. Red circles are
epistemic possibility relations for 1, green circles are epistemic possibility relations for
2 (1 and 2 know what they are going to do but are uncertain about the other’s action).

A formula ϕ is true in a EDLA-model M iff M,w |= ϕ for every world w in M . ϕ
is EDLA-valid (noted |= ϕ) iff ϕ is true in all EDLA-models. ϕ is EDLA-satisfiable
iff ¬ϕ is not EDLA-valid.

2.3 Axiomatization
We call EDLA the logic that is axiomatized by the principles given in Table 2. Note
that Axiom Indep is the EDLA counterpart of the so-called axiom of independence
of agents of STIT logic [4]. This axiom allows to express the basic game theoretic
assumption that the set of strategy profiles of a game in strategic form is the cartesian
product of the sets of individual actions for the agents in Agt .

We write `EDLA ϕ if ϕ is a theorem of EDLA. We can define in EDLA an
operator next of linear temporal logic: Xϕ

def=
∨
δ∈∆〈δ〉ϕ. Due to Axioms Active and

Alt[δ], X obeys the standard validity Xϕ↔ ¬X¬ϕ.

Theorem 1. EDLA is determined by the class of EDLA-frames.

Theorem 2. The satisfiability problem of EDLA is PSPACE-complete 2.

It has been proved in [18] that the basic fragment of EDLA without preference and
knowledge modalities embeds Coalition Logic (CL) [20]. In particular, CL cooperation

2You can find an basic implementation of a EDLA-prover for two agents and two actions at http:
//www.irit.fr/˜Francois.Schwarzentruber/publications/tark2009/
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All principles of classical propositional logic(CPL)

All principles of modal logic S5 for �(S5�)

All principles of modal logic K for every [i:a](K[i:a])

All principles of modal logic S5 for every Ki(S5Ki
)

All principles of modal logic S4 for every [good]i(S4[good]i
)

〈δ〉ϕ→
[
δ′
]
ϕ(Alt[δ]) ∨

δ∈∆

〈δ〉>(Active)

〈δ〉> →
[
δ′
]
⊥ if δ 6= δ′(Single)  ∧

i∈Agt

♦〈δi〉>

→ ♦〈δ〉>(Indep)

(〈δ〉> ∧ ϕ)→ �(〈δ〉> → ϕ)(JointDet)
〈i:a〉> → Ki〈i:a〉>(Aware)

�ϕ→ [good]i ϕ(Incl[good]i,�
)

♦ϕ ∧ ♦ψ → ♦(ϕ ∧ 〈good〉iψ) ∨ ♦(ψ ∧ 〈good〉iϕ)(PrefConnect)
�ϕ→ Kiϕ(PerfectInfo)

Table 2: Axiomatization of EDLA

modalities of the form [C] can be reconstructed in our logic as follows.
tr([C]ϕ) =

∨
δ∈∆ (♦〈δC〉> ∧�(〈δC〉> → Xϕ))

That is, the CL expression “coalition C can enforce an outcome state satisfying ϕ”
(noted [C]ϕ) is translated in our logic as “there exists a joint action δC of the agents in
C such that the agents in C can perform δC , and necessarily if the agents in C perform
δC then ϕ will be true in the next state, no matter what the agents outside C do”.

It has also been shown in [15] that a slightly different variant of the logic presented
in this paper embeds Chellas’ STIT logic with agents and groups [17], under the hy-
pothesis that the number of agents’ choices is bounded. STIT logic has formulas of the
form [C cstit:ϕ] that are read “group C sees to it that ϕ”. To obtain this embedding, it is
sufficient to remove from EDLA the Axiom of joint determinism JointDet and to add
an Axiom of the form 〈δ〉♦ϕ→ ♦〈δ〉ϕ which allows to capture the so-called semantic
property no choice between undivided histories on STIT frames (see [4]). The trans-
lation of STIT modalities of the form [C cstit:] into our logic would be the following:

tr([C cstit:ϕ]) =
∨
δ∈∆(〈δC〉> ∧�(〈δC〉> → ϕ))

That is, the STIT expression “group C sees to it that ϕ” is translated into DLA as
“there exists a joint action δC of the agents in C such that the agents in C perform δC ,
and necessarily if the agents in C perform δC then ϕ will be true, no matter what the
agents outside C do”.

3 A logical account of epistemic games
3.1 Best Response and Nash Equilibrium
The modal operators [good]i and� allow to capture in EDLA a notion of comparative
goodness over formulas of the kind “ϕ is for agent i at least as good as ψ”, noted
ψ ≤i ϕ:
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ψ ≤i ϕ
def= � (ψ → 〈good〉iϕ).

ψ ≤i ϕ is a total preorder: the formulas ψ ≤i ψ, (ϕ1 ≤i ϕ2) ∧ (ϕ2 ≤i ϕ3)→ (ϕ1 ≤i
ϕ3) and (ϕ1 ≤i ϕ2) ∨ (ϕ2 ≤i ϕ1) are valid in EDLA. More details on this notion of
comparative goodness can be found in [6]. We note ψ <i ϕ

def= (ψ ≤i ϕ)∧¬(ϕ ≤i ψ)
and δ ≤i δ′

def= 〈δ〉> ≤i 〈δ′〉>. Finally we note δ <i δ′
def= (δ ≤i δ′) ∧ ¬(δ′ ≤i δ).

Some basic concepts of game theory can be expressed in EDLA in terms of com-
parative goodness. We first consider best response. Agent i’s action a is said to be
a best response to the other agents’ joint action δ−i, noted BR(i:a,δ−i), if and only
if i cannot improve his utility by deciding to do something different from a while the
others choose the joint action δ−i, that is:

BR(i:a,δ−i)
def=
∧
b∈Act((〈i:b〉⊥ ∧ 〈δ−i〉>) ≤i (〈i:a〉> ∧ 〈δ−i〉>)).

Note that the following equivalence is valid in EDLA:
BR(i:a,δ−i)↔ ([i:a]⊥ ∧ 〈δ−i〉>) ≤i (〈i:a〉> ∧ 〈δ−i〉>).

Given a certain strategic game, the strategy profile (or joint action) δ is said to be a
Nash equilibrium if and only if for every agent i ∈ Agt , i’s action δi is a best response
to the other agents’ joint action δ−i:

Nash(δ) def=
∧
i∈Agt BR(δi,δ−i).

From Axiom PerfectInfo and S5 for �, the following theorems are provable ex-
pressing perfect information about the structure of the game, and in particular, perfect
information about the players’ preferences ordering over strategy profiles, perfect in-
formation about the existence of a Nash equilibrium, and perfect information about the
players’ repertoires: (ψ ≤i ϕ) ↔ MKnAgt(ψ ≤i ϕ), Nash(δ) ↔ MKnAgtNash(δ) and
♦〈δi〉> ↔ MKnAgt♦〈δi〉>, for every n ∈ N.

3.2 Epistemic rationality
The following EDLA formula characterizes a notion of rationality which is commonly
supposed in epistemic analysis of games (see, e.g., [3, 5]):∧

a,b∈Act

(
〈i:a〉> →

∨
δ∈∆

(
K̂i〈δ−i〉> ∧ (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)

))
.

This means that an agent i is rational if and only if, if he chooses a particular action
a then for every alternative action b, there exists a joint action δ−i of the other agents
that he considers possible such that, playing a while the others play δ−i is for i at least
as good as playing b while the others play δ−i. As EDLA δ ≤i δ′ and Ki(δ ≤i δ′)
are equivalent, the previous definition of rationality can be rewritten in the following
equivalent form:
Rati

def= ∧
a,b∈Act

(
〈i:a〉> →

∨
δ∈∆

(
K̂i〈δ−i〉> ∧ Ki (〈δ−i, i:b〉 ≤i 〈δ−i, i:a〉)

))
.

Theorem 3. For all i ∈ Agt , we have:

`EDLA Rati ↔ KiRati(3a)
`EDLA ¬Rati ↔ Ki¬Rati(3b)

Theorem 3 highlights that the concepts of rationality and irrationality are introspec-
tive. The following theorem specifies some sufficient epistemic conditions for guaran-
teeing that the chosen strategy profile is a Nash equilibrium: if all agents are rational
and every agent knows the choices of the other agents, then the selected strategy profile
is a Nash equilibrium. A similar theorem has been stated for the first time in [1, 11].
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Theorem 4. For all n ∈ N, for all δ ∈ ∆, we have:
`EDLA

((∧
i∈Agt Rati

)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→ Nash(δ)

3.3 Iterated deletion of strictly dominated strategies
A strategy a for agent i is a strictly dominated strategy, noted SD≤0(i:a), if and only
if, if a can be performed then there is another strategy b such that, no matter what joint
action δ−i the other agents choose, playing b is for i strictly better than playing a:

SD≤0(i:a) def= 〈i:a〉> →∨
b∈Act

(
♦〈i:b〉> ∧

∧
δ∈∆

(♦〈δ−i〉 → (〈δ−i, i:a〉 <i 〈δ−i, i:b〉))

)
.

An example of strictly dominated strategy is cooperation in the Prisoners Dilemma
(PD) game: whether ones opponent chooses to cooperate or defect, defection yields
a higher payoff than cooperation. Therefore, a rational player will never play a dom-
inated strategy: whatever he believes his opponents will do, he will achieve a better
outcome if he plays a dominating strategy. So when trying to predict the behavior of
rational players, we can rule out all strictly dominated strategies. The so-called Iterated
Deletion of Strictly Dominated Strategies (IDSDS) (or iterated strict dominance) [19]
is a procedure that starts with the original game and, at each step, for every player i
removes from the game all i’s strictly dominated strategies, thereby generating a sub-
game of the original game, and that repeats this process again and again. IDSDS can be
inductively characterized in our logic EDLA by defining a concept of strict dominance
in the subgame of depth at most n, noted SD≤n(i:a). For every n ≥ 1:

SD≤n(i:a) def= ¬SD≤n−1(i:a)→

∨
b∈Act

(
¬SD≤n−1(i:b) ∧

∧
δ∈∆

(
¬SD≤n−1(δ−i)→ (〈δ−i, i:a〉 <i 〈δ−i, i:b〉)

))
.

where SD≤k(δC) is an abbreviation of
∨
i∈C SD≤k(δi) for every k ≥ 0 and for every

δC . According to this definition, a is a strictly dominated strategy for agent i in a sub-
game of depth at most n, noted SD≤n(i:a), if and only if, if a is not strictly dominated
for i in all subgames of depth k < n then there is another strategy b such that b is not
strictly dominated for i in all subgames of depth k < n and, no matter what joint action
δ−i the other agents choose, if the elements in δ−i are not dominated in all subgames
of depth k < n then playing b is for i strictly better than playing a. In other terms
SD≤n(i:a) means that strategy i:a does not survive after n rounds of IDSDS. On the
contrary, ¬SD≤n(i:a) means that strategy i:a survives IDSDS until the subgame of
depth n+1.

It has been shown that common knowledge of rationality implies that players choose
strategies which survive IDSDS ([10, 9, 3, 11]). This latter principle can be derived in
our logic EDLA. According to the following Theorem 5, if there is mutual knowledge
of rationality among the players to n levels and the agents play the strategy profile δ
then, for every agent i, δi survives IDSDS until the subgame of depth n+1.

Theorem 5. For all δ ∈ ∆, `EDLA
((

MKnAgt

∧
i∈Agt Rati

)
∧ 〈δ〉>

)
→ ¬SD≤n(δ)
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4 Game transformation
We provide in this section an alternative and more compact characterization of the
procedure IDSDS in our logic EDLA. To this aim, we introduce special events whose
effect is to delete a strictly dominated strategy from the current game. These events are
similar to announcements in Dynamic Epistemic Logic (DEL) [13].
LAN is the set of announcable formulas and is defined by the following BNF:

χ ::= �ψ → [i:a]⊥ | χ ∧ χ
where ψ ∈ LEDLA, i ∈ Agt and a ∈ Act . Thus, announcable formulas are of the
form ‘if property ψ (globally) holds in the current game, then action a should not be
performed by agent i’.

We extend the EDLA language with announcements operators of the form [χ!]
with χ ∈ LAN . We call EDLAAN the extended logic. The truth condition for [χ!]ϕ
is:

M,w |= [χ!]ϕ iff M,w |= χ implies Mχ, w |= ϕ

with:
Mχ = 〈Wχ, Rχ,∼χ, Eχ,�χ, πχ〉
Wχ = ‖χ‖M
Rχi:a = [Ri:a ∩ (Wχ ×Wχ)] ∪ {(w,w) | Ri:a(w) 6= ∅ & w ∈ ‖χ‖M & Ri:a(w) 6∈ ‖χ‖M}
∼χ=∼ ∩(Wχ ×Wχ)
Eχi = Ei ∩ (Wχ ×Wχ)
�χi =�i ∩(Wχ ×Wχ)
πχ(p) = π(p) ∩Wχ

Thus, an event χ! removes from every game ∼(w) in the model M all worlds in
which χ is false. The same operation is applied for the agents’ epistemic accessibility
relations Ei and preference orderings �i. This ensures that the constraints S7 and S9
on EDLA frames will be preserved after the model transformation. Moreover, if v is
the world which results from the execution of a by i at w, and w and v are not removed
from the model by the event χ! then, after the occurrence of χ!, v is still the world
which results from the execution of a by i at w; if v is the world which results from
the execution of a by i at w, w is not removed from the model by the event χ! and v
is removed then, after the occurrence of χ!, we impose that w itself is the world which
results from the execution of a by i at w. This ensures that the constraint S2 on EDLA
frames will be preserved after the model transformation.
Theorem 6. If M is a EDLA model then Mχ is a EDLA model.

We have reduction axioms for χ! which guarantee the completeness of EDLAAN .

Theorem 7. The following schemata are valid in EDLAAN .
R1. [χ!]p↔ (χ→ p)
R2. [χ!]¬ϕ↔ (χ→ ¬[χ!]ϕ)
R3. [χ!](ϕ1 ∧ ϕ2)↔ ([χ!]ϕ1 ∧ [χ!]ϕ2)
R4. [χ!]�ϕ↔ (χ→ �[χ!]ϕ)
R5. [χ!]Kiϕ↔ (χ→ Ki[χ!]ϕ)
R6. [χ!] [good]i ϕ↔ (χ→ [good]i [χ!]ϕ)
R7. [χ!] [i:a]ϕ↔ (¬χ ∨ ([i:a]χ ∧ [i:a] [χ!]ϕ) ∨ (¬ [i:a]χ ∧ [χ!]ϕ))
R8. Rule of replacement of proved equivalence
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Theorem 8. The logic EDLAAN is completely axiomatized by the axioms and infer-
ence rules of EDLA together with the schemata of Theorem 7.

Now, consider the following formula:
χSD

def=
∧
i∈Agt,a∈Act(�SD≤0(i:a)→ [i:a]⊥).

The effect of χSD! is to delete from every game ∼(w) in the model M all worlds in
which a strictly dominated strategy is played by some agent. Note that χSD is equiva-
lent to

∧
i∈Agt,a∈Act(SD≤0(i:a)→ [i:a]⊥).

As the following Theorem 9 highlights, the procedure IDSDS that we have char-
acterized in Section 3.3 in the static EDLA can be characterized in a more compact
way in EDLAAN . Suppose δ is the selected strategy profile. Then, for every agent i,
δi survives IDSDS until the subgame of depth n+1 if and only if, the event χSD! can
occur n+1 times in sequence.
Theorem 9. For all δ ∈ ∆, for all n ≥ 0,
`EDLAAN 〈δ〉> →

(
¬SD≤n(δ)↔ 〈χSD!〉n+1>

)
.

Finally, here is a reformulation of Theorem 5 in EDLAAN :

Theorem 10. For all n ≥ 0, `EDLAAN

(
MKnAgt

∧
i∈Agt Rati

)
→ 〈χSD!〉n+1>.

5 Concluding remarks: imperfect information
Let us consider a more general class of games which includes strategic games with
imperfect information about the game structure. Apart from few exceptions (see, e.g.,
[14]), these games have been rarely explored. Indeed, most work in game theory as-
sumed that players have common knowledge of all relevant aspects of the game. We
are interested in verifying whether the results obtained in Sections 3.2 and 3.3 can be
generalized to this kind of games, that is:

1. Are rationality of every player and every agent’s knowledge about other agents’
choices still sufficient to ensure that the selected strategy profile is a Nash equi-
librium in a strategic game with imperfect information about the game structure?

2. Is mutual knowledge of rationality among the players still sufficient to ensure
that the selected strategy profile survives iterated deletion of dominated strategies
in a strategic game with imperfect information about the game structure?

To answer these questions, we have to remove Axiom PerfectInfo from EDLA and the
corresponding semantic constraint S9 from the definition of EDLA frames expressing
the hypothesis of perfect information about the game structure. We call EDLA∗ the
resulting logic and EDLA∗-frames the resulting class of frames. Then we have to
check whether Theorems 4 and 5 given in Sections 3.2 and 3.3 are still derivable in
EDLA∗.

We have a positive answer to the previous first question. Indeed, the formula((∧
i∈Agt Rati

)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→ Nash(δ)

is derivable in EDLA∗. But we have a negative answer to the second question. Indeed,
the following formula is invalid in EDLA∗ for every δ ∈ ∆ and for every n ∈ N such
that n > 0 (see Section A.11 in the Annex for a proof):((

MKnAgt

∧
i∈Agt Rati

)
∧ 〈δ〉>

)
→ ¬SD≤n(δ).
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6 Related works
Although several modal logics of games in strategic forms have been proposed (see,
e.g., [16, 22]), few modal logics exist which support reasoning about epistemic (strate-
gic) games. Among them we should mention [12, 21, 9].

De Bruin [12] has developed a very rich logical framework which enables to rea-
son about the epistemic aspects of strategic games and of extensive games. His system
deals with several game-theoretic concepts like the concepts of knowledge, rational-
ity, Nash equilibrium, iterated strict dominance, backward induction. Nevertheless, de
Bruin’s approach differs on many points from our approach. First of all, our logical ap-
proach to epistemic games is minimalistic since it relies on few primitive concepts and
corresponding modal operators for knowledge, action, historical necessity and prefer-
ence. All other notions such Nash equilibrium, rationality, iterated strict dominance are
defined by means of these four primitive concepts. On the contrary, in de Bruin’s logic
all those notions are atomic propositions managed by a ad hoc axiomatization (see, e.g.,
[12, pp. 61,65] where special propositions for rationality and iterated strict dominance
are introduced). Secondly, we provide a semantics and a complete axiomatics for our
logic of epistemic games. De Bruin’s approach is purely syntactic: no model-theoretic
analysis of games is proposed nor completeness result for the proposed logic is given.
Finally, de Bruin does not provide any complexity results about his logic while we
prove that the satisfiability problem of a formula in our logic is PSPACE-complete.

Roy [21] has recently proposed a modal logic integrating preferences, knowledge
and intentions. In his approach every world in a model is associated to a nominal which
directly refers to a strategy profile in a strategic game. This approach is however limited
in expressing formally the structure of a strategic game. In particular, in Roy’s logic
there is no principle like the EDLA Axiom Indep explaining how possible actions
δi of individual agents are combined to form a strategy profile δ of the current game.
Another limitation of Roy’s approach is that it does not allow to express the concept of
(weak) rationality that we have been able to define in Section 3.2 (see [21, pp. 101]). As
discussed in the previous sections this is a crucial concept in interactive epistemology
since it is used for giving epistemic justifications of several solution concepts like Nash
equilibrium and IDSDS (see Theorems 4 and 5).

Bonanno [9] integrates modal operators for belief, common belief with construc-
tions expressing agents’ preferences over individual actions and strategy profiles, and
apply them to the semantic characterization of solution concepts like Iterated Deletion
of Strictly Dominated Strategies (IDSDS) and Iterated Deletion of Inferior Profiles
(IDIP). As in [21], in Bonanno’s logic every world in a model corresponds to a strat-
egy profile of the current game. Although this logic allows to express the concept of
weak rationality, it is not sufficiently general to enable to express in the object language
solution concepts like Nash equilibrium and IDSDS (note that the latter is defined by
Bonanno only in the metalanguage).

It is to be noted that, differently from EDLA, most modal logics of epistemic
games in strategic form (included Roy’s logic and Bonanno’s logic) postulate a one-to-
one correspondence between models and games (i.e. every model of the logic corre-
sponds to a unique strategic game, and worlds in the model are all strategy profiles of
this game). Such an assumption is quite restrictive since it prevents from analyzing in
the logic games with imperfect information about the game structure in which an agent
can imagine alternative games. As shown in Section 5, this is something we can do in
our logical framework by removing Axiom PerfectInfo from EDLA.

Before concluding this section about related works it is to be noted that the ap-
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proach to game dynamics based on Dynamic Epistemic Logic (DEL) we proposed in
Section 4 is inspired by [5] in which strategic equilibrium is defined by fixed-points of
operations of repeated announcement of suitable epistemic statements and rationality
assertions. However, the analysis of epistemic games proposed in [5] is mainly seman-
tical and the author does not provide a full-fledged modal language for epistemic games
which allows to express in the object language solution concepts like Nash Equilibrium
or IDSDS, and the concept of rationality. Moreover, van Benthem’s analysis does not
include any completeness result for the proposed framework and there is no proposal
of reduction axioms for a combination of DEL with a static logic of epistemic games.
On the contrary, these two aspects are central in our analysis.
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A ANNEX: Proofs of some theorems
We add this long annex since it may be useful for evaluating our work. Indeed, some
of the proofs are not straightforward. However, if our submission will be accepted, the
annex can be partially removed from the final version without affecting the contribution
of the paper.

A.1 Proof of Theorem 1
EDLA is determined by the class of EDLA-frames.

Proof. All axioms of EDLA are in the Sahlqvist class. Using the Sahlqvist algorithm
it is routine to prove that the Axioms Alt[δ], Active, Single, Indep, JointDet, Aware,
Incl[good]i,�

, PrefConnect and PerfectInfo of EDLA respectively correspond to the
constraints S1, S2, S3, S4, S5, S6, S7, S8 and S9. Completeness of EDLA then follows
from Sahlqvist’s completeness theorem, cf. [8, Th. 2.42]. ut

A.2 Proof of Theorem 2
We give here a sketch of proof. The Theorem 2 is implied by two facts:

Proposition 1. The satisfiability problem of EDLA is PSPACE-hard.

Proof. Consider B the logic of the class of infinite binary trees. The logic B is
PSPACE-complete (we leave to the reader the adaptation of the proof given in [8]).
Then the idea is that we can simulate binary trees with one agent and two actions. Let
ϕ a B-formula. We define a translation tr from the language of B to the language of
EDLA by:

tr(ϕ) = �[
∧
i∈md(ϕ)(X�)i[atmosta1a2foragent1∧justactiona1foragent1]∧

tr1(ϕ)
where:

• atmosta1a2foragent1 =
∧
j∈{3,...,n}[1:aj ]⊥;

• justactiona1foragent1 =
∧
i∈Agt,i6=1

∧
j∈{2,...,n}[i:aj ]⊥;

• tr1(♦ψ) = ♦Xtr1(ψ);

• Xψ =
∨
a∈Act〈1:a〉ψ.

We can prove that ϕ is B-sat iff tr(ϕ) is EDLA-sat.
ut

Proposition 2. The satisfiability problem of EDLA is PSPACE.

Proof. • First, the satisfiability problem of the fragment of EDLA without time
(we only consider formulas ϕ where all subformulas of the form [i:a]ψ implies
ψ = ⊥), is NP-complete. Indeed, we can prove that if a formula is satisfiable it
is in a model where the size is bounded by card(Act)card(Agt);

• Finally we can prove that there exists an deep first search algorithm running in
PSPACE. The idea is the same than in [2].

ut
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A.3 Proof of Theorem 3a
For all i ∈ Agt , we have: `EDLA Rati ↔ KiRati

Proof. Rati is equivalent to∧
a,b∈Act(〈i:a〉> →

∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉)))

which is equivalent to∧
a,b∈Act(Ki [i:a]⊥ ∨

∨
β∈∆ Ki(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉))),

by classical principles of propositional logic, Axiom 5 for Ki, and the two EDLA
theorems (β′ ≤i β)↔ Ki(β′ ≤i β) and [i:a]⊥ ↔ Ki [i:a]⊥.

The latter implies∧
a,b∈Act Ki([i:a]⊥ ∨

∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉))),

by standard principles of normal modal logic. By standard principles of normal modal
logic, the latter is equivalent to

Ki
∧
a,b∈Act([i:a]⊥ ∨

∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:a〉))).

This is equivalent to KiRati. ut

A.4 Proof of Theorem 4
For all n ∈ N, for all δ ∈ ∆, we have:
`EDLA

((∧
i∈Agt Rati

)
∧
∧
i∈Agt Ki〈δ−i〉>

)
→ Nash(δ)

Proof. Let us take a EDLA-modelM and a worldw such thatM,w |= (
∧
i∈Agt Rati∧∧

i∈Agt Ki〈δ−i〉>). Now, let us prove that M,w |= Nash(δ).
Let i ∈ Agt and let us prove that M,w |= BR(δi, δ−i).
More precisely, we have to prove that M,w |= ([δi]⊥ ∧ 〈δ−i〉>) ≤i (〈δi〉> ∧

〈δ−i〉>).
Let j 6= i. We have Kj〈−j〉>, so M,w |= 〈δi〉> by Axiom T for Kj . As M,w |=

Rati, we then have M,w |=
∧
b∈Act

∨
β∈∆(K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉))).

That is to say for all b ∈ Act, there exists β ∈ ∆ such that M,w |= K̂i〈β−i〉> ∧
(〈β−i, i:b〉 ≤i 〈β−i, δi〉).

But, we have Ki〈δ−i〉>. So for all b ∈ Act, β−i = δ−i.
So we have M,w |=

∧
b∈Act(〈β−i, i:b〉 ≤i 〈β−i, δi〉). This is equivalent to

M,w |= ([δi]⊥ ∧ 〈δ−i〉>) ≤i (〈δi〉> ∧ 〈δ−i〉>).
ut

A.5 Proof of Theorem 5
For all δ ∈ ∆, `EDLA

((
MKnAgt

∧
i∈Agt Rati

)
∧ 〈δ〉>

)
→ ¬SD≤n(δ)

Proof. We are going to prove the theorem by induction on n.

• Let us begin to prove the theorem for n = 0. Let us take a EDLA-model M
and a world w such that M,w |=

∧
i∈Agt Rati ∧ 〈δ〉>. By definition of Rati, we

have:

M,w |=
∧
i∈Agt

∧
b∈Act

(∨
β∈∆

(
K̂i〈β−i〉> ∧ (〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

))
This implies:

M,w |=
∧
i∈Agt

∧
b∈Act

(∨
β∈∆ (♦〈β−i〉> ∧ 〈β−i, i:b〉 ≤i 〈β−i, i : δi〉)

)
, by

Axiom PerfectInfo.
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Furthermore, we have M,w |=
∧
i∈Agt〈δi〉>. So, M,w |=

∧
i∈Agt ¬SD≤0(δi)

and M,w |= ¬SD≤0(δ).

So

`EDLA

 ∧
i∈Agt

Rati ∧ 〈δ〉>

→ ¬SD≤0(δ).

• Now, let n ∈ N and let us prove that if the theorem 5 is true for all k ≤ n then it
is true for n+1. Let us take a EDLA-modelM and a worldw such thatM,w |=(
MKn+1

Agt

∧
i∈Agt Rati

)
∧ 〈δ〉>. We have to prove M,w |= ¬SD≤n+1(δ). That

is to say, we have to prove that for all i ∈ Agt , M,w |= ¬SD≤n+1(δi).

¬SD≤n+1(δi) = ¬SD≤n(δi)∧

∧
b∈Act

¬SD≤n(i:b)→
∨
β∈∆

(
¬SD≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, δi〉)

)
.

First, asM,w |= (MKn+1
Agt

∧
i∈Agt Rati)∧〈δ〉>we also haveM,w |= (MKnAgt

∧
i∈Agt Rati)∧

〈δ〉>. So by applying Theorem 5 for n we have M,w |= ¬SD≤n(δi).

It remains to be provenM,w |=
∧
b∈Act(¬SD≤n(i:b)→

∨
β∈∆(¬SD≤n(β−i)∧

(〈β−i, i:b〉 ≤i 〈β−i, δi〉))).

In fact, we are going to prove something less strong:

M,w |=
∧
b∈Act

∨
β∈∆(¬SD≤n(β−i) ∧ (〈β−i, i:b〉 ≤i 〈β−i, i:δi〉)).

But, we have M,w |= Rati ∧ 〈δ〉>. So, M,w |=
∧
b∈Act

∨
β∈∆(K̂i〈β−i〉> ∧

(〈β−i, i:b〉 ≤i 〈β−i, δi〉)).

The only thing which remains to proven is that we have ‘¬SD≤n(β−i)’.

But for all b ∈ Act , there exists β ∈ ∆ such that M,w |= K̂i〈β−i〉> ∧
(〈β−i, i:b〉 ≤i 〈β−i, δi〉))).

For all b ∈ Act , there exists a world u such that wEiu and M,u |= 〈β−i〉>. As
M,w |= MKn+1

Agt

∧
i∈Agt Rati, we have for all k ≤ n,M,u |= MKkAgt

∧
i∈Agt Rati.

The Theorem 5 is supposed to be true by induction for n soM,u |= ¬SD≤n(β−i).
But as |= ¬SD≤n(β−i) ↔ �¬SD≤n(β−i), and as Ei ⊆∼ (constraint S9), we
have M,w |= ¬SD≤n(β−i), this for all b ∈ Agt .

ut

A.6 Proof of Theorem 6
If M is a EDLA model then Mχ is a EDLA model.

Proof. It is just a routine to verify that ∼χ and every Eχi are equivalence relations,
every �χi is reflexive and transitive, and the model Mχ satisfies the constraints S7,
S8 and S9. The constraints S1, S2, S3, S5 on Mχ follow straightforwardly from the
definition of Rχi:a.

Let us prove that Mχ satisfies constraints S4 and S6.
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We first prove that Mχ satisfies constraint S4. We introduce the following useful
notation. Suppose χ1, χ2 ∈ LAN . Then, χ2  χ3 iff there is χ3 ∈ LAN such that
χ1 = χ2 ∧ χ3.

Now, suppose for every i ∈ Agt there is vi such that vi ∼χ w and Rχδi
(vi) 6= ∅. It

follows that for every i ∈ Agt there is vi such that vi ∼ w and Rδi(vi) 6= ∅. The latter
implies that there is v such that v ∼ w and Rδ(v) 6= ∅ (by the semantic constraint S4).
Now, suppose for all v′ if v′ ∼χ w then Rχδ (v′) = ∅. It follows that: there is i ∈ Agt
and ψ ∈ LEDLA such that �ψ → [δi]⊥ χ and M, v |= �ψ. The latter implies that
there is i ∈ Agt and ψ ∈ LEDLA such that �ψ → [δi]⊥  χ and for all v′ ∼ w,
M,v′ |= �ψ. We conclude that there is no vi ∼χ w such that Rχδi

(vi) 6= ∅ which leads
to a contradiction.

We now consider constraint S6. Suppose wEχi v and Rχi:a(w) 6= ∅. It follows that
wEiv and Ri:a(w) 6= ∅ which implies Ri:a(v) 6= ∅, because M satisfies constraint S6.
The latter implies Rχi:a(v) 6= ∅. Now, suppose wEχi v and Rχi:a(v) 6= ∅. It follows that
wEiv and Ri:a(v) 6= ∅ which implies Ri:a(w) 6= ∅, because M satisfies constraint S6.
The latter implies Rχi:a(w) 6= ∅.

ut

A.7 Proof of Theorem 7
Proof. The proofs of reduction axioms R1-R6 and of rule R8 go as in DEL (see [13]).
We here prove reduction axiom R7.
CASE 1. ¬χ and [χ!]⊥ are equivalent in EDLAAN . Therefore,

(A) ¬χ→ ([χ!] [i:a]ϕ↔ ¬χ)

is valid in EDLAAN .
CASE 2. Let us suppose M,w |= [i:a]χ ∧ χ.
M,w |= [χ!] [i:a]ϕ
IFF if M,w |= χ then Mχ, w |= [i:a]ϕ
IFF if M,w |= χ then, if v ∈ Rχi:a(w) then Mχ, v |= ϕ
IFF if M,w |= χ then, if v ∈ Ri:a(w) then Mχ, v |= ϕ
(because M,w |= [i:a]χ ∧ χ implies Rχi:a(w) = Ri:a(w)),
IFF if M,w |= χ then, if v ∈ Ri:a(w) then Mχ, v |= ϕ and M, v |= χ
(by M,w |= [i:a]χ),
IFF if M,w |= χ then, if v ∈ Ri:a(w) then M,v |= [χ!]ϕ and M,v |= χ
IFF if M,w |= χ then M,w |= [i:a] ([χ!]ϕ ∧ χ)
IFF if M,w |= χ→ ([i:a] ([χ!]ϕ ∧ χ)
IFF if M,w |= χ→ [i:a] [χ!]ϕ
(by the hypothesis M,w |= [i:a]χ).
This proves that ([i:a]χ∧χ)→ ([χ!] [i:a]ϕ↔ (χ→ [i:a] [χ!]ϕ)) is valid in EDLAAN .
It follows that

(B) ([i:a]χ ∧ χ)→ ([χ!] [i:a]ϕ↔ [i:a] [χ!]ϕ)

is valid in EDLAAN too.
CASE 3. Let us suppose M,w |= ¬ [i:a]χ ∧ χ which is equivalent to M,w |=
〈i:a〉¬χ ∧ χ.
M,w |= [χ!] [i:a]ϕ
IFF if M,w |= χ then Mχ, w |= [i:a]ϕ
IFF if M,w |= χ then, if v ∈ Rχi:a(w) then Mχ, v |= ϕ
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IFF if M,w |= χ then Mχ, w |= ϕ
(because M,w |= 〈i:a〉¬χ ∧ χ implies Rχi:a(w) = {w}),
IFF if M,w |= χ then Mχ, w |= ϕ and M,w |= χ
(by the hypothesis M,w |= χ),
IFF if M,w |= χ then Mχ, w |= [χ!]ϕ
IFF if M,w |= χ→ [χ!]ϕ
IFF if M,w |= [χ!]ϕ
(by the hypothesis M,w |= χ). Therefore

(C) (¬ [i:a]χ ∧ χ)→ ([χ!] [i:a]ϕ↔ [χ!]ϕ)

is valid in EDLAAN .
From the previous three EDLAAN validities A, B and C it follows that:

[χ!] [i:a]ϕ↔ (¬χ ∨ ([i:a]χ ∧ [i:a] [χ!]ϕ) ∨ (¬ [i:a]χ ∧ [χ!]ϕ))
is valid in EDLAAN .

ut

A.8 Proof of Theorem 8
The logic EDLAAN is completely axiomatized by the axioms and inference rules of
EDLA together with the schemata of Theorem 7.

Proof. By means of the principles R1-R8 in Theorem 7, it is straightforward to prove
that for every EDLAAN formula there is an equivalent EDLA formula. In fact, each
reduction axiom R2-R7, when applied from the left to the right by means of the rule
of replacement of proved equivalence R8, yields a simpler formula, where ’simpler’
roughly speaking means that the dynamic operator is pushed inwards. Once the dy-
namic operator attains an atom it is eliminated by the equivalence R1. Hence, the
completeness of EDLAAN is a straightforward consequence of Theorem 1. ut

A.9 Proof of Theorem 9
For all δ ∈ ∆, for all n ≥ 0,
`EDLAAN 〈δ〉> →

(
¬SD≤n(δ)↔ 〈χSD!〉n+1>

)
.

Proof. We are going first to prove the theorem by induction.
Let us begin to prove the case n = 0. Let M,w be a EDLA-pointed-model such

that M,w |= 〈δ〉>. M,w |= ¬SD≤0(δ) means that for all i ∈ Agt , we have M,w |=
¬SD≤0(δi). It is equivalent to: for all i ∈ Agt , for all a ∈ Act , M,w |= SD≤0(i:a)→
[i:a]⊥ (indeed, if a = δi, we haveM,w |= ¬SD≤0(δi) and if a 6= δi, we haveM,w |=
[i:a]⊥). So it is equivalent to M,w |= χSD which is equivalent to M,w |= 〈χSD!〉>.

Now, we suppose the theorem true for n− 1. We suppose that

`EDLAAN 〈δ〉> →
(
¬SD≤n−1(δ)↔ 〈χSD!〉n>

)
(∗)

.

Lemma 1. Let M,w a EDLA-pointed model. Let i ∈ Agt . There exists a ∈ Act such
that M |= ¬SD≤0(i:a).
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Proof. By contradiction. Suppose for all a ∈ Act , we have M,w |= SD≤0(i:a). Let
β ∈ ∆. Let a1 ∈ Act such that M,w |= ♦〈i:a1〉>. We have M,w |= SD≤0(i:a1). We
recall the definition of SD≤0(i:a1):

SD≤0(i:a1) def= 〈i:a1〉> →∨
a2∈Act

(♦〈i:a2〉> ∧
∧
δ∈∆

(♦〈δ−i〉 → (〈δ−i, i:a1〉 <i 〈δ−i, i:a2〉))).

By definition of SD≤0(i:a1), there exists a2 ∈ Act such that 〈δ−i, i:a1〉 <i 〈δ−i, i:a2〉.
We have M,w |= SD≤0(i:a2). So we can find a3 such that M,w |= 〈δ−i, i:a2〉 <i

〈δ−i, i:a3〉. We continue the process and we define a sequence of actions a1, a2, a3, . . .
such that for all j ≥ 1, M,w |= 〈δ−i, i:aj〉 <i 〈δ−i, i:aj+1〉. But Act is finite, so there
exists k > 1 such that a1 = ak. By transitivity of <i, we have M,w |= 〈δ−i, i:a1〉 <i
〈δ−i, i:ak〉. This is not possible.

ut

Lemma 2. For all i ∈ Agt , for all a ∈ Act,

•
M,w |= ¬SD≤0(i:a) iff MχSD , w |= ♦〈i:a〉>.

• for all n ≥ 0, we have:

M,w |= ¬SD≤n+1(i:a) iff MχSD , w |= ¬SD≤n(i:a).

Proof. • Consider a pointed-model M,w such that M,w |= ¬SD≤0(i:a). Thus,
by definition of ¬SD≤0(i:a), we have M,w |= ♦〈i:a〉>. According to Lemma
1 we have for all j 6= i the existence of βj such that M,w |= ¬SD≤0(βj). We
define δ as δi = i:a and δj = βj for all j 6= i. So, by the semantic constraint S4,
there exists a point u where M,u |= 〈δ〉>. The world u is not removed by the
event χSD!. Thus, we have MχSD , u |= 〈i:a〉>.

If M,w |= SD≤0(i:a), then all worlds w in which M,w |= 〈i:a〉> are removed
because χSD is false in w. So MχSD , w 6|= ♦〈i:a〉>.

• The second point is the induction case. You can read the first case as the initial
case of induction by defining ¬SD≤−1(i:a) def= ♦〈i:a〉>.

Let n ∈ N. Suppose that we haveM |= ¬SD≤n(i:a) iff MχSD |= ¬SD≤n−1(i:a).

We leave to the reader checking that the latter impliesM |= ¬SD≤n+1(i:a) iff MχSD |=
¬SD≤n(i:a).

ut

LetM,w be a EDLA-pointed-model such thatM,w |= 〈δ〉>. IfM,w |= ¬SD≤n(δ)
then M,w |= ¬SD≤0(δ). So, M,w |= 〈χSD!〉>, and w remains in MχSD .

As M,w |= ¬SD≤n(δ), the lemma gives us MχSD , w |= ¬SD≤n−1(δ). Now we
are going to apply the induction hypothesis (*). We obtain MχSD , w |= 〈χSD!〉n>. So
M,w |= 〈χSD!〉n+1>.

If M,w |= 〈χSD!〉n+1>, we have also M,w |= 〈χSD!〉>. So w remains in MχSD .
By applying Lemma 2 and induction hypothesis (*), we obtain M,w |= ¬SD≤n−1(δ).
Finally, M,w |= ¬SD≤n(δ).

ut
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A.10 Proof of Theorem 10.
For all n ≥ 0, `EDLAAN

(
MKnAgt

∧
i∈Agt Rati

)
→ 〈χSD!〉n+1>.

Proof. By Theorem 5 and 9. Indeed, let M,w a EDLA-pointed-model such that
M,w |= MKnAgt

∧
i∈Agt Rati. There exists δ ∈ ∆ such that M,w |= 〈δ〉>. Theorem 5

gives M,w |= ¬SD≤n(δ). Theorem 9 gives M,w |= ¬SD≤n(δ)↔ 〈χSD!〉n+1>. So,
M,w |= 〈χSD!〉n+1>. ut

A.11 Note on imperfect information about game structure
The following formula is invalid in EDLA∗ for every δ ∈ ∆ and for every n ∈ N such
that n > 0: ((

MKnAgt

∧
i∈Agt Rati

)
∧ 〈δ〉>

)
→ ¬SD≤n(δ).

Proof. We suppose Agt = {1, 2} and we exhibit in Figure 2 a EDLA∗-model M
and a world w1 in M in which for all n, (MKn{1,2}

∧
i∈{1,2} Rati) ∧ 〈1:main〉> ∧

SD≤1(1:main) is true. ut

w1

w3

w2

w4

R1:main
R 2:proc

R1:mainR 2:skip

R1:back

R 2:proc

R1:back

R2:skip

w5

w7

w6

w8

R 1:main
R 2:proc

R1:mainR 2:skip

R1:back

R 2:proc

R1:back

R2:skip

ww

w
2w = 4w1

1<1w3<1 2w

w
2w = 4w2

1 <1w3

1 = 32

5 w8w6 w
7=1 =1 =1w

5 w8w6 w7=2 =2 =2w

Figure 2: Alarm Game. Again red circles represent epistemic possibility relations for
agent 1 whereas green circles represent epistemic possibility relations for agent 2. The
two equivalence classes ∼(w1) = {w1, w2, w3, w4} and ∼(w5) = {w5, w6, w7, w8}
correspond to two different games where agents have different preference ordering over
strategy profiles.

19



SCENARIO DESCRIPTION. We call Alarm Game the scenario represented by the model
in Fig. 2. Agent 1 is a thief who intends to burgle agent 2’s apartment. Agent 1 can
enter the apartment either by the main door or by the back door (action 1:main or action
1:back ). Agent 2 has two actions available. Either he does nothing (action 2:skip) or
he follows a security procedure (action 2:proc) which consists in locking the two doors
and in activating a surveillance camera on the main door. Entering the apartment by
the main door when agent 2 does nothing (i.e. the strategy profile 〈1:main, 2:skip〉
executed at worldw2) and entering by the back door when agent 2 does nothing (i.e. the
strategy profile 〈1:back , 2:skip〉 executed at worldw4) are for agent 1 the best situations
and are for him equally preferable. Indeed, in both cases agent 1 will successfully enter
and burgle the apartment. On the contrary, trying to enter the apartment by the back
door when 2 follows the security procedure (i.e. the strategy profile 〈1:back , 2:proc〉
executed at world w3) is for 1 strictly better than trying to enter by the main door when
2 follows the security procedure (i.e. the strategy profile 〈1:main, 2:proc〉 executed
at world w1). Indeed, in the former case agent 1 will be simply unable to burgle the
apartment, in the latter case not only he will be unable to burgle the apartment but also
he will disclose his identity. The two possible situations in which agent 1 does not
succeed in burgling the apartment (worlds w1 and w3) are equally preferable for agent
2 and are for 2 strictly better than the situations in which agent 1 successfully burgles
the apartment (worlds w2 and w4).

At world w1 agent 1 enters by the main door while agent 2 follows the security pro-
cedure. This is the only world in the model M in which agent 1 has some uncertainty.
Indeed, in this world agent 1 can imagine the alternative game defined by the equiva-
lence class∼(w5) = {w5, w6, w7, w8} in which he enters by the back door while agent
2 does nothing (world w8). We suppose that in such a game, even if agent 2 follows
the security procedure, agent 1 will succeed in burgling his apartment. This is the rea-
son why the four strategy profiles 〈1:main, 2:skip〉, 〈1:back , 2:skip〉, 〈1:main, 2:proc〉
and 〈1:back , 2:proc〉 are equally preferable for the two agents.
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