Where next for formal methods?

James Heather and Kun Wei

Department of Computing, University of Surrey, Guildford, Surrey GU2 7XH, UK
Email: {j.heather, k.wei}@surrey.ac.uk

Abstract. In this paper we propose a novel approach to the analysis of
security protocols, using the process algebra CSP to model such protocols
and verifying security properties using a combination of the FDR model
checker and the PVS theorem prover. Although FDR and PVS have
enjoyed success individually in this domain, each suffers from its own
deficiency: the model checker is subject to state space explosion, but
superior in finding attacks in a system with finite states; the theorem
prover can reason about systems with massive or infinite states spaces,
but requires considerable human direction. Using FDR and PVS together
makes for a practical and interesting way to attack problems that would
remain out of reach for either tool on its own.

1 Introduction

Security protocols are vital for providing secure communication and processing
of information across a distributed system. However, designing such protocols
is notoriously error-prone, since it is difficult to predict and allow for all the
possible interactions between the parties operating on the network running the
protocol.

Constructing proofs of correctness by hand can be arduous. Indeed, many
convincing hand-constructed ‘proofs’ of correctness of protocols have been pub-
lished in the literature only to be found wanting at a later date. Over the past
decade, formal methods have been remarkably successful in their application to
the analysis of security protocols with the emergence of some powerful verifica-
tion tools.

There are essentially two approaches: model checking and theorem proving.
Under a model-checking approach, a system executing the security protocol is
represented as a transition system with finitely many states. The model checker
then uses various efficient state exploration techniques to discover whether the
system can reach a state representing a security violation. Many different model
checkers have been employed in this fashion; for example, FDR [7,5,10] has
proved to be an excellent tool for modelling and verifying safety properties such
as authentication and confidentiality. One has to be extremely careful when using
a model checker for such tasks, however: it is all to easy to allow the state space
to become unmanageably large.

The alternative is the theorem-proving approach, in which a system and its
properties are described by logical formulae, and the formal proof is established

by proving theorems that state that such properties hold in the system. One
successful such setup is that of the rank functions theory [2] embedded in the
PVS theorem prover, which can tackle authentication properties of protocols
running on networks involving arbitrarily many agents and with an arbitrarily
large message space. However, even when using semi-automated (interactive)
provers such as PVS or Isabelle, it is a large task to validate a complex system.
For example, in the project to verify SET [6], a e-commerce protocol, Isabelle
presents the user with subgoals that are hundreds of lines long, and diagnosing
a failed proof requires meticulous examination of huge formulae.

The model-checking approach is superior in finding attacks in a system with
finite states, but subject to the state explosion problem; the theorem-proving
approach can reason about systems with massive or infinite states spaces, but
does not provide automatic verification. One natural question to ask is whether
it is possible to blend the two complementary approaches in an elegant way to
avoid the weaknesses of each.

There have been various lines of investigation for creating hybrid systems.
For example, Cohen [1] proposes a proof method for analyzing security protocols
in which safety properties are proven by ordinary first-order reasoning, and all
proof is generated in an automatic verifier, TAPS. Song [12] also proposes an
efficient automatic checking algorithm, Athena, which incorporates its own logic
and exploits several state space reduction techniques based on an extension of the
Strand Spaces Model [13]. Heather [3] develops a tool, RankAnalyser, that makes
use of results [4] to construct a rank function and verify a protocol automatically.
It is appropriate for verifying networks of arbitrary size, and with arbitrarily
many concurrent executions of the protocol.

However, the above tools are designed for analyzing a few specific prop-
erties, all of which are safety properties. Liveness properties—deadlock, non-
repudiation, denial of service, and so on—have not yet been mastered to the
same degree since they must be expressed in a more complex model. We here
propose the novel idea of using the process algebra CSP to describe the system
executing the security protocol and the security properties to be verified, and
construct the proof of correctness by using a combination of FDR and PVS.

The general approach is to start by modelling the (infinite-state) system in
the CSP semantics that we have embedded into PVS, and then start to prove
the theorems using PVS. In the course of constructing the proofs, we invariably
encounter some subgoals involving only finite-state processes. It would take a
long time to trace through the states one by one checking for correspondence in
PVS, whereas FDR can verify such cases very quickly; therefore, we proceed by
building these results into the PVS theory as axioms, and then proving them
correct in FDR. In this way, we harness the power of the theorem prover for
establishing results about an infinite-state system, whilst retaining the speed
and automation of a model-checker for certain appropriate parts of the proof.

Currently, translating between the PVS syntax and the FDR syntax is done
manually; however, we are making progress towards a tool to perform this trans-
lation automatically.

2 CSP notation

CSP is an event-orientated language for describing concurrent systems and their
interactions. A security protocol is a concurrent system in which a series of
messages are exchanged among the various parties involved. CSP is therefore
well suited to the modelling and analysis of security protocols.

In CSP, a system can be considered as a process that might be hierarchically
composed of many smaller processes. An individual process can be combined
with events or other processes by operators such as prefixing, choice, parallel
composition, and so on.

Stop is a stable deadlocked process that never performs any events. The
process ¢ — P behaves like P after performing the event c. A event like ¢
may be compounded; for example, one often-used pattern of events is c.i.j.m,
consisting of a channel ¢, a sender 7, a receiver j and a message m.

The external choice P; O P, may behave either like P; or like Ps, depending
on what events its environment initially offers it. The traces of internal choice
Py M Py are the same as those of P; O Ps, but the choice in this case is non-
deterministic.

The process Pi ,||z P2 is the process where all events in the intersection
of A and B must be synchronized, and other events within A and B can be
performed independently by P; and P, respectively. An interleaving Py ||| P2
executes each part entirely independently and is equivalent to Py Q Ps.

The process P \ A will pass through the same events as P, but events in the
set A become be invisible. The renamed process P[a < b] means that the event
a is completely replaced by b in the process P. In addition, processes may also
be described recursively whenever such descriptions are well defined.

A trace is defined to be a sequence of finite events. A refusal set is a set of
events from which a process can fail to accept anything no matter how long it
is offered; refusals(P/t) is the set of P’s refusals after the trace ¢; then (¢, X) is
a failure in which X denotes refusals(P/t). If the trace ¢ can make no internal
progress, this failure is called a stable failure.

Liveness is concerned with behaviour that a process is guaranteed to make
available, and can be inferred from stable failures; for example, if, for a fixed
trace ¢, we have a ¢ X for all stable failures of P of the form (¢, X), then a
must be available after P has performed t.

Verification in FDR is done by means of determining whether one process
refines another. In the stable failures model, this equates to checking whether
the traces and failures of one process are subsets of the traces and failures of the
other:

P Cr Q = traces(P) D traces(Q) A failures(P) 2 failures(Q)
For the properties we are considering, if P meets the properties we are verifying,

then @ also meets them if @ refines P. For a fuller introduction, the reader is
referred to [8, 11].

3 Case Study

An elegant example to demonstrate the power of the combination of PVS and
FDR is the dining philosophers problem. We imagine n philosophers sitting at
a table with a bowl of spaghetti in the middle. Between each pair of adjacent
philosophers, there is a single fork; and to eat, a philosopher must be holding
both of the forks that are beside him. We assume all philosophers pick forks up
in the same order—right hand first—and do not put down either fork they have
picked up until they have grabbed both. There are various ways in CSP to model
this problem, and one of them is as follows:

PHIL; =pickup.i.i — pickup.i.i ©, 1
—putdown.i.i B, 1 — putdown.i.i — PHIL;
FORK; =pickup.i.i — putdown.i.i — FORK;
Opickup.i ©, 1.1 — putdown.i 8, 1.« — FORK;
COLLEGE = ||"_(PandF;, AP)
where ‘@,,” denotes addition modulo n and PandF}; is the combination

PHIL; | FORK;

i

The alphabet sets used are:

AF; = aPHIL; N aFORK;

Obviously for the dining philosophers problem, the one and only situation
causing deadlock is that in which all philosophers hold their right-hand fork
simultaneously and wait for their neighbours to put down their forks. There are
many modifications one can make to avoid deadlock, one of which results in the
asymmetric dining philosophers problem: one philosopher picks up a left-hand
fork first.

The basic strategy we adopt is similar to an induction used in [9], where the
authors use a hierarchical compression technique in FDR to prove the case with
huge numbers of philosophers, but not with arbitrary numbers of philosophers.
The key idea is that we can prove that any number greater than one of right-
handed pairs of philosophers and forks are equivalent by hiding their internal
events and carefully renaming their interface events. The proof starts from the
case with n = 3 philosophers; then, for the inductive step, we assume that the
case of n = k philosophers is deadlock-free, and show that the system remains
deadlock-free when the number of philosophers is n = k + 1.

Figure 1 shows the dining philosophers network’s structure, composed of
philosopher/fork pairs. This figure also shows how we deduce deadlock freedom

PHIL
FORK

‘PHILO

Fig. 1. Inductive structure of dining philosophers

of k£ + 1 philosophers from the case of k philosophers. The real thing we want to
achieve behind this step is to prove the equivalence of two processes: k philosoph-
ers and k + 1 philosophers. Of course, it is unnecessary to compare all pairs, and
we need to concentrate only on the last two pairs in the circle of figure 1. The
key to the induction is that if we hide the internal events of the synchronization
of PandF (k,k—2) and PandF (k, k—1), it is equivalent to the synchronization of
PandF (k+1,k—2), PandF(k+1,k—1) and PandF (k+1, k) with their internal
events hidden and pickup.k.0 and putdown.k.0 renamed as pickup.(k — 1).0 and
putdown.(k — 1).0 respectively.
The above key lemma is formally described as following;:

(PandF (k,k —2) ap, g, , PandF(k,k — 1))\ IE; =
FIE, s (PandF(k +1,i), AF;)) \ 1By 1)

where IE; and IFji, denote the sets of internal events and f is a biject-
ive function which renames pickup.k.0 and putdown.k.0 as pickup.k — 1.0 and
putdown.k — 1.0 respectively and vice versa.

Although it would be possible to prove this lemma in PVS, it would be in
one sense perverse to do so, since it is essentially a very small model-checking
exercise. Also proving such a lemma in PVS is rather time-consuming. The nat-
ural approach is to establish an axiom for the above lemma and finish the proof
in PVS; we transform the script into an FDR script containing an assertion that
this lemma holds, and finish the proof using FDR. Using PVS in combination
with FDR, then, we can successfully and elegantly prove the asymmetric dining
philosophers network with an arbitrary number of philosophers to be deadlock
free.

4 Conclusion

Although the example above is not explicitly security-related, we have also found
this approach to be highly effective when considering security protocols. For ex-
ample, we have analyzed and verified the fairness property of the Zhou-Gollmann
non-repudiation protocol using a combination of PVS and FDR; this could have
been used as the case study, but the dining philosophers example is considerably
more transparent, and we considered the digression from the security theme to
be a price worth paying for the sake of clarity. The net result of following the
PVS/FDR approach is a proof that is automated as far as possible, but that can
handle infinite-state systems with minimal effort.

Our aim is to take this work further by automating the translation. We are
in the process of developing a tool that can transform PVS scripts into FDR
scripts, in order to speed up the process and to avoid introducing unnecessary
human error. Ultimately, the procedure will be:

1. model the (infinite-state) system in PVS;

2. use PVS to reduce the proof obligations to finite-state checks;

3. run the translation tool, which will pick up the PVS script and the partially
completed proof, and translate the proof obligations into an FDR script
containing these obligations as assertions;

4. run FDR on these assertions to complete the proof.

The final stage, we envisage, will involve running a second (far simpler) tool that
will run FDR on the resulting script, analyze the results, and insert the proof
obligations into the PVS script as axioms for any checks that succeed.

References

1. E. Cohen. Taps: A first-order verifier for cryptographic protocols. In 13th IEEE
Computer Security Foundations Workshop — CSFW’00, pages 144-158, Cam-
bridge, UK, 3-5 July 2000. IEEE Computer Society Press.

2. B. Dutertre and S. A. Schneider. Embedding CSP in PVS: an application to
authentication protocols. In E. Gunter and A. Felty, editors, Theorem Proving in
Higher-Order Logics: 10th International Conference, TPHOLs 97, volume 1275 of
Lecture Notes in Computer Science. Springer-Verlag, 1997.

3. J. A. Heather. ‘Oh! ... Is it really you?’—Using rank functions to verify authen-
tication protocols. Department of Computer Science, Royal Holloway, University
of London, December 2000.

4. J. A. Heather and S. A. Schneider. Towards automatic verification of authentica-
tion protocols on an unbounded network. Technical Report 00-04, Royal Holloway,
University of London, 2000.

5. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing FDR. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1055, pages 147-166. Springer-Verlag, Berlin Germany, 1996.

6. L. C. Paulson. Verifying the set protocol: Overview. In A. E. Abdallah, P. Ryan,
and S. Schneider, editors, FASec, volume 2629 of Lecture Notes in Computer Sci-
ence, pages 4-14. Springer, 2002.

10.

11.

12.

13.

A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and
FDR. Proceedings of 8th IEEE Computer Security Foundations Workshop, 1995.
A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Interna-
tional, 1998.

A. W. Roscoe, P. H. B. Gardiner, M. Goldsmith, J. R. Hulance, D. M. Jackson,
and J. B. Scattergood. Hierarchical compression for model-checking csp or how
to check 1020 dining philosophers for deadlock. In E. Brinksma, R. Cleaveland,
K. G. Larsen, T. Margaria, and B. Steffen, editors, TACAS, volume 1019 of Lecture
Notes in Computer Science, pages 133-152. Springer, 1995.

P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The Modelling And
Analysis Of Security Protocols. Addison Wesley, July 2000.

S. A. Schneider. Concurrent and real-time systems: the CSP approach. John Wiley
& Sons, 1999.

D. X. Song. Athena: a new efficient checker for security protocol analysis. Pro-
ceedings of 12th IEEE Computer Security Foundations Workshop, June 1999.

J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Proving security protocols
correct. Journal of Computer Security, 1999.

