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Abstract. This paper presents the steps followed in the design of hybrid
stochastic local search algorithms for biobjective permutation flow shop
scheduling problems. In particular, this paper tackles the three pairwise
combinations of the objectives (i) makespan, (ii) the sum of the comple-
tion times of the jobs, and (iii) the weighted total tardiness of all jobs.
The proposed algorithms are combinations of two local search methods:
two-phase local search and Pareto local search. The design of the algo-
rithms is based on a careful experimental analysis of crucial algorithmic
components of the two search methods. The final results show that the
newly developed algorithms reach very high performance: The solutions
obtained frequently improve upon the best nondominated solutions pre-
viously known, while requiring much shorter computation times.

1 Introduction

In this paper, we tackle biobjective flowshop scheduling problems. The flowshop
environment models problems where each job consists of a set of operations that
are to be carried on machines, and the machine order is the same for each job.
Flowshops are a common production environment, for example in the chemical
or the ceramic tile industry. We consider flowshops minimizing the following
criteria: the completion time of the last job (makespan), which has been the
most intensively studied criterion for this problem [1]; the sum of completion
times (total flowtime) of all jobs, which recently has attracted a lot of efforts
[2,3]; and the weighted tardiness, a criterion which is important in practical
applications [4]. For an overview of the biobjective flowshop problems that result
from each combination of these objectives, we refer to Minella et al. [5].

At a high level, our approach is based on the hypothesis that effective stochas-
tic local search (SLS) algorithms for multi-objective combinatorial optimization
problems (MCOPs) can be obtained by (i) developing (or simply using known)
very effective algorithms for the underlying single-objective problems, and (ii)
using these single-objective algorithms as components of higher-level algorithm
frameworks for tackling multi-objective problems. Further, multi-objective spe-
cific local search routines may be examined as an alternative for reaching high-
performance algorithms or as a post-processing step.
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As a first step in our SLS algorithm development, we adopted the state-of-
the-art SLS algorithm for the flowshop problem under makespan objective, the
iterated greedy (IG) algorithm of Ruiz and Stützle [6]. Subsequently, this algo-
rithm was extended to the sum of flowtime and weighted tardiness objectives
and we fine-tuned the resulting algorithms. In a next step, we extended these
algorithms to tackle the biobjective versions of the flowshop problem that result
from each of the pairwise combinations of the three above mentioned objectives.
This was done by integrating the IG algorithms into the two-phase local search
(TPLS) framework [7]. At the same time, we also implemented Pareto local
search (PLS) [8] algorithms that use different neighborhood structures. A core
part of our work is the careful experimental study of the main algorithmic com-
ponents of the resulting TPLS and PLS algorithms. The insights from this study
were then used to propose a hybrid SLS algorithm that combines the TPLS and
the PLS algorithms. The final experimental results with this algorithm show its
excellent performance: It often finds better Pareto fronts than those of a refer-
ence set that was extracted from the best nondominated solutions obtained by
a set of 23 other algorithms.

The paper is structured as follows. In Section 2 we introduce basic notions
needed in the following. In Section 3 we describe the single-objective algorithms
that underlie the two-phase local search approach. Section 4 presents results of
the various experimental studies and we conclude in Section 5.

2 Preliminaries

2.1 Multi-objective Optimization

In MCOPs, (candidate) solutions are ranked according to an objective function
vector f = (f1, . . . , fd) with d objectives. If no a priori assumptions upon the
decision maker’s preferences can be made, the goal typically becomes to de-
termine a set of feasible solutions that “minimize” f in the sense of Pareto
optimality. If u and v are vectors in R

d, we say that u dominates v (u ≺ v) iff
u �= v and ui ≤ vi, i = 1, . . . , d; we say that u weakly dominates v (u ≤ v) iff
ui ≤ vi, i = 1, . . . , d. We also say that u and v are nondominated iff u ⊀ v and
v ⊀ u and are (pairwise) non weakly dominated if u �≤ v and v �≤ u. For sim-
plicity, we also say that a solution s dominates another one s′ iff f(s) ≺ f(s′).
If no other s′ exists such that f(s′) ≺ f(s), the solution s is called a Pareto
optimum. The goal in MCOPs typically is to determine the set of all Pareto op-
timal solutions. Since this task is in many cases computationally intractable, in
practice the goal becomes to find an approximation to the set of Pareto optimal
solutions in a given amount of time that is as good as possible. In fact, any set of
mutually nondominated solutions provides such an approximation. The notion
of Pareto optimality can be extended to compare sets of mutually nondominated
solutions [9]. In particular, we can say that one set A dominates another set B
(A ≺ B), iff every b ∈ B is dominated by at least one a ∈ A.
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2.2 Bi-objective Permutation Flowshop Scheduling

In the flowshop scheduling problem (FSP) a set of n jobs (J1, . . . , Jn) is given to
be processed on m machines (M1, . . . , Mm). All jobs go through the machines
in the same order, i.e., all jobs have to be processed first on machine M1, then
on machine M2 and so on until machine Mm. A common restriction in the FSP
is to forbid job passing, i.e., the processing sequence of the jobs is the same on
all machines. In this case, candidate solutions correspond to permutations of
the jobs and the resulting problem, on which we focus here, is the permutation
flowshop scheduling problem (PFSP). All processing times pij for a job Ji on
a machine Mj are fixed, known in advance and nonnegative. In the following,
we denote by Ci the completion time of a job Ji on machine Mm. For a given
job permutation π, the makespan is the completion time of the last job in the
permutation, i.e., Cmax = Cπ(n). For m ≥ 3 this problem is NP-hard in the
strong sense [10]. In the following, we refer to this problem as PFSP -Cmax.

The other objectives we study are the minimization of the sum of flowtimes
and the minimization of the weighted tardiness. The sum of flowtimes is defined
as

∑n
i=1 Ci. The resulting PFSP with this objective is strongly NP-hard even

with only two machines [10]. We refer to this problem as PFSP-SFT. For the
weighted tardiness objective, each job has a due date di by which it is to be
finished and a weight wi indicating its priority. The tardiness is defined as Ti =
max{Ci − di, 0} and the total weighted tardiness is given by

∑n
i=1 wi · Ti. This

problem we denote PFSP-WT ; it is strongly NP-hard even for a single machine.
In this paper, we tackle the three biobjective problems that result from the

three possible pairs of objectives. A number of algorithms have been proposed
to tackle each of these biobjective problems, but rarely more than one possible
combination of the objectives has been addressed in a paper. The algorithmic
approaches range from constructive algorithms to applications of SLS methods
such as evolutionary algorithms, tabu search, or simulated annealing. Minella et
al. [5] give a comprehensive overview of the literature on the three problems we
tackle here and present the results of an extensive experimental analysis of 23
algorithms, either specific or adapted for tackling the three biobjective PFSPs.
They identify MOSA [11] as the best performing algorithm.

2.3 Two-Phase Local Search and Pareto Local Search

In this paper, we study SLS algorithms that represent two main classes of multi-
objective SLS algorithms [12]: algorithms that follow a component-wise accep-
tance criterion (CWAC), and those that follow a scalarized acceptance criterion
(SAC). As two paradigmatic examples of each of these classes, we use two-phase
local search (TPLS) [7] and Pareto local search (PLS) [8].

Two-Phase Local Search. The first phase of TPLS uses an effective single-
objective algorithm to find a good solution for one objective. This solution is the
initial solution for the second phase, where a sequence of scalarizations are solved
by an SLS algorithm. Each scalarization transforms the multi-objective problem
into a single-objective one using a weighted sum aggregation. For a given weight
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Algorithm 1. Two-Phase Local Search
Input: A random or heuristic solution π
π′ := SLS1(π);
for all weight vectors λ do

π′ := SLS2(π
′, λ);

Add π′ to Archive;
end for
Filter Archive;

vector λ = (λ1, λ2), the value w of a solution s with objective function vector
f(s) = (y1, y2) is computed as w = (λ1 · y1) + (λ2 · y2), s.t. λ1, λ2 ∈ [0, 1] ⊂ R

and λ1 + λ2 = 1. In TPLS, each run of the SLS algorithm for solving a scalar-
ization uses as an initial solution the best one found for the previous scalariza-
tion. The motivation for using such a method is to exploit the effectiveness
of the underlying single-objective algorithm. Algorithm 1 gives the pseudo-
code of TPLS. We denote by SLS1 the SLS algorithm to minimize the first
single objective. SLS2 is the SLS algorithm to minimize the weighted sums.

Pareto Local Search. PLS is an iterative improvement method for solving
MCOPs that is obtained by replacing the usual acceptance criterion of iterative
improvement algorithms for single-objective problems by an acceptance criterion
that uses the dominance relation. Given an initial archive of unvisited nondom-
inated solutions, PLS iteratively applies the following steps. First, it randomly
chooses an unvisited solution s from the candidate set. Then, the neighborhood
of s is fully explored and all neighbors that are not weakly dominated by s or
by any solution in the archive are added to the archive. Solutions in the archive
dominated by the newly added solutions are eliminated. Once the neighborhood
of s is fully explored, s is marked as visited. The algorithm stops when all solu-
tions in the archive have been visited.

We also implemented the component-wise step (CW-step) procedure as a post-
processing step of the solutions produced by TPLS. It adds nondominated so-
lutions in the neighborhood of the solutions returned by TPLS to the archive,
but it does not explore the neighborhood of these newly added solutions further.
Hence, CW-step may be interpreted as a specific variant of PLS with an early
stopping criterion. Because of this early stopping criterion, the CW-step results
in worse nondominated sets than PLS. However, compared to running a full
PLS, CW-step typically requires a very small additional computation time.

3 Single-Objective SLS Algorithms

The performance of the single-objective algorithms used by TPLS is crucial.
They should be state-of-the-art algorithms for the underlying single-objective
problems and as good as possible for the scalarized problems resulting from the
weighted sum aggregations. Motivated by these considerations, for PFSP -Cmax

we reimplemented in C++ the iterated greedy (IG) algorithm (IG-Cmax) by Ruiz
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Algorithm 2. Iterated Greedy
π := NEH;
while termination criterion not satisfied do

πR := Destruction(π);
π′ := Construction(πR);
π′ := LocalSearch(π′) % optional;
π := AcceptanceCriterion(π, π′);

end while

and Stützle [6], which is a current state-of-the-art algorithm for this problem.
An algorithmic outline is given in Algorithm 2. The essential idea of IG is to
iterate over a construction heuristic by first destructing partially a complete
solution; next, from the resulting partial solution πR a full problem solution is
reconstructed and possibly further improved by a local search algorithm. This
solution is then accepted in dependence of an acceptance criterion.

More concretely, IG-Cmax uses the NEH heuristic [13] for constructing the ini-
tial solution and for reconstructing full solutions in the main IG loop. (NEH is
an insertion heuristic that sorts the jobs according to some criterion and inserts
jobs in this order into the partial schedule. Note that this sorting is only relevant
when NEH constructs the initial solution; in the main loop of IG the jobs are
considered in random order.) In the destruction phase a small number of d ran-
domly chosen jobs are removed. The local search is an effective first-improvement
algorithm based on the insert neighborhood, where two solutions are neighbors
if they can be obtained by removing a job from one position and inserting it in
a different one. The acceptance criterion uses the Metropolis condition: A worse
solution is accepted with a probability given by exp (f(π′) − f(π))/T , where f is
the objective function and the temperature parameter T is maintained constant
throughout the run of the algorithm. Parameter values are given in Table 1.

Given the known very good performance of IG-Cmax, we use it also for the
other two objectives. However, the speed-ups of Taillard for Cmax [14] are not
anymore applicable, which leads to a factor n increase of the local search time
complexity. As a side result, it is unclear whether the same neighborhood as for
the makespan criterion should be chosen. We have therefore considered also (i)
the exchange neighborhood, where two solutions are neighbors if they can be
obtained by exchanging the position of two jobs; and (ii) the swap neighbor-
hood, where only two adjacent jobs are exchanged. We tested only restricted
versions of the insert and exchange neighborhoods, where the possible insertion
and exchange moves of only one job are examined.

Other changes concern the formula for the definition of the temperature pa-
rameter for the acceptance criterion. This is rather straightforward for PFSP-
SFT, which can be done by adapting slightly the way the temperature is defined.
For PFSP-WT no input data-driven setting as for the other two objectives could
be obtained due to large variation of the objective values. Therefore, the tem-
perature parameter is defined relating it to a given target percentage deviation
from the current solution. Finally, for PFSP-WT we explored different ways of
defining the initial sequence of jobs for the NEH heuristic.
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Table 1. Adaptation of IG for each objective and for the scalarized problems from
each combination of objectives. A (↓) denotes a decreasing order, and a (↑) denotes an
increasing order. Tp is a parameter of the formula for Temperature. Settings for IG-
Cmax follow [6]. For IG-SFT, the formula of Temperature is the same as for IG-Cmax

but multiplied by n. For IG-WT, the initial order for NEH is given by the well-known
SLACK heuristic [4] augmented with priorities wi. Parameter d is the number of jobs
removed in the destruction phase. Insert-T refers to a full insert iterative improvement
using the speed-ups of Taillard [14]; Swap to a full iterative improvement execution
using the swap neighborhood and Ins. to the insertion search for one job. For details
see the text.

Algorithm Init. order for NEH Temperature T Tp d LS

IG-Cmax

∑m
j=1 pij (↓) Tp ·

∑n
i=1

∑m
j=1 pij

n·m·10 0.4 4 Insert-T

IG-SFT
∑m

j=1 pij (↓) Tp ·
∑n

i=1
∑m

j=1 pij

m·10 0.5 5 Swap

IG-WT wi · (di − Ci(s)) (↑) 100
Tp·f(s)

0.7 4 Swap+Ins.

IG-(Cmax,SFT)
∑m

j=1 pij (↓) 100
Tp·f(s)

0.5 5 Swap

IG-(·,WT) wi · (di − Ci(s)) (↑) 100
Tp·f(s)

0.5 5 Swap

We tuned the IG algorithms for PFSP-SFT and PFSP-WT using iterated
F-Race [15] on training instances that are different from those used for the final
test results. The final configurations retained from this tuning phase are given in
Table 1. The lines IG-(Cmax,SFT) and IG-(·,WT) concern the scalarized prob-
lems where the weights are different from one and zero for the indicated objec-
tives. A closer examination of the performance of the resulting single-objective
algorithms (not reported here) showed that for total flowtime the final IG al-
gorithm is competitive to current state-of-the-art algorithms as of 2009; for the
total tardiness objective the performance is also very good and very close to
state-of-the-art; in fact we could improve with the IG algorithms a large fraction
(in each case more than 50%) of the best known solutions of available benchmark
sets.

4 Multi-Objective SLS Algorithms

In what follows, we first study main algorithm components of the PLS and
TPLS algorithms and then present a comparison of a final hybrid SLS algorithm
to reference sets of the best solutions found so far for a number of benchmark
instances. We used the benchmark from Minella et al. [5], which consists of
the benchmark set of Taillard [16] augmented with due dates and priorities. In
order to avoid over-tuning, we performed the algorithm component analysis on
20 training instances of size 50x20 and 100x20, which were generated following
the procedure used by Minella et al. [5].

The results are analyzed by graphically examining the attainment surfaces of
a single algorithm and differences between the empirical attainment functions
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Fig. 1. Nondominated sets obtained by PLS using different quality of seeds for instance
100x20 3. The randomly generated solution is outside the range shown.

(EAF) of pairs of algorithms. The EAF of an algorithm provides the probability,
estimated from several runs, of an arbitrary point in the objective space being
attained (weakly dominated) by a solution obtained by a single run of the al-
gorithm [17]. An attainment surface delimits the region of the objective space
attained by an algorithm with a certain minimum probability. In particular, the
worst attainment surface delimits the region of the objective space always at-
tained by an algorithm, whereas the best attainment surface delimits the region
attained with the minimum non-zero probability. Similarly, the median attain-
ment surface delimits the region of the objective space attained by half of the runs
of the algorithm. Examining the attainment surfaces allows to assess the likely
location of the output of an algorithm. On the other hand, examining the dif-
ferences between the EAFs of two algorithms allows to identify regions of the
objective space where one algorithm performs better than another. Given a pair
of algorithms, the differences in favor of each algorithm are plotted side-by-side
and the magnitude of the difference is encoded in gray levels. López-Ibáñez et
al. [18] provide a detailed explanation of these graphical techniques.

4.1 Analysis of PLS Components

Seeding. As a first experiment, we analyzed the computation time required
and the final quality of the nondominated sets obtained by PLS when PLS is
seeded with solutions of different quality. We test seeding PLS with: (i) one ran-
domly generated solution, (ii) two good solutions (one for each single objective)
obtained by the NEH heuristics (see Table 1), and (iii) two solutions obtained
by IG for each objective after 10 000 iterations. Figure 1 gives representative
examples of nondominated sets obtained by PLS for each test and indicates
the initial seeding solutions of NEH and IG. The best nondominated sets, in
terms of a wider range of the Pareto front and higher quality solutions, are ob-
tained when using the IG seeds. Generally, seeding PLS with very good solutions
produces better nondominated sets; this result is strongest for the biobjective
problem that considers makespan and total flowtime. We further examined the
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Table 2. Computation time of PLS for different types of seeds

random heuristic IG
Objectives Instance Size avg. sd. avg. sd. avg. sd.

(Cmax,
∑

Ci) 50x20 8.85 2.05 6.23 2.48 4.56 0.38
100x20 177.40 27.60 142.23 29.79 162.14 26.09

(Cmax,
∑

wiTi) 50x20 31.61 6.84 33.85 7.46 24.02 3.84
100x20 641.96 215.55 767.23 299.33 626.48 114.08

(
∑

Ci,
∑

wiTi) 50x20 26.72 3.02 28.17 2.62 23.70 3.33
100x20 742.42 157.10 807.75 121.70 895.23 176.29

Table 3. Computation time of PLS for different neighborhood operators

exchange insertion ex. + ins.
Objectives Instance Size avg. sd. avg. sd. avg. sd.

(Cmax,
∑

Ci) 50x20 2.21 0.35 1.57 0.44 4.84 1.06
100x20 77.56 19.44 70.91 12.8 157.64 30.26

(Cmax,
∑

wiTi) 50x20 12.94 3.11 10.11 1.75 23.03 4.09
100x20 314.63 69.08 251.84 49.33 611.6 115.02

(
∑

Ci,
∑

wiTi) 50x20 14.24 3.79 9.51 1.8 23.72 3.87
100x20 492.91 102.59 239.04 101.47 872.32 262.21

computation time required by PLS in dependence of the initial seed in Table
2. Our conclusion is that seeding PLS with very good initial solutions does not
strongly reduce computation time. However, given the strong improvement on
solution quality, seeding PLS with solutions obtained by TPLS is pertinent.

Neighborhood operator. We experiment with PLS variants using three neigh-
borhoods: (i) insertion, (ii) exchange, and (iii) exchange plus insertion. The latter
simply checks for all moves in the exchange and insertion neighborhood of each
solution. We measured the computation time of PLS with each underlying op-
erator for each combination of objectives (Table 3). The computation time of
the combined exchange and insertion neighborhood is slightly more than the
sum of the computation times for the exchange and insertion neighborhoods.
For comparing the quality of the results, we examine the EAF differences of
10 independent runs. Figure 2 gives two representative examples. Typically, the
exchange and insertion neighborhoods lead to better performance in different
regions of the Pareto front (top plot), and both of them are consistently outper-
formed by the combined exchange and insertion neighborhood (bottom plot).

4.2 Analysis of TPLS Components

Number of scalarizations and number of iterations. In TPLS, each scalar-
ization is computed using a different weight vector. In this paper, we use a regular
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Fig. 2. EAF differences for (top) insertion vs. exchange and (bottom) exchange vs.
exchange and insertion. The combination of objectives is

∑
Ci and

∑
wiTi. Dashed

lines are the median attainment surfaces of each algorithm. Black lines correspond to
the overall best and overall worst attainment surfaces of both algorithms.

sequence of weight vectors from λ = (1, 0) to λ = (0, 1). If Nscalar is the num-
ber of scalarizations, the successive scalarizations are defined by weight vectors
λi = (1 − (i/Nscalar), i/Nscalar), i = 0, . . . , Nscalar.

For a fixed computation time, in TPLS there is a tradeoff between the number
of scalarizations to be used and the number of iterations to be given for each
of the invocations of the single-objective SLS algorithm. In fact, the number of
scalarizations (Nscalar) determines how many scalarized problems will be solved
(intuitively, the more the better approximations to the Pareto front may be
obtained), while the number of iterations (Niter) of IG determines decisively
how good the final IG solution will be. Here, we examine the trade-off between
the settings of these two parameters by testing all 9 combinations of the following
settings: Nscalar = {10, 31, 100} and Niter = {100, 1 000, 10 000}.

We first studied the impact of increasing either Nscalar or Niter for a fixed
setting of the other parameter. Although clear improvements are obtained by
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Fig. 3. EAF differences between Nscalar = 100 and Niter = 1000, versus Nscalar = 10
and Niter = 10000 for two combinations of objectives: Cmax and

∑
Ci (top) and Cmax

and
∑

wiTi (bottom)

increasing each of the two parameters, there are significant differences. While
for the number of scalarizations some type of limiting behavior without strong
improvements was observed when going from 31 to 100 scalarizations (while im-
provements from 10 to 31 were considerable), increasing the number of iterations
of IG alone seems always to produce significant improvements.

Next, we compare settings that require roughly the same computation time.
Figure 3 compares a configuration of TPLS using Nscalar = 100 and Niter = 1000
against other configuration using Nscalar = 10 and Niter = 10000. Results are
shown for two of the three combinations of objective functions. (The results
are representative for other instances.) As illustrated by the plots, there is no
clear winner in this case. A larger number of iterations typically produces better
solutions in the extremes of the Pareto front. On the other hand, a larger num-
ber of scalarizations allows to find trade-off solutions that are not found with a
smaller number of scalarizations. Given these results, among settings that require
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Table 4. Average computation time and standard deviation for CW-step and PLS

Instance CW-step PLS
Objectives Size avg. sd. avg. sd.

(Cmax,
∑

Ci) 50x20 0.20 0.02 2.40 0.75
100x20 1.56 0.40 75.04 32.53

(Cmax,
∑

wiTi) 50x20 0.37 0.03 7.43 2.11
100x20 2.51 0.42 202.71 50.51

(
∑

Ci,
∑

wiTi) 50x20 0.34 0.04 8.99 1.71
100x20 2.75 0.34 373.15 87.44

roughly the same computation time, there is no single combination of settings
that produces the best results overall among all objectives and instances.

Double TPLS. We denote as Double TPLS (DTPLS) the following strategy.
First, the scalarizations go sequentially from one objective to the other one, as in
the usual TPLS. Then, another sequence of scalarizations is performed starting
from the second objective back to the first one. To introduce more variability,
the weight vectors used in the first TPLS pass are alternated with the weight
vectors used for the second TPLS pass. We compared this DTPLS strategy with
the simple TPLS using 30 scalarizations of 1000 iterations. Although we found
on several instances strong differences, these differences were not consistent in
favor of advantages of DTPLS over TPLS or vice versa. This gives some evidence
that the two strategies do not behave the same, but we left it for further research
to investigate which instances features may explain the observed differences.

TPLS + PLS vs. TPLS + CW-step. As a final step, we compare the perfor-
mance tradeoffs incurred by either running PLS or the CW-step to the archive
of solutions returned by TPLS. For all instances, we generated 10 initial sets of
solutions by running TPLS with 30 scalarizations of 1000 iterations each. Then,
we independently apply to these initial sets the CW-step and PLS, both us-
ing the exchange and the insertion neighborhoods. In other words, each method
starts from the same set of initial solutions in order to reduce variance.

Table 4 gives the additional computation time that is incurred by PLS and the
CW-step after TPLS has finished. The results clearly show that the CW-step
incurs only a minor overhead with respect to TPLS, while PLS requires con-
siderably longer times, especially on larger instances. Moreover, the times re-
quired to terminate PLS are much lower than when seeding it with only two
very good solutions (compare with Table 2). With respect to solution quality,
Figure 4 compares TPLS versus TPLS+CW-step (top), and TPLS+CW step
versus TPLS+PLS (bottom). As expected, the CW-step is able to slightly im-
prove the results of TPLS, while PLS produces much better results. In summary,
if computation time is very limited, the CW-step provides significantly better
results at almost no computational cost; however, if enough time is available,
PLS improves much further than the sole application of the CW-step.
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Fig. 4. EAF differences between (top) simple TPLS vs. TPLS + CW-step, and
(bottom) TPLS + CW-step vs. TPLS + PLS. Objectives are Cmax and

∑
wiTi.

4.3 Comparison to Existing Algorithms

In order to compare our algorithm with existing work, we used the benchmark
of Minella et al. [5], which is Taillard’s benchmark set augmented with due
dates. In their review, the authors compare 23 heuristics and metaheuristics
using biobjective combinations of makespan (Cmax), sum of flowtime (

∑
Ci),

and total tardiness (
∑

Ti). They also provide the best-known nondominated
solutions obtained across 10 runs of each of the 23 algorithms. We use these
sets as reference sets to compare with our algorithm. As the reference sets are
given for the total (not weighted) tardiness criterion, we slightly modified our
algorithm by setting all the priorities to one (wi = 1).

In particular, we compare our results with the reference sets given for a compu-
tation time of 200 seconds and corresponding to instances from ta081 to ta090
(size 100x20). These reference sets were obtained on an Intel Dual Core E6600
CPU running at 2.4 Ghz. By comparison, our algorithms were run on a Intel
Xeon E5410 CPU running at 2.33 Ghz with 6MB of cache size, under Cluster
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Fig. 5. Comparison of our algorithm against the reference set for objectives Cmax

and
∑

Ci (top), Cmax and
∑

Ti (middle), and
∑

Ci and
∑

Ti (bottom) on instances
DD Ta081 (left) and DD Ta082 (right)

Rocks Linux. Both machines result in approximately similar speed, however, to
be conservative, we decided to round down the quality of our results by using
only 150 CPU seconds. For our algorithms, we used the following parameter
settings. The two extreme solutions are generated by running IG for 10 seconds
each. Then TPLS starts from the solution obtained for the first objective and
runs 14 scalarizations of 5 seconds each. Finally, we apply PLS in the exchange
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and insertion neighborhoods and stop it after 60 CPU seconds. We repeat each
run 10 times with different random seeds.

For each instance, we compare the best, median and worst attainment surfaces
obtained by our algorithm with the corresponding reference set.
Figure 5 shows results for the three objective combinations. In most cases,
the median attainment surface of our algorithm is very close to (and often
dominates) the reference set obtained by 10 runs of 23 algorithms, each run
using 200 CPU seconds. Moreover, the current state-of-the-art algorithms for
these problems are among these algorithms. Therefore, we conclude that our
algorithm is clearly competitive and probably superior to the current state-
of-the-art for these problems. All the additional plots are available online at
http://iridia.ulb.ac.be/supp/IridiaSupp2009-004

5 Conclusions

In this paper, we have studied algorithmic components of the TPLS and PLS al-
gorithms for three biobjective permutation flowshop problems, and we proposed
a hybrid, high-performing SLS algorithm for these problems.

The final experimental results have shown that our SLS algorithms are able to
significantly improve upon the reference sets of the nondominated solutions that
have been obtained during an extensive experimental study of 23 algorithms for
the same biobjective problems. These and other recent results in the literature
[7,19] suggest that hybrid algorithms combining the TPLS and PLS frameworks
have a large potential to improve upon the current state-of-the-art in multi-
objective optimization.
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