Skip to main content

Shortest Common Superstring Problem with Discrete Neural Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5495))

Abstract

In this paper, we investigate the use of artificial neural networks in order to solve the Shortest Common Superstring Problem. Concretely, the neural network used in this work is based on a multivalued model, MREM, very suitable for solving combinatorial optimization problems. We describe the foundations of this neural model, and how it can be implemented in the context of this problem, by taking advantage of a better representation than in other models, which, in turn, contributes to ease the computational dynamics of the model. Experimental results prove that our model outperforms other heuristic approaches known from the specialized literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ilie, L., Popescu, C.: The shortest common superstring problem and viral genome compression. Fundamenta Informaticae 73(1,2), 153–164 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Lesk, A.: Computational Molecular Biology, Sources and Methods for Sequence Analysis. Oxford University Press, Oxford (1988)

    Google Scholar 

  3. Li, M.: Towards a dna sequencing theory (learning a string). In: Proc. 31st Annual Symposium on Foundations of Computer Science, pp. 125–134 (1990)

    Google Scholar 

  4. Peltola, H., Soderlund, H., Tarhio, J., Ukkonen, E.: Algorithms for some string matching problems arising in molecular genetics. In: Proc. IFIP Congress, pp. 53–64 (1983)

    Google Scholar 

  5. Daley, M., McQuillan, I.: Viral gene compression: complexity and verification. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004, vol. 3317, pp. 102–112. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Storer, J.: Data Compression: Methods and Theory. Computer Science Press, Rockville (1988)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability. In: Garey, M.R., Johnson, D.S. (eds.) A guide to the theory of NP-Completeness, W. H. Freeman and Company, New York (1979)

    Google Scholar 

  8. Maier, D., Storer, J.: A note on the complexity of the superstring problem. In: Proceedings of the 12th Annual Conference on Information Science and Systems, pp. 52–56 (1978)

    Google Scholar 

  9. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of shortest superstring. Journal of the ACM 41(4), 630–647 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and hardness of approximation problems. In: 33rd Annual Symposium on Foundations of Computer Science, pp. 14–23 (1992)

    Google Scholar 

  11. Turner, J.: Approximation algorithms for the sortest common superstring problem. Information and Computation 83(1), 1–20 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, T., Jiang, Z., Breslauer, D.: Rotation of periodic strings and short superstrings. In: Proc. 3rd South American Conference on String Processing (1996)

    Google Scholar 

  13. Sweedyk, Z.: A \(2\frac{1}{2}\)-approximation algorithm for shortest superstring. SIAM Journal of Computing 29, 954–986 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Andrejkov, G., Levick, M., Oravec, J.: Approximation of shortest common superstring using neural networks. In: Proc. of 7th International Conference on Electronic Computers and Informatics, pp. 90–95 (2006)

    Google Scholar 

  15. Hopfield, J., Tank, D.: Neural computation of decisions in optimization problems. Biological Cybernetics 52, 141–152 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Mérida-Casermeiro, E., Galán-Marín, G., Muñoz-Pérez, J.: An efficient multivalued hopfield network for the travelling salesman problem. Neural Processing Letters 14, 203–216 (2001)

    Article  MATH  Google Scholar 

  17. Mérida-Casermeiro, E., Muñoz-Pérez, J., Domínguez-Merino, E.: An n-parallel multivalued network: Applications to the travelling salesman problem. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 406–413. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Mérida-Casermeiro, E., López-Rodríguez, D.: Graph partitioning via recurrent multivalued neural networks. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 1149–1156. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. López-Rodríguez, D., Mérida-Casermeiro, E., Ortiz-de-Lazcano-Lobato, J.M., López-Rubio, E.: Image compression by vector quantization with recurrent discrete networks. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 595–605. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Mérida-Casermeiro, E.: Red Neuronal recurrente multivaluada para el reconocimiento de patrones y la optimización combinatoria. Ph. D thesis, Universidad de Málaga (2000)

    Google Scholar 

  21. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities, vol. 79, pp. 2254–2558 (1982)

    Google Scholar 

  22. Ozturk, Y., Abut, H.: System of associative relationships (soar) (1997)

    Google Scholar 

  23. Erdem, M.H., Ozturk, Y.: A new family of multivalued networks. Neural Networks 9(6), 979–989 (1996)

    Article  Google Scholar 

  24. Mérida, E., Muñoz, J., Benítez, R.: A recurrent multivalued neural network for the N-queens problem. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001, vol. 2084, pp. 522–529. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. López-Rodríguez, D., Mérida-Casermeiro, E., Ortiz-de-Lazcano-Lobato, J.M., Galán-Marín, G.: k-pages graph drawing with multivalued neural networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 816–825. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Galán-Marín, G., Mérida-Casermeiro, E., López-Rodríguez, D.: Improving neural networks for mechanism kinematic chain isomorphism identification. Neural Processing Letters 26, 133–143 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López-Rodríguez, D., Mérida-Casermeiro, E. (2009). Shortest Common Superstring Problem with Discrete Neural Networks. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2009. Lecture Notes in Computer Science, vol 5495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04921-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04921-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04920-0

  • Online ISBN: 978-3-642-04921-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics