Skip to main content

A Generic Algorithm for Approximately Solving Stochastic Graph Optimization Problems

  • Conference paper
Book cover Stochastic Algorithms: Foundations and Applications (SAGA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5792))

Included in the following conference series:

  • 3101 Accesses

Abstract

Given a (directed or undirected) graph G = (V,E), a mutually independent random variable X e obeying a normal distribution for each edge e ∈ E that represents its edge weight, and a property \(\cal P\) on graph, a stochastic graph maximization problem asks the distribution function F MAX(x) of random variable \(X_{\rm MAX} = \max_{P \in {\cal P}} \sum_{e \in A} X_e\), where property \({\cal P}\) is identified with the set of subgraphs P = (U,A) of G having \(\cal P\). This paper proposes a generic algorithm for computing an elementary function \(\tilde F(x)\) that approximates F MAX(x). It is applicable to any \(\cal P\) and runs in time \(O(T_{A_{\rm MAX}} ({\cal P})+ T_{A_{\rm CNT}} ({\cal P}))\), provided the existence of an algorithm A MAX that solves the (deterministic) graph maximization problem for \(\cal P\) in time \(T_{A_{\rm MAX}} ({\cal P})\) and an algorithm A CNT that outputs an upper bound on \(|{\cal P}|\) in time \(T_{A_{\rm CNT}} ({\cal P})\). We analyze the approximation ratio and apply it to three graph maximization problems. In case no efficient algorithms are known for solving the graph maximization problem for \(\cal P\), an approximation algorithm A APR can be used instead of A MAX to reduce the time complexity, at the expense of increase of approximation ratio. Our algorithm can be modified to handle minimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, E., Nakata, T., Yamashita, M.: Approximating the Longest Path Length of a Stochastic DAG by a Normal Distribution in Linear Time. Journal of Discrete Algorithms (2009), doi:10.1016/j.jda.2009.01.001

    Google Scholar 

  2. Ando, E., Ono, H., Sadakane, K., Yamashita, M.: A Counting-Based Approximation the Distribution Function of the Longest Path Length in Directed Acyclic Graphs. In: Proceedings of the 7th Forum on Information Technology, pp. 7–8 (2008)

    Google Scholar 

  3. Badinelli, R.D.: Approximating Probability Density Functions and Their Convolutions Using Orthogonal Polynomials. European Journal of Operational Research 95, 211–230 (1996)

    Article  MATH  Google Scholar 

  4. Berkelaar, M.: Statistical delay calculation, a linear time method. In: Proceedings of the International Workshop on Timing Analysis (TAU 1997), pp. 15–24 (1997)

    Google Scholar 

  5. Chazelle, B.: A Minimum Spanning Tree Algorithm with Inverse-Ackermann Type Complexity. Journal of the ACM 47(6), 1028–1047 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clark, C.E.: The PERT model for the distribution of an activity time. Operations Research 10, 405–406 (1962)

    Article  Google Scholar 

  7. Dodin, B.: Bounding the Project Completion Time Distribution in PERT Networks. Networks 33(4), 862–881 (1985)

    MATH  Google Scholar 

  8. Hagstrom, J.N.: Computational Complexity of PERT Problems. Networks 18, 139–147 (1988)

    Article  MathSciNet  Google Scholar 

  9. Hashimoto, M., Onodera, H.: A performance optimization method by gate sizing using statistical static timing analysis. IEICE Trans. Fundamentals, E83-A 12, 2558–2568 (2000)

    Google Scholar 

  10. Hastings, C.: Approximations for Digital Computers. Princeton University Press, Princeton (1955)

    Book  MATH  Google Scholar 

  11. Ishii, H., Shiode, S., Nishida, T., Namasuya, Y.: Stochastic spanning tree problem. Discrete Appl. Math. 3, 263–273 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)

    Google Scholar 

  13. Kelley Jr., J.E.: Critical-path planning and scheduling: Mathematical basis. Operations Research 10, 912–915 (1962)

    Article  Google Scholar 

  14. Kleindorfer, G.B.: Bounding Distributions for a Stochastic Acyclic Network. Operations Research 19, 1586–1601 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ludwig, A., Möhring, R.H., Stork, F.: A Computational Study on Bounding the Makespan Distribution in Stochastic Project Networks. Annals of Operations Research 102, 49–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martin, J.J.: Distribution of the time through a directed, acyclic network. Operations Research 13, 46–66 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Malcolm, D.G., Roseboom, J.H., Clark, C.E., Fazar, W.: Application of a technique for research and development program evaluation. Operations Research 7, 646–669 (1959)

    Article  MATH  Google Scholar 

  18. Ravi, R., Sinha, A.: Hedging Uncertainly: Approximation algorithms for stochastic optimization problems. Mathematical Programming 108(1), 97–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tsukiyama, S., Tanaka, M., Fukui, M.: An Estimation Algorithm of the Critical Path Delay for a Combinatorial Circuit. In: IEICE Proceedings of 13th Workshop on Circuits and Systems, pp. 131–135 (2000) (in Japanese)

    Google Scholar 

  20. Varadarajan, K.R.: A divide-and-conquer algorithm for min-cost perfect matching in the plane. In: Proc. 38th Annual IEEE Symposium on Foundations of Computer Science (1998)

    Google Scholar 

  21. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    MATH  Google Scholar 

  22. Wets, R.J.-B.: Stochastic Programming. In: Nemhauser, G.L., Rinnooy Kan, A.H.G., Todd, M.J. (eds.) Handbooks in Operations Research and Management Science. Optimization, vol. 1, North-Holland, Amsterdam (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ando, E., Ono, H., Yamashita, M. (2009). A Generic Algorithm for Approximately Solving Stochastic Graph Optimization Problems. In: Watanabe, O., Zeugmann, T. (eds) Stochastic Algorithms: Foundations and Applications. SAGA 2009. Lecture Notes in Computer Science, vol 5792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04944-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04944-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04943-9

  • Online ISBN: 978-3-642-04944-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics