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Abstract. We consider the problem of finding and ranking paths in
semistructured data without necessarily knowing its full structure. The
query language we adopt comprises conjunctions of regular path queries,
allowing path variables to appear in the bodies and the heads of rules,
so that paths can be returned to the user. We propose an approximate
query matching semantics which adapts standard notions of approxima-
tion from string matching to graph matching. Query results are returned
to the user ranked in order of increasing “distance” to the user’s original
query. We show that the top-k approximate answers can be returned in
polynomial time in the size of the database graph and the query.

1 Introduction

The volume and heterogeneity of semistructured data being made increasingly
available, e.g. in the form of RDF linked data [4], necessitates support for users
in formulating queries over this data. In particular, users need to be assisted by
query processing systems that do not require users’ queries to match precisely the
structure of the data [9, 12, 15, 18]. Moreover, in many application areas, users
need to be able to find paths through large volumes of semistructured data, e.g.
in bioinformatics [19, 20] and community and social network analysis [2, 21].

In this paper, we consider the problem of a user posing path queries on
semistructured data without necessarily knowing the full structure of the data.
We consider a general data model comprising a directed graph G = (V, E). Each
node in V is labelled with a constant and each edge is labelled with a pair (l, c),
where l is a label drawn from a finite alphabet Σ and c ∈ N is a cost associated
with traversing the edge3.

There has been much work on using regular expressions to specify paths
through data (e.g. [1, 6, 7, 13]). In recent work [16], we considered approximate

3 This general graph model encompasses RDF data, for example (with all edge costs
being 1 in this case), except that it does not allow for the representation of RDF’s
“blank” nodes. However, blank nodes are discouraged for RDF linked data [14].



matching of conjunctive regular path queries [6], of the form

(Z1, . . . , Zm)← (X1, R1, Y1), . . . , (Xn, Rn, Yn)

where each Xi and Yi, 1 ≤ i ≤ n, is a variable or constant, each Zi, 1 ≤ i ≤ m,
is a variable appearing in the body of the query, and each Ri, 1 ≤ i ≤ n, is a
regular expression over Σ. However, in that work we did not allow path variables
within queries, and were not able to return paths as results to users’ queries.

Here, we consider extended regular path (ERP) queries of the form:

Xi1 , Pi1 , Yi1 , . . . , Xir , Pir , Yir ← (X1, (R1 :P1), Y1), . . . , (Xn, (Rn :Pn), Yn)

where each Xi and Yi, 1 ≤ i ≤ n, is a variable or constant; each Ri, 1 ≤ i ≤ n, is
a regular expression over Σ; and each Pi, 1 ≤ i ≤ n, is a path variable. Variables
take values which are node labels while path variables take values which are
paths.

The answer to an ERP query Q on a graph G is specified as follows: we find,
for each conjunct (Xi, (Ri : Pi), Yi), 1 ≤ i ≤ n, a relation ri over the scheme
(Xi, Pi, Yi, Ci) such that tuple t ∈ ri iff there is a path t[Pi] of cost t[Ci] from
t[Xi] to t[Yi] in G that satisfies Ri i.e. whose concatenation of edge labels is in
L(Ri); we then form the natural join of relations r1, . . . , rn and project over the
variables and path variables appearing in the head of the query. In returning
instantiations of the path variables Pi within query answers, we do not include
the start and end nodes of the path since these are instantiated by the variables
Xi, Yi (see Examples 1 and 2 below).

We generally want to return the k lowest-cost paths satisfying Q. For each
conjunct (Xi, (Ri :Pi), Yi), 1 ≤ i ≤ n, the cost, cost(p), of a path p which satisfies
Ri is simply the sum of the costs of each of the edges of p. For the query as a
whole, we assume that a monotonically increasing function qcost(P1, . . . , Pn) is
specified. For simplicity, in our examples below we assume that a cost of 1 is
associated with edges, and that qcost(P1, . . . , Pn) = cost(P1) + · · ·+ cost(Pn).

Example 1. This example is movitated by the L4All system [8, 23], which allows
lifelong learners to create and maintain a chronological record of their learning,
work and personal episodes — their timelines — with the aim of fostering collab-
orative formulation of future goals and aspirations; see Figure 1 for an example
timeline. Episodes have a start and end date associated with them (for simplic-
ity, these are not shown in Figure 1). Episodes are ordered within the timeline
according to their start date — as indicated by edges labelled next. There are
many different categories of episode, for example University and Work in our
example. Associated with each category of episode are several properties — for
simplicity, we have shown just two of these, subj[ect] and pos[ition].

A key aim of the L4All system is to allow learners to share their timelines
with others and to identify possibilities for their own future learning and pro-
fessional development from what others have done. For example, suppose that
Mary has studied English at university, and she wants to find out what possible
future career choices there are for her by seeing what others who studied En-
glish have gone on to do. The following ERP query Q1 can be formulated (in



ep21 ep22 ep23 ep24

University Work Work Work

English Air Travel Assistant Journalist Assistant Editor

next next

next

prereq

categ categ categ categ

subj pos pos pos

Fig. 1. A fragment of timeline data.

the concrete query syntax, variable names are preceded with ‘?’; in this query,
the ?Ei instantiate to episodes and the ?Pi to paths):

?E1,?P3,?E2,?E2,?P4,?Cat,?E2,pos,?Pos <-
(?E1,categ:?P1,University),(?E1,subj:?P2,English),
(?E1,next+:?P3,?E2),(?E2,categ:?P4,?Cat),(?E2,pos:?P5,?Pos)

When Q1 is evaluated on a database of timeline data that includes the subgraph
shown in Figure 1, the results returned include

ep21,[next],ep22,ep22,[categ],Work,ep22,[pos],AirTravelAsssistant;

ep21,[next,ep22,next],ep23,ep23,[categ],Work,ep23,[pos],Journalist;

ep21,[next,ep22,next,ep23,next],ep24,ep24,[categ],Work,ep24,[pos],

AssistantEditor;

with costs of 5, 6 and 7, respectively. ��
As stated earlier, in general we want to allow for approximate matching of

such queries. Grahne and Thomo [12] explored approximate matching of single-
conjunct regular path queries using a weighted regular transducer. This is a finite
state automaton in which transitions are labelled with triples. A transition from
state s to state t labelled (a, i, b) means that if the transducer is in state s, it
can move to state t on input a with cost i while outputting b. In our context,
such a transition specifies that symbol a in a query can match the label b of
a graph edge with cost i. Grahne and Thomo showed that such queries can be
evaluated incrementally in polynomial time, with results being returned to the
user in ranked order of similarity to the original query. In [16], we showed that
multiple-conjunct regular path queries can also be evaluated incrementally in
polynomial time, using ideas from [17] on evaluation of top-k query results. In
this paper, we extend this approach by considering extended regular path queries,
which allow path variables within queries and are able to return paths within
the result set. We focus on approximate regular expression matching [24], which



can easily be specified using weighted regular transducers [12]. As in [16], the
edit operations we allow in approximate matching of ERP queries are: insertions,
deletions and substitutions of symbols; inversions of symbols (corresponding to
edge reversals); and transpositions of adjacent symbols, each with an assumed
edit cost of 1. In practice, we envisage the user being able to select the set of edit
operations they wish to be applied to their query and the relative cost associated
with each one, reflecting their own preferences and the application semantics.

In the next section, we present a motivating example for approximate match-
ing of ERP queries. In Section 3, we consider first the case of computing approx-
imate answers for ERP queries containing only one conjunct. We show that the
top-k approximate answers can be returned in polynomial time in the size of
the database graph and the query, and we also discuss how the top-k answers
can be computed incrementally. In Section 4 we extend this complexity result
to the case of general ERP queries, provided the query conjuncts are acyclic.
We note that these results are a non-trivial extension of our earlier work in [16],
since paths are now able to be returned to the user. In general, there may be an
infinite number of paths between two given nodes of the database graph (due
to the possible presence of cycles in the graph and also the fact that we allow
edges to be traversed in the reverse direction in queries). This makes finding the
top-k paths considerably more complicated than finding the top-k start and end
nodes of some path, as in [16]. We discuss related work in Section 5 and give our
conclusions and directions for future work in Section 6.

2 Motivation

We begin with an example illustrating approximate matching of ERP queries.

Example 2. Consider again Example 1. We notice that the timeline in Figure 1
has an edge labelled prereq from ep23 to ep24. Such annotations can be created
by a timeline’s owner, indicating that this person believes that undertaking an
earlier episode was a prerequisite to them being able to proceed to or achieve a
later episode. Knowing of the existence of such metadata, Mary might instead
pose the following query Q2 (where next+ in Q1 has been replaced by prereq+)
in order to find out what she might do after her English degree:

?E1,?P3,?E2,?E2,?P4,?Cat,?E2,pos,?Pos <-
(?E1,categ:?P1,University),(?E1,subj:?P2,English),
(?E1,prereq+:?P3,?E2),(?E2,categ:?P4,?Cat),(?E2,pos:?P5,?Pos)

However, this will return no results relating to the example timeline of Figure 1
even though it is evident that this timeline does in fact contain information that
would be relevant to Mary’s enquiry.

In practice, users may or may not create prereq metadata relating to their
timelines. For example, in relation to the timeline of Figure 1, it is possible that
undertaking an English degree was in fact a prerequisite for this person becom-
ing a Journalist, i.e. that there should also be an edge labelled prereq from



ep21 to ep23. So it is desirable to provide users with flexible ways of query-
ing such timeline data. For example, by allowing replacement of the symbol
prereq by the symbol next, the regular expression prereq+ in query Q2 can be
approximated by next.prereq* and prereq.next.prereq*, both at edit dis-
tance 1 from prereq+. This allows ep21,[next],ep22, ep22,[categ],Work,
ep22,[pos],AirTravelAsssistant to be returned to Mary.

Mary may judge this result to be not relevant to her English degree and may
seek further results from the system. The regular expressions next.prereq* and
prereq.next.prereq* can both be approximated by next.next.prereq* (as
well as by other expressions), now at edit distance 2 to Q2. This allows
ep21,[next,ep22,next],ep23,ep23,[categ],Work,ep23,[pos],Journalist
and ep21,[next,ep22,next,ep23,prereq],ep24,ep24,[categ],Work,ep24
[pos],AssistantEditor to be returned. Mary may judge both of these as being
relevant, and she can then request the system to return the whole of this user’s
timeline for her to explore further. ��

In applications such as this we expect that a visual query interface would
provide the user with a set of options from which to select their query approxi-
mation requirements, and the costs associated with the selected edit operations.
Our main concern in this paper is in investigating the evaluation and approxi-
mate matching of ERP queries over graph-structured data.

3 Simple ERP Queries

We recall that our data model is that of a directed graph G = (V, E). Each node
in V is labelled with a constant and each edge in E is labelled with a pair (l, c),
where l is a drawn from a finite alphabet Σ and c ∈ N is a cost.

In processing queries, we allow edges of G to be traversed both from their
source to their target node and also in reverse, from their target to their source
node. The inverse of an edge label l, denoted by l−, is used to specify a reverse
traversal of an edge. Let Σ− = {a− | a ∈ Σ}. If l ∈ Σ ∪Σ−, then l− denotes the
inverse of l. In particular, for some a ∈ Σ, if l is a then l− is a−, while if l is a−

then l− is a.
A simple ERP query is an expression of the form:

X, P, Y ← (X, (R :P ), Y )

where X and Y are constants or variables, R is a regular expression over Σ, and
P is a path variable. A regular expression R over Σ is defined as follows:

R := ε | a | a− | | (R1 ·R2) | (R1|R2) | R∗ | R+

where ε is the empty string, a is any symbol in Σ, a− is the inverse of a, “ ”
denotes the disjunction of all constants in Σ, and the operators have their usual
meaning.

Due to the presence of inverse operators in queries, we use the notion of a
semipath in G in order to define the semantics of queries [6]. A semipath p in G =



(V, E) from x ∈ V to y ∈ V is a sequence of the form v1, l1, v2, l2, . . . , vn, ln, vn+1,

where n ≥ 0, v1 = x, vn+1 = y and for each vi, li, vi+1 either vi
(li,ci)→ vi+1 ∈ E

or vi+1
(l−i ,ci)→ vi ∈ E, for some cost ci. A semipath p conforms to a regular

expression R if l1 · · · ln ∈ L(R), the language denoted by R.
Given a simple ERP query Q and a graph G, a matching θ is a function that

maps any node variable in Q to a node in G, any node constant to itself, and the
triple (X, P, Y ) to a semipath from θ(X) to θ(Y ) in G. We write that θ(X, P, Y )
is an approximate answer of Q on G. An exact answer is an approximate answer
θ(X, P, Y ) that conforms to R.

For approximate query matching, sequences of edge labels can be transformed
using the edit operations selected by the user. The edit distance from a semipath
p1 to a semipath p2 is the minimum cost of any sequence of edit operations which
transforms the sequence of edge labels of p1 to the sequence of edge labels of p2

(for simplicity, in this paper we assume that all edit operations have a cost of 1).
The edit distance of a semipath p to a regular expression R, denoted edist(p, R),
is the minimum edit distance from p to any semipath in G that conforms to R.

Given an approximate answer θ(X, P, Y ) of Q on G defined as above, its
distance to Q is

f(θ(X, P, Y ) = α · editd(θ(X, P, Y ), R) + β · cost(θ(X, P, Y ))

where cost(θ(X, P, Y )) is the sum of the edge costs of the semipath θ(X, P, Y )
and the coefficients α and β are weightings of the edit distance and the path
cost contributions to the overall distance, set according to the requirements of
the user or the application. The approximate answers are returned in increasing
order of their distance to Q. For example, if the user sets α = 5 and β = 1, then
exact answers of cost ≤ 5 are returned before any answers at edit distance > 0.

Given a graph G = (V, E) and a simple ERP query Q, the approximate top-k
answer of Q on G is a list containing the k approximate answers of Q on G with
minimum distance to Q, ranked in order of increasing distance to Q.

The evaluation of a simple ERP query begins by constructing the approximate
automaton M of the regular expression R at some edit distance h, where M
accepts all strings at edit distance at most h from R. The construction of M
proceeds as in the case of single-conjunct regular path queries, as we described
in [16], and we recall this here:

We first construct an NFA (nondeterministic finite automaton) MR to recog-
nise L(R), using Thompson’s construction. This ensures that MR has a single
initial state, denoted s0, a single final state, denoted sf , and O(|R|) states. The
approximate automaton M at edit distance h is obtained following a standard
construction used in approximate string matching [24]: h copies of MR are made,
each copy denoted M j

R, whose states are those of MR with superscript j, repre-
senting distance j from the original automaton MR. The only initial state in M
is s0

0, and the final state of each M j
R remains a final state in M . Subautomaton

M j
R is connected to subautomaton M j+1

R by O(|R|) transitions for deletions,
O(|E| · |R|) transitions for insertions (assuming only symbols which are labels of



edges in G will be inserted), O(|E| · |R|) transitions for substitutions similarly,
O(|R|) transitions for inversions, and O(|R|) transitions for transpositions.

Given a semipath p in G with no edge being traversed more than once, and
the approximate automaton M for regular expression R at edit distance |R|+|E|,
we note that p conforms to M . This is because p can be accepted by M through
|R| transitions that delete all the symbols that appear in R followed by at most
|E| transitions that add all the edge labels of p.

However, because of the possibility of cycles in the semipaths resulting from
queries, in order to find the top k approximate answers we may need an approx-
imate automaton at distance |R| + 2k|E|. For example, consider the case of a
graph G with only two nodes, n and m, connected by a single edge labelled a,
along with regular expression R = b. The top ranking answer is at distance 1,
corresponding to substituting b with a. In general, the ith answer is at distance
2i− 1, corresponding to the substitution of b with a and i − 1 insertions of a−

followed by a. (We note that even if the edges of G were not able to be tra-
versed in reverse order, and edge inversions or insertions of inverse edge labels
into R were not allowed, the maximum required distance for the approximate
automaton would still be |R|+ k|E|.)

Let M be the approximate automaton at distance |R|+ 2k|E|. We form the
product automaton H = M ×G, viewing each node in G as both an initial and
a final state. H contains as nodes all the pairs (x, y) such that x is a node of M
and y is a node of G, and edges ((x1, y1), (x2, y2)) labelled (l, d) such that there
is an edge (x1, x2) labelled l in M and there is an edge (y1, y2) labelled (l, c) in
G4. The cost d of the edge in H is derived as follows. Transitions in M are either
between pairs of states with the same superscript (no edit operation) or from a
state with superscript i to one with superscript i + 1 (an edit operation). If x1

and x2 have the same superscript, d = β · c; otherwise d = α + β · c (since, for
simplicity we are assuming all edit operations have cost 1).

Proposition 1. Let Q : X, P, Y ← (X, (R :P ), Y ) be a simple ERP query, and
G = (V, E) be a graph. Then, x, l1, v1, . . . , vn−1, ln, y is in the approximate top-k
answer of Q on G if and only if (s0

0, x), l1, (si1
j1

, v1), . . . , (sin−1
jn−1

, vn−1), ln, (si
f , y)

is in the k shortest paths that connect nodes of the form (s0
0, X) with nodes of

the form (si
f , Y ) in H.

Proof. From the construction of H = M × G, it follows that (i) θ(X, P, Y ) =
x, l1, v1, . . . , vn−1, ln, y is an approximate top-k answer of Q on G if and only if
p = (s0

0, x), l1, (si1
j1

, v1), . . . , (sin−1
jn−1

, vn−1), ln, (si
f , y) is a path in H ; and (ii) the

cost of p (i.e. the sum of its edge costs) is equal to f(θ(X, P, Y )). The proposition
follows directly from (i) and (ii). ��

Proposition 2. Let G = (V, E) be a graph and Q : X, P, Y ← (X, (R : P ), Y )
be a simple ERP query. If |E| > |R| and |E| > |V |, then the approximate top-k
answer of Q on G can be computed in time O(k|R||V |2|E|3(|E|+ log(k|E|)).
4 Of course y1 may equal y2 in which case the transition in M is labelled with (ε, 0).



Proof. The automaton MR has O(|R|) states and O(|R|2) transitions. Assum-
ing |E| > |R|, the approximate automaton M of R at distance |R| + 2k|E|
has O(k|R||E|) states and O(k|R||E|2) transitions. Therefore H = M × G has
O(k|R||V ||E|) nodes and O(k|R||E|3) edges.

Eppstein’s algorithm [10] can be used to find the k shortest paths connecting
two nodes in a graph. It has complexity O(u + v log v + k), where u and v are
the number of edges and nodes, respectively, in the graph.

In order to compute the approximate top-k answers we use Proposition 1
and proceed in two main steps.

In the first step, we compute the k shortest paths that connect each pair
of nodes of the form (s0

0, X),(si
f , Y ) in H . For each pair of such nodes we

apply Eppstein’s algorithm. A single execution of Eppstein’s algorithm takes
O(k|R||E|3 + k|R||V ||E| log(k|R||V ||E|)). Assuming |E| > |V | and |E| > |R|,
this can be simplified to O(k|R||E|2(|E|+ log(k|E|)).

There are O(|V |) nodes of the form (s0
0, X), and O(|V ||E|) nodes of the

form (si
f , Y ) in H . Therefore, the number of calls to Eppstein’s algorithm is in

O(|V |2|E|). Hence, the first step of the computation is in O(k|R||V |2|E|3(|E|+
log(k|E|)).

In the second step, we select the k shortest paths among the partial lists
of paths returned in the first step. There are O(|V |2|E|) lists of paths. The
second step takes time in O(|V |2|E|+k log(|V |2|E|)), which is dominated by the
complexity of the first step. Therefore the the approximate top-k answer of Q
on G can be computed in time O(k|R||V |2|E|3(|E|+ log(k|E|)). ��

Eppstein’s algorithm needs to operate on the graph H = M × G. An opti-
mization here is to compute edges of the graph H incrementally, avoiding the
precomputation and materialization of the entire graph H . Recall that a node in
H is a pair (sj

i , n), where sj
i is a state of automaton M and n is a node of G. Each

edge of H is labelled with a symbol and a cost. The on-demand computation of
edges of H is performed by calling a function Succ (shown overleaf) with a node

(sj
i , n) of H . The function returns a set of transitions

e,d→ (sl
k, m), such that there

is an edge in H from (sj
i , n) to (sl

k, m) with label (e, d).
To illustrate, consider the conjunct (?E1,prereq+:?P3,?E2) of query Q2

in Example 2. Suppose that α = 5 and β = 1. Calling Succ(s0
0, ep21) returns

transitions
next,α+β→ (s1

0, ep22) (insertion of next), and
ε,α→ (s1

f , ep21) (deletion of
prereq). Continuing with the first of these, calling Succ(s1

0, ep22) returns tran-

sitions
next,α+β→ (s2

0, ep23) (insertion of next),
next−,α+β→ (s2

0, ep21) (insertion of
next−), and

ε,α→ (s2
f , ep22) (deletion of prereq). The third of these results in an

answer ep21,[next],ep22 at distance 11. Continuing with the first of these,

calling Succ(s2
0, ep23) returns transitions

prereq,β→ (s2
f , ep24) (normal traversal),

ε,α→ (s3
f , ep23) (deletion of prereq), and several higher-cost ones. This results in

answers that include ep21,[next,ep22,next,ep23,prereq],ep24 at distance
13, and ep21,[next,ep22,next],ep23 at distance 17.



Procedure Succ(si, n)

W ← ∅
for (n, (a, c), m) ∈ G do

for pi ∈ nextStates(MR, si, a) do

add
a,βc→ (pi, m) to W ; /* normal traversal */

for (m, (a, c), n) ∈ G do
for pi ∈ nextStates(MR, si, a−) do

add
a−,βc→ (pi, m) to W ; /* reverse traversal */

for (n, (a, c), m) ∈ G such that nextStates(MR, si, a) = ∅ do

add
a,α+βc→ (si+1, m) to W ; /* insertion of a */

for (m, (a, c), n) ∈ G such that nextStates(MR, si, a−) = ∅ do

add
a−,α+βc→ (si+1, m) to W ; /* insertion of a− */

for pi ∈ nextStates(MR, si, b) for each b ∈ Σ do

add
ε,α→ (pi+1, n) to W ; /* deletion of b */

for (n, (a, c1), m) ∈ G and (m, (b, c2), u) ∈ G do
for pi ∈ nextStates(MR, si, b) and qi ∈ nextStates(MR, pi, a) do

add
ba,α+β(c1+c2)→ (qi+1, u) to W ; /* swap of a and b */

return W

4 General ERP Queries

We now extend the notion of a simple ERP query to one of a general ERP
query in which multiple conjuncts may appear. A general ERP query Q is an
expression of the form

Xi1 , Pi1 , Yi1 , . . . , Xir , Pir , Yir ← (X1, (R1 :P1), Y1), . . . , (Xn, (Rn :Pn), Yn).

where the conjuncts on the righthand side are required to be acyclic [11].
The approximate semantics of a general ERP query Q is a straightforward

extension to the semantics of simple ERP queries. Given a matching θ, a pre-
answer to Q is a tuple θ((X1, P1, Y1), . . . , (Xn, Pn, Yn)). The pre-answers of Q
on G are now ranked according to a function

g(θ((X1, P1, Y1), . . . , (Xn, Pn, Yn)) = f1(θ(X1, P1, Y1)) + . . . + fn(θ(Xn, Pn, Yn))

where each fi(Pi) = α · editd(θ(Xi, Pi, Yi), Ri) + β · cost(θ(Xi, Pi, Yi)).
The rank position of a pre-answer θ((X1, P1, Y1), . . . , (Xn, Pn, Yn)) defines

the rank position of its corresponding answer θ(Xi1 , Pi1 , Yi1 , . . . , Xir , Pir , Yir ).
A naive way to compute an ERP query is firstly to compute approximate

answers of each query atom (which are simple ERP queries so we can use the
method explained in Section 3), and then rank-join them according to function
g. However, it may be that the top k tuples for one query atom do not join with



those of another. The following proposition shows that we can, in fact, still find
the top k answers to an ERP query in polynomial time.

Proposition 3. Let G = (V, E) be a graph and Q be a general ERP query such
that Q is acyclic and the number of head variables in Q is fixed. The top-k
approximate answers of Q on G can be computed in time polynomial in the size
of G and Q.

Proof. (sketch) For each conjunct (Xi, (Ri :Pi), Yi) we consider all possible map-
pings θ which map Xi and Yi to nodes in G. Then for each instantiated conjunct
(θ(Xi), (Ri :Pi), θ(Yi)), we use the algorithm of Section 3 to compute the top-k
approximate answers of the simple ERP query associated with this conjunct,
along with the cost fi of each answer. This gives us a relation ri over the scheme
(Xi, Pi, Yi, Ci), as described in the Introduction. Relation ri is polynomial in size
and can be computed in polynomial time, as shown in the first step in the proof
of Proposition 2.

Now we sort each ri and then apply a rank-join algorithm (according to the
cost function g) to r1, . . . , rn in order to obtain the top-k approximate answers
of Q on G. Because Q is acyclic and has a fixed number of head variables, the
number of intermediate results is polynomial in the size of Q and G, and the
answer can be computed in time polynomial in the size of Q and G [11]. ��

As noted in Section 3, we would like to compute the top-k approximate
answers incrementally. We conjecture that this can be done by modifying the
join algorithm we presented in [16], taking into account the evaluation approach
sketched in the above proposition, and this is an area of future work.

5 Related Work

As mentioned in the Introduction, Grahne and Thomo [12] use weighted regu-
lar transducers for approximate matching of regular path queries, but only for
single conjuncts. In more recent work [13], they consider regular path queries in
which users can specify preferences by annotating the symbols in queries with
weights. However, the setting we consider in the present paper differs from the
above in that our graph edges have costs (as well as symbols) and we are are
interested in returning the top-k paths to the user. In this sense, our work is re-
lated to the considerable amount of work on finding the k shortest paths (see for
example [10]), except that our edges are also labelled with symbols over which
regular expressions are formed. Such a combination of labels has been considered
previously [3], but only for finding a shortest path (and with exact matching of
symbols) rather than k shortest paths and approximate matching.

The approximate matching aspect of our work is related to a large volume of
other previous work in flexible querying, query relaxation and cooperative query
answering. For example, Kanza and Sagiv consider querying semistructured data
using flexible matchings which allow paths whose edge labels contain those ap-
pearing in the query to be matched [18]; such semantics can be captured by our



approach by allowing transpositions and insertions as the only edit operations. In
cooperative query answering, overconstrained queries are automatically relaxed,
usually by means of query generalisation or containment [5, 9, 15, 22]. Certain
of these semantic rewritings can be obtained by the syntactic approximations
we consider here. Computing answers incrementally and returning approximate
answers to conjunctive regular path queries in ranked order was investigated in
our recent work [16]. However, the costs of paths were based only on edit dis-
tance rather than a combination of edit distance and path cost. Also, the actual
top-k paths were not returned to users, a feature which makes queries both more
useful in a number of applications as well as considerably more complicated to
evaluate.

6 Conclusions

We have investigated flexible querying of graph-structured data where the top
k paths satisfying a query are returned to the user in ranked order. Although
we motivated the requirement for flexible path queries by a lifelong learning
application, many other areas such as bioinformatics, social network analysis,
transportation etc., could benefit from the provision of this functionality.

In this paper, we have focussed on the complexity of evaluating such queries
and returning paths to the user in ranked order. However, providing a mecha-
nism to allow users and/or application designers to specify their requirements
in terms of approximation and ranking is crucial for such a system to be usable.
We are currently working on this as part of an implementation of the query
evaluation techniques described here. Such an implementation will allow us to
determine both the utility and the practical efficiency of our approximate match-
ing techniques, as well as to investigate suitable values for the coefficients α and
β for specific application domains.
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