

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-05-04T00:01:50Z

Some rights reserved. For more information, please see the item record link above.

Title Scalable web reasoning using logic programming techniques

Author(s) Lukácsy, Gergely

Publication
Date 2009

Publication
Information

Gergely Lukácsy, Péter Szeredi "Scalable web reasoning using
logic programming techniques", Proceedings of the Third
International Conference on Web Reasoning and Rule Systems
(RR 2009)., 2009.

Item record http://hdl.handle.net/10379/1109

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Scalable Web Reasoning using Logic

Programming Techniques⋆

Gergely Lukácsy1, Péter Szeredi2

1 Digital Enterprise Research Institute, Galway, Ireland
2 Budapest University of Technology and Economics, Budapest, Hungary

gergely.lukacsy@deri.org,szeredi@cs.bme.hu

Abstract. One of the key issues for the uptake of the Semantic Web
idea is the availability of reasoning techniques that are usable on a large
scale and that offer rich modelling capabilities by providing comprehen-
sive coverage of the OWL language. In this paper we present a scalable
extension of our ABox reasoning framework called DLog.
DLog performs query-driven execution whereby the terminological part
of the description logic knowledge base is converted into a Logic Program
and the assertional facts are accessed dynamically from a database. The
problem of instance retrieval is reduced to a series of instance checks over
a set of individuals containing all solutions for the query. Such a superset
is calculated by using static-code analysis on the generated program.
We identify two kinds of parallelism within DLog execution: (1) the in-
stances in the superset can be independently checked in parallel and
(2) a specific instance check can be executed in parallel by specialising
well-established techniques from Logic Programming. Moreover, for effi-
ciency reasons, we propose to use a specialised abstract machine rather
than relying on the more generic WAM execution model. We describe the
architecture of a distributed framework in which the above mentioned
techniques are integrated. We compare our results to existing approaches.

KEYWORDS: Scalability, Parallelism, OWL, DL, Logic Programming

1 Introduction

In this paper we describe extensions of DLog, a SHIQ Description Logic
(DL) ABox reasoner [1], using the unique name assumption. We are interested
in scenarios that have large numbers of individuals and a relatively small termi-
nology and where query answering is the most important reasoning task. This
is in line with the aims of the upcoming OWL 2 QL profile. In this setup, DLog
already proved to be very efficient thanks to its query-oriented top down execu-
tion model that ensures that only those parts of the ABox are accessed that are
relevant to the given query. However, the DLog execution is sequential which
turns out to be a bottleneck when working with really large datasets, as DLog
is simply not able to feed the underlying database with queries fast enough.

⋆ This work has been funded in part by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lion-2) and by the Irish Research Council for Science, Engineer-
ing and Technology (IRCSET). Earlier development work on the DLog system was
supported by the Hungarian NKFP programme under Grant No. 2/052/2004.

The contributions of the present paper include a new abstract machine de-
signed to efficiently execute logic programs generated by the DLog system as
well as a new parallel architecture of DLog.

We acknowledge that having a scalable DL reasoner does not solve all the
problems of the Semantic Web. Specifically, we still need solutions for handling
the heterogeneity of web ontologies, to provide support for ontology evolution
and time management and to create a solid foundation of trust. We also acknowl-
edge that data complexity results on the SHIQ language suggest [2] that sound
and complete query answering is unlikely to be efficient on really large amounts
of data. However, we believe that by providing the basis of a scalable reasoning
framework on an expressive but still decidable OWL fragment we make a step
towards turning the Semantic Web idea into reality.

The paper is structured as follows. In Section 2 we introduce the DLog system
in a nutshell and summarise those features that are relevant for the rest of the
paper. Section 3 discusses the design of the abstract machine for the execution
of simple logic programs generated from DL knowledge bases. Section 4 presents
the workflow and the architecture of the parallel DLog system. Section 5 gives a
brief overview of related work, while in Section 6 we conclude with the discussion
of future work and the summary of our results. Throughout the paper we assume
basic level knowledge on Description Logics [3] and Prolog [4].

2 Overview of the DLog approach

In this section we give a brief overview of the DLog reasoning process using
an example (see [1] for formal details). The main idea is to transform the DL
knowledge base to a Prolog program and use normal Prolog execution on it to
answer instance retrieval queries. Let us consider the following knowledge base.

1 ∃hasFriend. Alcoholic ⊑ ¬Alcoholic

2 ∃hasParent.¬Alcoholic ⊑ ¬Alcoholic

3 hasParent(joe, bill). hasParent(joe, eva). hasFriend(bill, eva).

This TBox states that if someone has a friend who is alcoholic then she is not
alcoholic (line 1). Furthermore, if someone has a non-alcoholic parent then she
is not alcoholic either (line 2). The ABox contains several role assertions, but
nothing about someone being alcoholic or non-alcoholic. Thus, in the database
world, looking for non-alcoholic people would yield no results. In DL however, we
can conclude that joe is non-alcoholic as one of his parents is bound to be non-
alcoholic (as at least one of two people who are friends has to be non-alcoholic).

The common property of such problems is that solving them requires case

analysis and therefore the trivial Prolog translation usually does not work. There
are many other examples showing how incomplete knowledge is handled during
DL reasoning, some of them do not even require a TBox [5].

The first step in the sound and complete DLog reasoning process is to convert
a SHIQ TBox to a set of first order clauses containing no function symbols,

2

called DL clauses [6]. This allows us to break the reasoning into two parts: an
ABox independent TBox transformation followed by the actual data reasoning.

The second step deals with the transformation of DL clauses to a Prolog
program. This is based on the Prolog Technology Theorem Proving (PTTP)
approach, which provides a generic first-order theorem prover on top of Prolog
[7]. PTTP uses contrapositives to compensate for the simple literal selection rule
of Prolog; ancestor resolution for implementing the factoring resolution rule;
and iterative deepening to ensure termination. For efficiency reasons in DLog we
specialised this approach for the case of DL clauses. Specifically, for the simple
function-free Prolog code generated from DL clauses, normal Prolog execution
extended with loop elimination can be used instead of iterative deepening.

DL clauses are transformed to a DL predicate format by generating certain
contrapositives and grouping these into predicates according to the functor of
the clause head. Negations are eliminated by introducing new predicate names.
DL predicates can be executed by an interpreter or, alternatively, DL predicates
can be compiled into directly executable Prolog code, by adding an argument
for storing the list of ancestors and including loop elimination and ancestor
resolution in the DL predicates themselves. As an example, the DL predicate
format of the above alcoholic problem is shown below:

1 alcoholic(A) :- hasParent(B, A), alcoholic(B). −→ contrapositive

2 not_alcoholic(A) :- hasParent(A, B), not_alcoholic(B). −→ original clause
3 not_alcoholic(A) :- hasFriend(A, B), alcoholic(B). −→ original clause
4 not_alcoholic(A) :- hasFriend(B, A), alcoholic(B). −→ contrapositive

We now present the Prolog code generated for the DL predicate not_alcoholic,
as shown in lines 2-4 above (we use the abbreviation not_alc for compactness).

1 not_alc(A, L0) :- member(B, L0), B == not_alc(A), !, fail.

2 not_alc(A, L0) :- member(alcoholic(A), L0), !.

3 not_alc(A, L0) :- L1=[not_alc(A)|L0], hasParent(A, B), not_alc(B, L1).

4 not_alc(A, L0) :- L1=[not_alc(A)|L0], hasFriend(A, B), alcoholic(B, L1).

5 not_alc(A, L0) :- L1=[not_alc(A)|L0], hasFriend(B, A), alcoholic(B, L1).

Lines 1 and 2 implement loop elimination and ancestor resolution, respectively.
Lines 3-5 are derived from the clauses of not_alcoholic, by extending the head
and appropriate body calls with an additional argument, storing the ancestor
list (variables L0 and L1). Similar code is generated for predicate alcoholic.
Although we proved that the translation exemplified above is complete it is not
efficient. In DLog we use a series of optimisations that result in more efficient
(and more complex) Prolog translation; these are described in detail in [1].

Here we only mention two optimisations, decomposition and superset. The
goal of decomposition is to split a body into independent components and make
sure that the truth value of each component is only calculated once. Decomposi-
tion is achieved by a recursive process that uncovers the dependencies between

3

the goals of the body. This optimisation results in clause bodies where indepen-
dent components are separated using conditional Prolog structures. For example,
the axiom that “someone is happy if she has a child having both a clever and a
pretty child” results in the following translation (excluding the management of
ancestor lists).

1 Happy(A) :-

2 hasChild(A, B),

3 (hasChild(B, C),

4 Clever(C) -> true −→ first component
5),

6 (hasChild(B, D),

7 Pretty(D) -> true −→ second component
8).

The idea of superset is to determine for each predicate P a set of instances
S for which I(P) ⊆ S holds, where I(P) denotes the set of solutions of P . If
the size of S is not significantly greater than the size of I(P), then we can use
S to efficiently reduce the initial instance retrieval problem to a finite number
of deterministic instance checks. Technically this generic schema can be imple-
mented by creating a “choice” predicate for each concept Concept that invokes
the deterministic variant of Concept for each individual in the superset.

1 choice_Concept(A, AL) :-

2 (nonvar(A) -> deterministic_Concept(A, AL)

3 ; member_of_superset_Concept(A),

4 deterministic_Concept(A, AL)

5).

6 deterministic_Concept(A, AL) :- ..., !. −→ A is a specific instance
7 ...

Note that the deterministic translation of a DL concept has Prolog cuts (!)
at the end of each of its clauses. This results in pruning the rest of the search
space after a successful execution of any of the clauses.

A superset of predicate P is calculated by applying static program analysis as
described in detail in [1]. For example, the superset of predicate not_Alcoholic
includes all individuals having a parent or a friend, or being a friend of someone.

The optimisations applied in the DLog system guarantee that ancestor goals
are always ground. This opens up the possibility to use hash tables rather than
lists for managing ancestor resolution and loop elimination. For this purpose we
have implemented in C a backtrackable hash table [8]. This, besides the obvious
efficiency advantage, also makes DLog programs structure free.

3 The DLog Abstract Machine

The Warren Abstract Machine (WAM) [9] has become a de facto target
platform for Prolog compilers. Most sequential and parallel implementations of

4

Prolog rely directly on WAM, or on a variant of it. For efficiency reasons we sug-
gest to use a much simpler abstract machine, called the DLog Abstract Machine
(DAM), to execute Prolog programs generated using the DLog approach. In the
following we sketch the main design principles of DAM.

Compared to generic Prolog, DLog programs for instance checking are con-
siderably simpler as: (1) predicates can only be unary or binary; (2) there are no
compound data structures – unification is trivial; (3) predicate invocations are
ground; (4) concept predicates are deterministic – no need for deep backtracking
into concept predicates; (5) no need for the heap and the trail stack; (6) no need
for cell tagging, as all constants are numeric.

3.1 Architecture of DAM

The DAM is a three-stack machine. It has a control stack containing frames

of fixed size. A frame is created when entering a predicate and is used to store the
local environment of the predicate and return address information. A predicate
can be viewed as a function which receives its arguments implicitly in a frame
and returns a Boolean value. The second stack, the choice point stack, is used to
support deep backtracking in cases related to role predicates and also to ensure
efficient communication with the database/triple store3. The third stack is used
as a backtrackable hash table according to the principles discussed in [8].

Four pieces of information are stored in a frame of the DAM control stack:

1. the return address of the predicate (virtual register R);
2. the actual instance being checked, represented by a URI (virtual register A);
3. the ancestor list, represented as an index in the backtrackable hash table

(virtual register H);
4. a pointer to the corresponding choice stack frame (virtual register P).

The fields of the current frame serve as (virtual) registers of the DAM. As the
frames are of fixed size, accessing a field of e.g. the frame preceding or following
the current one incurs no overhead.

The following information is stored in a frame of the choice point stack:

1. a counter used in implementing number restrictions (virtual register C);
2. a handle used for interfacing with the triple store;
3. a buffer for instances returned by the triple store.

Further to the virtual registers on the stacks, DAM has the following (global)
registers: V – the Boolean return value of a procedure invocation; PC – the
program counter variable; T – the current frame of the control stack.

DAM operates only with three control structures: conjunction, disjunction
and loops (used for counting instances in a qualified number restriction, including
existential restrictions as a special case). In discussing the DAM we assume that
each predicate contains exactly one of the three control structures; this can be
achieved by introducing auxiliary predicates. As an example we show below how
the Happy example from Section 2 can be transformed to satisfy this assumption.

3 Triple stores are specialised databases for storing semantic web metadata. In the
following we use the phrases “triple store” and “database” as synonyms.

5

1 Happy(A) :-

2 aux_1(A). −→ a conjunction with a single member
3 ... −→ possible other clauses of Happy

4 aux_1(A) :- −→ existential restriction
5 hasChild(A, B),

6 aux_2(A).

7 aux_2(A) :- −→ a conjunction with two members
8 aux_3(A),

9 aux_4(A).

10 aux_3(A) :- −→ existential restr. aux_4(A) :- −→ existential restr.
11 hasChild(A, B), hasChild(A, B),

12 Clever(B), !. Pretty(B), !.

3.2 The instruction set

The instruction set of the DAM is fairly limited. Each instruction consists of
an operation code with typically zero, one, or two operands. For example, the
instruction call pred invokes predicate pred, while exit_on_failure (with no
arguments) exits the given predicate if register V contains the value FAILURE.
The set of instructions of the DAM is summarised in Table 1.

In Figure 1 we give the operational semantics of the DAM instructions using
pseudo-code with C syntax. Here we use capitals to refer to DAM registers, lower
case names for parameters and local variables, while the keywords previous and
next refer to the frames preceding and following the current one, respectively.
A register reference can be used on its own (e.g. A), referring to the appropriate
field of the current control frame; or it can be used together with the keyword
previous or next, to refer to the appropriate field of a neighbouring frame. The
instruction exit_with is invoked within other instructions: this is considered as
a macro to be expanded, i.e. the invocation should be replaced by the definition.

To simplify the presentation we do not deal with memory management issues,
assuming that the stacks have enough memory allocated to perform the compu-
tation. Thus creating or removing a stack frame is simply done by incrementing
or decrementing register T (which points to the current control frame).

We assume that the DAM-triple store interface works as follows. Once a
query has been posed to the triple store it returns a handle which is stored in
the actual choice-stack frame. Using this handle the DAM can ask for the first
batch of solutions, which is then stored in the buffer part of the relevant choice-
stack frame. The buffer involves a header specifying the buffer length and the
number of solutions not yet processed. This setup makes it possible to return
query solutions one by one to the DAM code which issued the given query. When
a solution is requested and the buffer is empty, a request is sent to the triple
store (using the query handle) to provide the next batch of solutions.

6

Table 1. The instruction set of the DAM

Instruction Arguments Description

put_ancestor N extend the ancestor list in the local frame by the
term with name N and argument A

check_ancestor N succeeds if the ancestor list contains a term with
name N and argument A

fail_on_loop N fails if a loop occurred, i.e. the term with name N
and argument A is present on the ancestor list

call P invokes procedure P in a new control frame

execute P invokes procedure P in the existing control frame

exit_with S returns from a procedure with status S, continues
execution according to register R

exit_on_failure – returns from procedure if V = FAILURE

exit_on_success – returns from procedure if V = SUCCESS

jump L jumps to label L

has_n_successors R, n checks if instance A has at least n R successors;
creates a choice point; loads the first choice to A

count_and_exit – decreases counter C if the previous instruction was
successful; returns with success if C is 0

next_choice – loads the next solution from the choice stack to A

abox_query Q returns success if A is a solution of query Q

We now describe the auxiliary procedures used in Figure 1. Procedures
add_to_hash and hash_search perform the extension and search of the back-
trackable hash table [8], representing the ancestor list. The procedure
cardinality_check(i, r, n) returns true if the triple store contains at least
n r-successors for the instance i. The procedure create_choice(i, r) issues a
query to the triple store to find all r-successors of the individual i, and returns
the first solution found. The procedure has_choice returns true if the current
choice frame has more solutions, while next_choice returns the next solution.

Finally, the procedure abox_query(i, q) checks if instance i belongs to
query predicate q according to the triple store. Query predicates are defined in
terms of ABox predicates using conjunction and disjunction only; they can be
thought of as complex database queries. In its most simple case a query predicate
corresponds to a simple ABox concept predicate.

3.3 Transforming into DAM

Now we turn our attention to discuss how certain parts of the DLog programs
are transformed into DAM code.

Role axioms are handled partly by the DLog framework (the transitivity
axioms are eliminated) and partly by the underlying triple store. Namely, we
assume that the database “understands” the notion of role hierarchy and is able
to answer queries such as hasSpouse(bill, Y) (Y is the spouse of bill) based
on hierarchical relation between hasSpouse and hasWife, for example.

7

1 put_ancestor n: −→ inserts term n(A) into the hash table
2 H = add_to_hash(A, n, H);

3 check_ancestor n: −→ checks if term n(A) is in the hash table
4 if (hash_search(A, n, H)) exit_with SUCCESS;

5 fail_on_loop n: −→ checks if term n(A) is in the hash table
6 if (hash_search(A, n, H)) exit_with FAILURE;

7 call p:

8 T++; A = previous->A; H = previous->H; R = PC + 1;

9 PC = &p; −→ invokes procedure in new frame

10 execute p:

11 PC = &p; −→ invokes procedure in the current frame

12 exit_with s:

13 T--; V = s; PC = next->R; −→ drops frame; jumps to return address

14 exit_on_failure:

15 if (V == FAILURE) exit_with V;

16 exit_on_success:

17 if (V == SUCCESS) exit_with V;

18 jump l: −→ jumps to label l
19 PC = l;

20 has_n_successors r n: −→ loads successors of A to the choice stack
21 if (!cardinality_check(A, r, n)) exit_with FAILURE;

22 A = create_choice(A, r);

23 count_and_exit: −→ counts and exists if counter reaches zero
24 if (V == SUCCESS) P->C--;

25 if (P->C == 0) exit_with SUCCESS

26 next_choice:

27 if (!has_choice()) exit_with FAILURE;

28 A = next_choice(); −→ sets the next solution instance to A

29 abox_query q:

30 V = abox_query(A, q); −→ executes a (complex) database query

Fig. 1. Operational semantics of the DAM instructions

8

Conjunctions of concept predicates are transformed into a series of call and
exit_on_failure instructions. That is, a conjunction consisting of goals. . .

1 g1(X), ..., gk−1(X), gk(X)

. . . is directly transformed into the following DAM form:

1 call g1

2 exit_on_failure

3 ...

4 call gk−1

5 exit_on_failure

6 execute gk

Note that the last goal of the conjunction is invoked using the execute instruc-
tion rather than the call instruction. This is an optimisation which allows us
to use the current frame to invoke gk rather than creating a new one. For recur-
sive predicates this is known as the tail-recursion optimisation which basically
transforms a recursive call into an iteration.

Analogously to conjunctions, disjunctions of concept predicates are trans-
formed into a series of call and exit_on_success instructions, with execute

for the last goal. Note that both transformation schemata use the fact that we
work with deterministic predicates, e.g. a disjunction immediately succeeds if
one of its members completes successfully. Alternatively, one could use an even
more compact schema, where each pair of call and exit_on_success instruc-
tions is replaced by a single one, similar to the try instruction of the WAM [9].
However, this would require that two separate return addresses – one for success
and one for failure – were stored on the control stack for each predicate.

Finally, a qualified number restriction (≥ nRC) is transformed into a loop,
where we first check if the instance at hand has at least n R-successors, then we
enumerate the successors until we find at-least n successors belonging to concept
C. Specifically, (≥ nRC) is transformed into the following DAM program.

1 has_n_successors R n −→ fails if A has not enough successors, sets A, C
2 label1:

3 call C −→ returns with success or failure
4 count_and_exit −→ if success : C--, returns success if C = 0
5 next_choice −→ set A to next successor, return fail if no more
6 jump label1

Note that this technique handles the only case where deep backtracking is needed
in the Prolog code. As an optimisation for the above schema we can use tech-
niques that allow us to reuse a frame rather than repeatedly build it with call

C in each iteration.
As an example for the DLog to DAM translation, let us show below parts of

the DAM code for the predicate not_alc from Section 2.

9

1 predicate(not_alc): −→ A contains the instance to check
2 fail_on_loop not_alc −→ return fail if within not_alc(A)

3 check_ancestor alcoholic −→ return success if within alcoholic(A)

4 call aux_1

5 exit_on_success

6 call aux_3

7 exit_on_success

8 execute aux_4

9 predicate(aux_1):

10 put_ancestor not_alc −→ uses A, sets H
11 has_n_successors has_parent 1 −→ return fail if A has no parent at all
12 label(1):

13 call not_alc,

14 count_and_exit −→ returns if we found a not_alc parent
15 next_choice −→ return fail if no parent belongs to not_alc

16 jump 1

4 The Parallel DLog Architecture

We now identify several parallelisation possibilities in executing DLog pro-
grams. First, we briefly summarise the main ideas behind how to turn the DAM
into a parallel execution engine – this is a very high level discussion and its
purpose is to give an insight to the possibilities. Next, we introduce in detail a
new parallel architecture for the DLog system.

4.1 Kinds of Parallelism available in DLog

The DLog Abstract Machine, discussed in the previous section, can be viewed
as a simplification of the WAM for the case of special Prolog programs, produced
by the DLog transformation. Analogously, we can simplify well-studied paralleli-
sation techniques for DLog programs. Combining these two ideas produces the
Parallel DLog Abstract Machine (PADAM).

Logic programming offers an excellent ground for parallel execution. On one
hand, the operational semantics of Logic Programming includes non-determinism

which leads to a very natural parallelisation. On the other hand, logic programs
use single assignments for variables, which makes it possible to avoid the prob-
lems of certain types of flow dependencies present in more traditional languages.

There are two main kinds of parallelism applicable for Logic Programs: AND-
and OR- parallelism. The former consists of the simultaneous computation of
several goals in a body, while the latter relies on executing the clauses of a
predicate in parallel. Because of the decomposition DLog applies at compile
time we already have the independent components of a clause body allowing us
to apply independent AND-parallelism (IAP) techniques directly.

An interesting feature of DLog programs is that each clause contains a cut

operation at the very end: thus once a clause succeeds we can terminate the

10

computation of all the other clauses being executed in parallel. This means that
exploiting OR-parallelism within a single instance check involves speculative work

[10], i.e. wasted computer efforts, which may be lost because of being on a branch
of computation pruned by a cut operation.

As OR-parallelism is easier to exploit, our initial efforts go in this direction.
Because of the speculative nature of fine grained OR-parallelism, we decided
to first address the issue of coarse grained parallelism, by executing multiple
instance check problems in parallel.

4.2 An initial coarse-grained model of parallelism

We now focus on exploiting coarse-grained parallelism, which does not require
the modification of the sequential DAM engine, and still seems to promise good
scalability. The proposed architecture of the parallel DLog system is presented
in Figure 2. We explain the workflow of the system, which starts with the receipt
of the input and completes with producing the answer to the instance retrieval
query. We refer to certain parts of the architecture by using the numbers and
letters in Figure 2.

The content of the ABox is stored either in a triple store or in a relational
database (arrow 1). As a general consideration, we assume that the ABox is
extensionally reduced, i.e. beside roles, it contains only atomic concepts and
their negations. When using a database we need to create appropriate tables for
the concept and role assertions, taking care that tables should also be created for
negated concepts (to properly model incomplete knowledge). If we use the DLog
system over an existing database we need to create links between the concept
and role names in the TBox and the database tables [11].

The content of the TBox is first transformed into DL clauses (arrow 2). These
clauses are then further transformed into DAM byte code (arrow A) using the
specialised PTTP techniques and optimisations outlined in Section 2. Specif-
ically, the DAM code contains the component clause bodies and the superset
expressions (i.e. an expression whose evaluation gives the superset) for each
predicate. The DAM programs are stored in a repository (arrow B) allowing us
to re-use them without performing the transformation steps again.

The conjunctive query, i.e. a conjunction of possibly negated atomic concepts
and unnegated (positive) binary roles, first undergoes an optimisation phase
(arrow 3) inspired by database join optimisations and [12]. Here, using heuristics,
the conjunctions can be re-ordered and grouped in order to avoid cross product
computations and ensure efficient execution.

As the last step of the ABox independent transformations, the generated
DAM program is simplified/partially evaluated with respect to the given query
(arrow C). Practically this means that we leave out those parts of the DAM
program that do not play any role when executing the specific query, thus re-
ducing the size of the byte code that needs to be transferred between workers
in a later stage of the execution. We also “pack” the query itself into the DAM
code together with a newly constructed superset expression belonging to it.

In the next step, the Superset Builder receives the simplified byte code (arrow
4) and calculates the superset for the given query. One of the key ideas here is

11

Triple Store

Conjunctive query

Terminology Box (TBox)

Factual triples (ABox)

Input knowledge base

Superset builder

Transformer

DL

translator

DAM

translator

Query

optimiser

Dynamic

Linker

PADAM

engine
PADAM

engine

PADAM

engine

PADAM

engine

...

1

2

3

4

6

7

5

Answer

8

DAM

programs

A

B

C

Fig. 2. The architecture of the Parallel DLog system.

that (i) the superset expression is evaluated in parallel and (ii) the instances
in the superset are checked in parallel. Note that this scheme can be used for
supersets which do not fit into memory: the Superset Builder basically acts
as a mediator in the producer-consumer setup between the database and the
PADAM execution engines (arrows 5 and 6). The parallel DAM engines also use
the database when checking particular individuals (arrow 7).

During the execution the Superset Builder receives notifications from the
PADAM engines about whether particular individuals are solutions or not. This
information is forwarded to the output of the reasoning process (arrow 8) where
another consumer can pick it up and use it for various purposes.

5 Related Work

Because of the separation of the TBox and ABox reasoning and the usage
of a database to store ABox facts, the suggested parallel DLog architecture

12

can be considered as a Deductive Database system. Here we heavily rely on
the scalability capabilities of the underlying relational databases/triple stores.
We argue that this is the right way to do as there are decades long expertise
and proved implementations for databases and triple stores that scale up to
several billions of records [13]. Note that this setup is actually suggested by the
database literature as well. For example, [14] discusses the problem of handling
massive amounts of data in a relational database with support for recursive
queries. The suggested solution exploits optimisation techniques both from the
relational database as well as from the deductive database theory – much like
the parallel DLog architecture.

From the DL point of view, several techniques have emerged for dealing with
large scale ABox-reasoning. We can divide these into two main groups, based
on whether they support some full-featured DL subset or whether they pose
restrictions on the terminology axioms in order to retain even better scalability.

Full reasoners To make traditional tableau-based reasoning more efficient on
large data sets, several techniques have been developed in recent years [12].
These are used by the state-of-the-art DL reasoners, such as RacerPro or Pellet.

In [15], a resolution-based inference algorithm is described, which is not as
sensitive to the increase of the ABox size as the tableau-based methods. However,
this approach still requires the input of the whole content of the ABox before
attempting to answer any queries. The KAON2 system implements this method
and provides reasoning services over the description logic language SHIQ by
transforming the knowledge base into a disjunctive datalog program.

Article [16] introduces the notion of distributed ordered resolution which
is a parallelised variant of ordered resolution usable for reasoning over already
distributed ALC knowledge bases.

DLog belongs to this first group: it provides SHIQ support while retains as
much scalability as possible. The original DLog system was evaluated in depth
in [1]. There we compared the performance of DLog with that of the RacerPro,
Pellet and KAON2 systems on publicly available benchmark ontologies. The test
results showed that DLog is significantly faster than traditional tableau-based
reasoners and it also outperforms KAON2 in most of the test cases.

Restricted reasoners Extreme cases involve serious restrictions on the knowledge
base to ensure efficient execution with large amounts of instances. For example,
[17] suggests a solution called the instance store, where the ABox is stored ex-
ternally, and is accessed in a very efficient way. The drawback is that the ABox
may contain only axioms of form C(a), i.e. we cannot make role assertions.

The YARS2 framework [13] aims to provide efficient support for the up-
coming OWL2 QL profile that is based on a DL-Lite variant. DL-Lite [18] is a
family of Description Logics that allows the separation of TBox and ABox during
reasoning and provides polynomial-time data complexity for query answering.
On the other hand, DL-Lite poses restrictions on the terminology axioms, e.g.
cardinality constraints are not allowed.

Article [19] introduces the term Description Logic Programming (DLP). This
idea uses a direct transformation of ALC description logic concepts into def-

13

inite Horn-clauses, and poses some restrictions on the form of the knowledge
base, which disallow axioms requiring disjunctive reasoning. As an extension,
[20] introduces a fragment of the SHIQ language that can be transformed into
Horn-clauses where queries can be answered with polynomial data complexity.

Work in [21] presents the DLDB2 system based on the DLP idea that del-
egates certain reasoning tasks to an external TBox reasoner. Similarly to our
approach, DLDB2 takes advantage of the scalability of the underlying relational
database. However it poses serious restrictions on the supported language (e.g.
universal restrictions are not allowed).

6 Conclusion and Future Work

In this paper we have presented the design of the scalable extension of the
description logic SHIQ reasoning system DLog. Unlike the traditional tableau-
based approach, we answer conjunctive queries by transforming the knowledge
base into a logic program that is executed in a distributed fashion. This technique
allows us to use top-down query execution and to store the content of the ABox
externally in a scalable/distributed database.

Following an overview of the DLog system we presented the design consider-
ations of an abstract machine aimed to execute DLog programs. Based on this
we then proposed a parallel architecture that introduces parallelism at several
stages of the execution process. The key ideas were to calculate the superset of
a query in parallel and to check the individuals in the superset using instances
of our proposed abstract machine communicating in a peer-to-peer fashion.

Future work involves designing the details of the communication between
DLog and the triple store, the implementation and the performance evaluation
of our initial parallel DLog model. Building on these results the model should be
further refined, including the exploration of parallelism within a single instance
check reasoning task (cf. Section 4.1).

As an overall conclusion, we argue that resolution-based techniques are very
promising in practical applications, with relatively small TBox, but large ABox.
Specifically, we believe that translating to Logic Programs and using the parallel
DLog architecture provides a viable framework for scalable DL reasoning.

References

1. Lukácsy, G., Szeredi, P.: Efficient description logic reasoning in Prolog: the DLog
system. Theory and Practice of Logic Programming 09(03) (May 2009) 343–414

2. Hustadt, U., Motik, B., Sattler, U.: Data Complexity of Reasoning in Very Expres-
sive Description Logics. In Kaelbling, L.P., Saffiotti, A., eds.: Proc. of the 19th Int.
Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, UK, Morgan
Kaufmann Publishers (July 30–August 5 2005) 466–471

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2004)

4. Nilsson, U., Maluszynski, J., eds.: Logic, Programming and Prolog. John Wiley
and Sons Ltd. (1990)

14

5. Nagy, Zs., Lukácsy, G., Szeredi, P.: Translating description logic queries to Pro-
log. In Hentenryck, P.V., ed.: Proceedings of the 8th International Symposium on
Practical Aspects of Declarative Languages (PADL 2006), Charleston, South Car-
olina, USA. Volume 3819 of Lecture Notes in Computer Science., Springer Verlag
(January 9-10 2006) 168–182

6. Zombori, Zs.: Efficient two-phase data reasoning for description logics. In Bramer,
M., ed.: IFIP AI. Volume 276 of IFIP., Springer (2008) 393–402

7. Stickel, M.E.: A Prolog technology theorem prover: a new exposition and imple-
mentation in Prolog. Theoretical Computer Science 104(1) (1992) 109–128

8. Kádár, B.: Architectural extensions of the dlog description logic reasoning system
MSc Thesis. http://sintagma.szit.bme.hu/lukacsy/docs/kadarMSc.pdf.

9. Warren, D.H.D.: An abstract Prolog instruction set. Technical Note 309, SRI
International, Menlo Park, CA (October 1983)

10. Gupta, G., Pontelli, E., Ali, K.A., Carlsson, M., Hermenegildo, M.V.: Parallel
execution of Prolog programs: a survey. ACM Trans. Program. Lang. Syst. 23(4)
(2001) 472–602

11. Kádár, B., Lukácsy, G., Szeredi, P.: Large scale semantic web reasoning. In: Pro-
ceedings of the 3rd International Workshop on Applications of Logic Programming
to the Web, Semantic Web and Semantic Web Services (ALPSWS2008), Udine,
Italy. (December 2008) 57–70

12. Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval.
Journal of Automated Reasoning 41(2) (August 2008) 99–142

13. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A federated repository for
querying graph structured data from the web. In et al., K.A., ed.: 6th International
Semantic Web Conference, 2nd Asian Semantic Web Conference. Volume 4825 of
Lecture Notes in Computer Science., Berlin, Germany, Springer-Verlag (October
2007) 211–224

14. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. Theory Practice of Logic Program-
ming 8(2) (2008) 129–165

15. Hustadt, U., Motik, B., Sattler, U.: Reasoning for Description Logics around SHIQ
in a resolution framework. Technical report, FZI, Karlsruhe (2004)

16. Schlicht, A., Stuckenschmidt, H.: Towards distributed ontology reasoning for the
web. In: International Conference on In Web Intelligence and Intelligent Agent
Technology (WI-IAT ’08). Volume 1. (December 2008) 536–539

17. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL reasoning
with large numbers of individuals. In: Proceedings of DL2004, British Columbia,
Canada. (2004)

18. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable rea-
soning and efficient query answering in description logics: The dl-lite family. J.
Autom. Reason. 39(3) (2007) 385–429

19. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proc. of the Twelfth International
World Wide Web Conference (WWW 2003), ACM (2003) 48–57

20. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI 2005), International Joint Conferences on Artificial
Intelligence (2005) 466–471

21. Pan, Z., Zhang, X., Heflin, J.: DLDB2: A scalable multi-perspective semantic
web repository. In: ACM International Conference on Web Intelligence, IEEE
(December 2008) 489–495

15

