
Field-Sensitive Value Analysis by

Field-Insensitive Analysis

Elvira Albert1, Puri Arenas1, Samir Genaim1, and Germán Puebla2

1 DSIC, Complutense University of Madrid (UCM), Spain
2 CLIP, DLSIIS, Technical University of Madrid (UPM), Spain

Abstract. Shared and mutable data-structures pose major problems in
static analysis and most analyzers are unable to keep track of the values
of numeric variables stored in the heap. In this paper, we first identify
sufficient conditions under which heap allocated numeric variables in
object oriented programs (i.e., numeric fields) can be handled as non-
heap allocated variables. Then, we present a static analysis to infer which
numeric fields satisfy these conditions at the level of (sequential) bytecode.
This allows instrumenting the code with ghost variables which make
such numeric fields observable to any field-insensitive value analysis. Our
experimental results in termination analysis show that we greatly enlarge
the class of analyzable programs with a reasonable overhead.

1 Introduction

Static analyses which approximate the value of numeric variables have a large
application field which includes its use for invariant generation, for finding rank-
ing functions [15] which bound the number of iterations of loops in cost analysis,
etc. Most existing value analyses are only applicable to numeric variables which
satisfy two conditions: (1) all occurrences of a variable refer to the same memory
location, and (2) memory locations can only be modified using the correspond-
ing variable. Some notable exceptions are [8,11,10]. In general, the conditions
above are not satisfied when numeric variables are stored in shared mutable
data structures such as the heap. Condition (1) does not hold because memory
locations (numeric variables) are accessed using reference variables, whose value
can change during the execution. Condition (2) does not hold because a memory
location can be modified using different references which are aliases and point
to such memory location.

Example 1. Consider the following loop where size is a field of integer type:
while (x.f.size > 0) {i=i+y.size; x.f.size=x.f.size-1;}

This loop terminates in sequential execution because x.f.size decreases at each
iteration and, for any initial value of x .f .size, there are only a finite number
of values which x.f.size can take before reaching zero. Unfortunately, applying
standard value analyses on numeric fields can produce wrong results, and further
conditions are required. E.g., if we add the instruction x=x.next; within the loop
body, the memory location pointed to by x.f changes, invalidating Condition 1.
Also, if we add y.size++; as x.f and y may be aliases, Condition 2 is false. !

This paper presents a novel approach for approximating the value of numeric
fields in object-oriented programs which greatly improves the precision over ex-
isting field-insensitive value analyses while introducing a reasonable overhead.
Our approach is developed for object-oriented bytecode, i.e., code compiled for
virtual machines such as the Java virtual machine [9] or .NET, and consists of
the following steps: (1) partition the program to be analyzed into scopes, (2)
identify trackable numeric fields which meet the above conditions and hence can
be safely handled by field-insensitive value analysis, (3) transform the program
by introducing local ghost variables whose values represent the values of the cor-
responding numeric fields, and (4) analyze the transformed program scope by
scope using existing field-insensitive value analysis. This allows reusing the large
body of work devoted to numerical static analysis: polyhedra [7], intervals [6],
octagons [12], etc.

Example 2. Consider the loop in Ex. 1, with a single scope. There are three
program points where a numeric field with signature size is accessed for reading
and one where it is accessed for writing. In this paper, we develop a Reference
Constancy Analysis (RCA for short) which is able to infer that the references
used in all four accesses are constant in the sense that, in all iterations of the
loop, such references do not change their value. For brevity, in the rest of the
paper we say that an access is constant to indicate that the reference used
in the corresponding program point is constant. Our analysis also provides a
symbolic representation of such values. This allows determining that the two
read accesses and the write access through x .f .size not only are constant but
also they have the same value in the three different program points. This is
sufficient for guaranteeing Condition 1 above. Besides, since in the loop there
are no other write accesses using the signature size, Condition 2 above is also
guaranteed. Thus, we can safely introduce a ghost variable, which becomes local
variable v , and corresponds to the value of the numeric field x .f .size in all three
program points. As regards the read access y .size, RCA is able to prove that
it is constant. However, Condition (2) cannot be proved since by looking at the
loop alone it is not possible to know whether x.f and y are aliases. Therefore no
ghost variable can be introduced for y .size. The transformed loop is as follows:

v = x .f .size; while (v>0) {i=i+y.size; x.f.size=x.f.size-1; v=v-1;}
Read accesses to x .f .size are replaced by equivalent accesses to the ghost variable
v. For write accesses, we keep the original access and replicate it using the corre-
sponding ghost variable. This is because there may be aliases for x .f .size outside
the loop which may need the value of the original numeric field. A standard value
analysis can now infer that v decreases, which guarantees termination. !

2 The Bytecode Language in Rule-based Form

Since reasoning about bytecode programs is complicated, it is customary to for-
malize analyses on intermediate representations of the bytecode (e.g., [18]). We
consider a simplified form of the rule-based recursive language of [2]. A bytecode

program consists of a set of procedures and classes. A procedure p with k input
arguments x̄=x1, . . . , xk and m output arguments ȳ=y1, . . . , ym is defined by one
or more guarded rules. Without loss of generality, we assume that there are no
two procedures with the same name and different number of arguments. Though
Java bytecode methods only have one output argument, we allow multiple out-
put arguments since, as discussed in Sec. 4, our program transformation may
introduce additional output arguments. Rules are defined as:

rule ::= p(〈x̄〉, 〈ȳ〉) ←g, b1, . . . , bt g ::= true | bexp1 op bexp2 | type(x, c)
b ::= x:=exp | x :=new c | x :=y .f | x .f :=y | q(〈x̄ 〉, 〈ȳ〉)

bexp ::= x | null | n exp ::= bexp | x−y | x+y | x∗y | x/y
op ::= > | < | ≤ | ≥ | = | (=

where p(〈x̄〉, 〈ȳ〉) is the head of the rule; g its guard, i.e., necessary conditions
for the rule to be applicable; b1, . . . , bt the body of the rule; n an integer; x and
y variables; f a field signature (i.e., globally unique), and q(〈x̄〉, 〈ȳ〉) a proce-
dure call (by value). We often do not write guards which are true. The language
supports class definition, object creation, field manipulation, and type compar-
ison through the instruction type(x, c), which succeeds if the runtime class of x
is exactly c. A class c is a finite set of typed field names, where the type can
be integer or a class name. The key features of this language are: (1) recursion
is the only iteration mechanism, (2) guards are the only form of conditional,
(3) there is no operand stack, (4) objects can be seen as records, and the be-
haviour induced by dynamic dispatch is compiled into dispatch blocks guarded
by type checks, and (5) rules may have multiple return values. The translation
from (Java) bytecode to the rule-based form is performed in two steps. First, a
control flow graph (CFG) is built. Second, a rule is defined for each block and
the operand stack is flattened by considering its elements as local variables [2].

We now introduce some terminology used to define an operational semantics
for rule-based bytecode. An activation record is of the form 〈p, bc, tv〉, where p
is a procedure name, bc is a possibly empty sequence of instructions and tv a
variable mapping. Executions proceed between configurations of the form A;h,
where A is a stack of activation records (which grows leftward) and h is the
heap, i.e., a partial mapping from an infinite set of memory locations to objects.
We use h(r) to denote the object referred to by r in h and h[r #→ o] to indicate
the result of updating the heap h by making h(r) = o. An object o is a pair
consisting of the object class tag and a mapping from field names to values
which is consistent with the types of the fields. We use o.f or o(f) to refer to
the value of the field f in the object o, and o[f #→v] to set the value of o.f to v.
The operational semantics is quite standard and consists of the following rules:

(1)
b ≡ x:=exp, v = eval(exp, tv)

〈p, b·bc, tv〉·A; h ! 〈p, bc, tv [x *→ v]〉·A; h

(2)
b ≡ x:=new c, o=newobject(c), r (∈dom(h)
〈p, b·bc, tv〉·A; h ! 〈p, bc, tv [x *→ r]〉·A; h[r *→ o]

(3)
b ≡ x:=y.f, tv(y) ∈ dom(h), o = h(tv(y))
〈p, b·bc, tv〉·A; h ! 〈p, bc, tv [x *→ o.f]〉·A; h

(4)
b ≡ x.f :=y, r = tv(x) ∈ dom(h), o = h(r)

〈p, b·bc, tv〉·A; h ! 〈p, bc, tv〉·A; h[r *→ o[f *→ tv(y)]]

(5)
b ≡ q(〈x̄〉, 〈ȳ〉), there is a program rule q(〈x̄′〉, 〈ȳ′〉)←g, b1, · · · , bt

such that tv ′=newenv(q), ∀i.tv ′(x′
i) = tv(xi), eval(g, tv ′) = true

〈p, b·bc, tv〉·A; h ! 〈q, b1 · . . . · bt, tv
′〉·〈p[ȳ, ȳ′], bc, tv〉·A; h

(6)
〈q, ε, tv〉·〈p[ȳ, ȳ′], bc, tv ′〉·A; h ! 〈p, bc, tv ′[ȳ *→ tv(ȳ′)]〉·A; h

Intuitively, rule (1) accounts for all rules in the bytecode semantics which perform
operations on variables. The evaluation eval(exp, tv) returns the evaluation of the
arithmetic or Boolean expression exp for the values of the corresponding variables
from tv in the standard way, and for reference variables, it returns the reference.
Rules (2), (3) and (4) deal with objects. We assume that newobject(c) creates a
new object of class c and initializes its fields to either 0 or null, depending on
their types. Rule (5) (resp., (6)) corresponds to calling (resp., returning from) a
procedure. The notation p[ȳ, ȳ′] records the association between the formal and
actual return variables. It is assumed that newenv creates a new mapping of
local variables for the corresponding method, where each variable is initialized
as newobject does. Guards in different rules for the same procedure are always
mutually exclusive. Execution is thus deterministic. An execution starts from
an initial configuration 〈start, p(〈x̄〉, 〈ȳ〉), tv〉;h and ends in a final configuration
〈start, ε, tv ′〉;h′ where start is a marker for the initial entry which is guaranteed
not to coincide with any procedure name, tv and h are initialized to suitable
initial values, and tv ′ and h′ include the final values. Program executions can be
represented as traces C0"C1" · · ·"Cω, where Cω is a final configuration. We
use C"

∗C ′ to denote that the execution starting from C reaches C ′ in a finite
number of steps. Non terminating executions have infinite traces.

Example 3. Consider the following rule-based form and bytecode (inside its
CFG) corresponding to the method in Ex. 1 plus a final return i ; instruction:

(1) loop(〈x, y, i〉, 〈r〉)←
s0:=x,

1©s0:=s0.f,
2©s0:=s0.size,

loopc(〈x, y, i, s0〉, 〈r〉).

(2) loopc(〈x, y, i, s0〉, 〈r〉)←
s0 ≤ 0, s0:=i, r:=s0.

(3) loopc(〈x, y, i, s0〉, 〈r〉)←
s0 > 0, s0:=i, s1:=y,

3©s1:=s1.size,
s0:=s0+s1, i:=s0, s0:=x,

4©s0:=s0.f, s1:=s0

5©s1:=s1.size,
s2:=1, s1:=s1−s2,

6©s0.size:=s1, loop(〈x, y, i〉, 〈r〉).

2: aload 1
3: getfield A.f : B
6: getfield B.size: I

12: i load 3
13: aload 2
14: getfield B.size: I

35: i load 3
36: ireturn

iflei fgt

(3)

(2)17: iadd
18: istore 3
19: aload 1
20: getfield A.f : B
23: dup
24: getfield B.size : I
27: iconst 1
28: isub
29: putfield B.size: I

Variable names of the form si indicate that they originate from stack positions.
Each block in the CFG is translated into a rule. The conditions on the edges
become guards for the corresponding rules. Bytecode instructions are converted

to a new representation. E.g., in the rule for block (2), the guard s0≤0 corre-
sponds to the condition ifle and iload 3 (3 refers to the third local variable i) is
converted to s0:=i. Instruction s1:=s0 corresponds to dup. Numbered circles are
program point markers introduced for later reference. A is a class with a field of
type B, and B is a class with an integer field. !

3 Reference Constancy Analysis

We present a reference constancy analysis, which aims at identifying reference
variables which are constant at certain program points. The program points
considered are the union of the program points of all program rules. All program
points are made unique by numbering the program rules. The k-th program rule
p(〈x̄〉, 〈ȳ〉) ←g, bk

1 , . . . , bk
t has t+1 program points. The first one, (k, 0), after the

execution of the guard g and before the execution of b1, then (k, 1) between the
execution of b1 and b2, until (k, t) after the execution of bt. The analysis receives
as input a program P and a procedure name p, which we refer to as entry. For
any configuration C = 〈q, bk

i · bc, tv〉 ·A;h which is not initial, the program point
to which C corresponds is (k, i − 1). Given a program P , we denote by RF (P)
(resp. NF (P)) the set of reference (resp. numeric) field signatures declared in P .

Definition 1 (access path function). An access path function for a program
P and an entry p is a syntactic construction of the form lj .f1. . .fn, with fi ∈
RF (P) for i = 1, . . . , n and it represents a partial function from initial configu-
rations to references. Given an initial configuration C = 〈start, p(〈x̄〉, 〈ȳ〉), tv〉;h
we define lj .f1. . .fn(C) ≡ h(· · · (h(h(tv(lj))(f1))(f2)) · · ·)(fn).

Essentially, for determining the value of an access path in an initial configuration,
we use the variable table and heap at such configuration in order to dereference
w.r.t. the reference variable and reference fields in the access path. This function
is undefined at paths that traverse objects which have not been allocated in the
heap. Otherwise, it either returns a memory location in dom(h) or the value null.
Equivalent notions have been defined for other languages (see, e.g. [1]).

Definition 2 (constant reference variable). A reference variable z is con-
stant at a program point (k, i) in a program P for an entry p w.r.t. the access
path function lj .f1 . . . fn if ∀C "

∗ C ′ such that C is an initial configuration and
C ′ = 〈q, bk

i+1 · bc, tv ′〉 · A;h′, we have tv ′(z) = lj .f1 . . . fn(C).

Intuitively, a reference is constant w.r.t. an access path lj .f1 . . . fn in a program
point if, starting the execution from any initial configuration C, whenever we
reach a configuration C ′ which corresponds to such program point, the reference
always has the same value lj .f1 . . . fn(C). Note that if execution reaches C ′ then
lj .f1 . . . fn(C) is defined since otherwise we must have attempted to dereference
a null reference or a dangling pointer. In either case, the derivation would stop.

The idea behind RCA is similar in spirit to that of the classical numeric
constant propagation analysis [6]. However, an important feature of RCA is that

the values which are computed are not absolute constants but rather functions
which, when provided with a particular initial configuration, return a fixed value
in terms of the heap at the initial –and not the current– configuration.

Example 4. Consider the examples below (shown in Java source for clarity). We
use l1 and l2 to represent the initial values of x and y, respectively.

while (x.f.getSize() > 0)
i+=y.getSize();
x.f.setSize(x.f.getSize()-1);

a©

if (k > 0) then x=z else x=y;
x.f=10;
for(; i<x.f; i++)
b© b[i]=x.b[i];

while (x != null) {
for(; x.c<n; x.c++)

value[x.c]++;
c©x=x.next;}

while (x.size < 10)
d© {x.size++; x=x.next;}

while (x.size < 10)
e© {x.size++; acc+=y.size;}

while (x.r.size < 10)
f© {x.r.size++; y.r=z;}

Program a© will be discussed later. In b©, the reference x remains constant
w.r.t. l1 within the loop. However, if we consider the whole code fragment, x is
no longer constant, since x can take two different values before the loop. In c©,
all occurrences of x are constant w.r.t. the same access path function, l1, within
the inner loop. However, x takes different values in different iterations of the
outer loop, and thus x is not constant in the whole code fragment. In d©, x
is not constant because it is updated at each iteration of the loop. In e©, x is
constant w.r.t l1 and y is constant w.r.t l2, but it is unknown whether l1 and l2
are identical or not. In f©, it cannot be ensured that x .r is constant, since if x
and y are aliases, updating y .r changes x .r. !

3.1 A Global Reference Constancy Analysis for Bytecode

We assume familiarity with the concepts of abstract interpretation [6]. The basic
idea of abstract interpretation is to infer information on programs by interpreting
(“running”) them using abstract values rather than concrete ones, thus obtain-
ing safe approximations of the behavior of the program. Essentially, programs
are interpreted over an abstract domain (Dα) which is simpler than the corre-
sponding concrete domain (D). An abstract state in Dα is a finite representation
of a possibly infinite set of actual states in D.

Definition 3 (access path). An access path for a variable y at a given pro-
gram point (k, j) is a syntactic construction which can take the forms:

- "any. Variable y is not guaranteed to be constant at (k, j).
- "num (resp. "null). Variable y holds a numeric value (resp. null) at (k, j).
- li.f1. . .fn. Variable y is constant w.r.t li.f1. . .fn at (k, j).

We use AP to denote the set of all access paths. Given "1, "2 ∈ AP , we define
"1 +ap "2 to be "2 if "1 = "2 and "any otherwise. An abstract state over a set of
variables V and a set of reference fields RF (P) has the form 〈φ, θ〉 where φ : V #→
AP maps variables to access paths, and θ ⊆ RF (P) contains a set of reference
field signatures which are guaranteed to be constant in the sense that such field
has not been updated w.r.t. its value at the initial configuration in any object of
the class where f is declared. We say 〈φ1, θ1〉 -as 〈φ2, θ2〉 if θ2 ⊆ θ1 and ∀x ∈ V

either φ1(x) = φ2(x) or φ2(x) = "any. We define 〈φ1, θ1〉+as 〈φ2, θ2〉 = 〈φ, θ1 ∩ θ2〉
s.t. φ(x) = φ1(x)+asφ2(x). ASd is the lattice 〈AS ,/as,⊥as,+as,-as〉 where AS
is the set of abstract states, /as is the top of the lattice which is equal to 〈φ, ∅〉
s.t ∀x ∈ V.φ(x) = "any, and ⊥as is the bottom.

RCA assigns an abstract state from AS to each program point by relying on
the transfer function τ : Instr × AS #→ AS depicted in the following table:

b τ(b, 〈φ, θ〉) conditions b τ(b, 〈φ, θ〉) conditions

(1) x:=y.f 〈φ[x *→ %], θ〉 f ∈ RF (P) (6) x:=null 〈φ[x *→ %null], θ〉
(2) x.f :=y 〈φ, θ\{f}]〉 f ∈ RF (P) (7) x:=exp 〈φ[x *→ %num], θ〉 exp(≡null

(3) x:=y 〈φ[x *→ φ(y)], θ〉 (8) x (= null ⊥as φ(x)=%null

(4) x:=y.f 〈φ[x *→ %num], θ〉 f ∈ NF (P) (9) x.f :=y 〈φ, θ〉 f∈NF (P)
(5) x:=new c 〈φ[x *→ %any], θ〉 (10) otherwise 〈φ, θ〉

where in (1) " is defined as: if f ∈ θ and φ(y) 3= "any then " = φ(y).f else
" = "any and Instr denotes the set of all possible instructions that can appear in
the body of a rule. Note that τ(b,⊥as) = ⊥as. In (1), when a reference variable
x is assigned the value of a (reference) field, the transfer function updates the
access path of x accordingly. In (2), when a reference field with signature f
is assigned a value, f is eliminated from θ, since we can no longer guarantee
that fields with the f signature preserve their initial value. Note that if in a
subsequent program point, a reference variable x is assigned a field with the f
signature, then the access path for x becomes "any in rule (1). This is needed to
guarantee correctness w.r.t. Condition 1 in Sec. 1. In (3), assignments between
variables are handled by just assigning their access paths as well. This allows
capturing equality of access paths: if the analysis computes the same access path
function " for two reference variables x and y then x and y refer to the same
memory location or they are both null. Although this notion is related to aliasing,
note that we do not propagate aliasing information among scopes, but rather
we concentrate on computing aliasing information which is guaranteed to hold
regardless of the contents of the heap at the initial configuration. This allows
analyzing scopes separately. In (4) and (7) numeric variables are abstracted to
"num. They will be the target of the subsequent value analysis performed after
instrumentation. In (5), when a new object is created in a fresh memory location
r which is associated to a reference variable x, x is given "any as access path, as r
does not exist in the heap at the initial configuration. In (8), if the abstract state
tells us that a variable x definitely has the value null and we encounter a guard
which checks that x is not null then such guard is guaranteed to fail and the
rest of the rule will not be executed. This is captured by the abstract state ⊥as

which represents unreachable configurations. The remaining instructions do not
alter reference constancy information. The transfer function is used to define a
set of data-flow equations, whose least solution provides the reference constancy
information. Below, ∃̄w̄ denotes the projection on w̄ (i.e., eliminates all variables
not in w̄).

Definition 4 (RCA). Given a program P and an entry p, the set of reference
constancy equations of P w.r.t. p, denoted Ep

P (or EP or E when it is clear from
the context), is defined as follows:

1. The entry p contributes the equation p↓(x̄) = 〈φ, θ〉 where φ maps each ref-
erence variable xi to a symbolic reference li and numeric variables to "num,
and θ = RF (P);

2. Each rule Rk ≡ p(〈x̄〉, 〈ȳ〉)←g, bk
1 , . . . , bk

n ∈ P , s.t. z̄ = vars(R), contributes:

(a) an initial equation ek
0(z̄)=τ(g, init(p↓(x̄), z̄ \ x̄)) such that init(〈φ, θ〉, v̄) =

〈φ[vi #→"], θ〉, where "="null if vi is a reference variable, otherwise "="num;
(b) for each bk

j :

i. if bk
j is an instruction, we generate ek

j (z̄) = τ(bk
j , ek

j−1(z̄));

ii. if bk
j is a call of the form q(〈w̄〉, 〈s̄〉), we generate q↓(w̄) = ∃̄w̄.ek

j−1(z̄)

and ek
j (z̄) = extend(ek

j−1(z̄), q↑(s̄)) s.t. extend(〈φ1, θ1〉, 〈φ2, θ2〉) =
〈φ1[si #→ φ2(si)], θ1 ∩ θ2〉 for si ∈ dom(φ2);

(c) a final equation p↑(ȳ) = ∃̄ȳ.ek
n(z̄). !

Point 1 above indicates that on entry to p(x̄) each xi trivially holds its initial
value li and all reference field signatures are constant. Point 2 traverses all rules
in P . In Point 2a, we initialize the value of all variables in Rk which are not
input arguments, which results in equation ek

0(z̄). Point 2(b)i states that if we
have an instruction bk

i , information for the next program point ek
i (z̄) can simply

be obtained as τ(bk
i , ek

i−1(z̄)). Point 2(b)ii states that if bk
i is a call q(w̄, s̄) then:

the first equation declares a call q↓(w̄) using ek
i−1(z̄) as initial input values,

the second one uses the exit information of q, namely q↑(s̄), together with the
previously computed ek

i−1(z̄) in order to generate the analysis information at the
next program point ek

i (x̄). In point 2c, we obtain information about the exit state
for p, denoted p↑(ȳ), by removing all non-output variables from the information
at the last program point in Rk, i.e., ek

n(z̄).
Once the set of equations Ep

P is generated, the analysis results are obtained
by computing the least solution of Ep

P , which assigns an abstract element 〈φ, θ〉 ∈
AS to each equation. This can be done by bottom-up iterations, where we start
from an initial solution ⊥as for all equations and, then, at each iteration we
use the results from the previous iteration in order to obtain a new solution for
Ep

P . To ensure termination, new abstract states are merged with previous states
using +as such that if a variable takes two different access paths, it becomes
"any. As customary, +as merges the analysis results obtained for the different
rules defining a procedure. The least solution of Ep

P over ASd is denoted I(Ep
P).

Example 5. Let loop be the entry of the program in Ex. 3. The initial equation for
loop is loop↓(x, y, i)=〈{x#→l1, y #→l2, i#→"num}, {f}〉. The equations contributed by
rule 1, where z̄={x, y, i, s0, r}, w̄={x, y, i, s0} and w̄′={x, y, i} are shown at the
end of the example. The fixed point computation proceeds as follows. From
loop↓(w̄

′) we generate e1
0, which adds the initial values for s0 and r. Then e1

0 is
used to learn the information for e1

1 and so on. Note the change in value of s0

in equations e1
1 and e1

2. Once we learn the information for e1
3, we declare that

we have a call to procedure loopc. This is done by equation loopc↓(w̄), which in
turn activates (in the next iteration) the computation for the equations for loopc

(rules 2 and 3). In each iteration, the new information is merged with that of the
previous iterations using +as. Column “analysis results” shows the information

obtained once a fixpoint has been reached.

rule 1 analysis result
e1
0(z̄)=τ(true, init(loop↓(w̄

′), {s0, r})) 〈{x*→l1, y *→l2, s0 *→%null, i *→%num, r *→%num}, {f}〉
e1
1(z̄)=τ(s0:=x, e1

0(z̄)) 〈{x*→l1, y *→l2, s0 *→l1, i *→%num, r *→%num}, {f}〉
e1
2(z̄)=τ(s0:=s0.f, e1

1(z̄)) 〈{x*→l1, y *→l2, s0 *→l1.f , i *→%num, r *→%num}, {f}〉
e1
3(z̄)=τ(s0:=s0.size, e1

2(z̄)) 〈{x*→l1, y *→l2, s0 *→%num, i *→%num, r *→%num}, {f}〉
loopc↓(w̄)=∃̄w̄.e1

3(z̄) 〈{x*→l1, y *→l2, s0 *→%num, i *→%num}, {f}〉
e1
4(z̄)=extend(e1

3(z̄), loopc↑(r)) 〈{x*→l1, y *→l2, s0 *→%num, i *→%num, r *→%num}, {f}〉
loop↑(r)=∃̄r.e1

4(z̄) 〈{r *→%num}, {f}〉

3.2 Compositional Reference Constancy Analysis

We now present a compositional RCA which can be used for analyzing different
parts of the program, i.e., scopes, separately.

Example 6. Consider the program a© in Ex. 4. It is similar to the one in Ex. 3, but
we introduce two auxiliary methods getSize and setSize defined, resp., as follows:
“int getSize(){return this.size;}” and “void setSize(int n){this.size=n;}” and
whose rule-based forms are, “getSize(〈this〉, 〈r〉)←s0:=this, s0 :=s0 .size, r :=s0”
and “setSize(〈this, n〉, 〈〉)←s0:=this, s1 :=n, s0 .size:=s1”, respectively. Now, the
read accesses to field size (at program points 2©, 3©, and 5©) are replaced by calls
to getSize and the write access at program point 6© by a call to setSize. Note
that now, in the whole program, instead of three, we only have one read access
(s0:=s0 .size, in the body of getSize) to the size field. Unfortunately, s0 is not
constant at that program point, as it sometimes has the value y (when calling
from program point 3©) and sometimes x .f (when calling from program points
2© and 5©). Instead of giving up, compositional analysis should let us analyze
getSize separately and infer that s0 is constant within each call to getSize. !

The first step for achieving compositionality is to split the program P into
scopes S1, . . . , Sn by partitioning the procedures (and therefore rules) in P into
groups such that there are no mutual calls (directly or indirectly) between any
two different groups. Therefore, the strongly connected components (or SCCs) of
the program are the smallest scopes we should consider. For the sake of simplicity,
we assume that each scope S has a single entry p. This is not a restriction, as
we can repeat the analysis for each entry separately. Scopes are analyzed in a
reverse topological order. Since there are no cycles among scopes, when analyzing
a scope S, we have already analyzed all scopes reachable from S.

The only change required in the analysis presented in Sect. 3.1 is to modify
the transfer function in order to handle calls to procedures defined in external
scopes. Let q(〈w̄〉, 〈s̄〉) be a call to a procedure defined in S′ 3= S for which
we have computed q↑(s̄) = 〈φ′, θ′〉 ∈ I(Eq

S′). To avoid variable renamings, we
assume that such answer q↑ is returned with the same variable names. Now, we
define the transfer function for this call as τ(q(〈w̄〉, 〈s̄〉), 〈φ, θ〉) = 〈φ′′, θ′′〉 where:

(1) θ′′ = θ ∩ θ′;

(2) we distinguish three kinds of variables to define φ′′:
(2.1) ∀z ∈ dom(φ) \ s̄, we have φ′′(z) = φ(z); otherwise
(2.2) ∀z ∈ dom(φ) which is numeric, φ′′(z) = "num; otherwise
(2.3) ∀sk ∈ s̄ if φ′(sk) = lj .f1 . . . fn ∧ {f1, . . . , fn} ⊆ θ ∧ φ(wj) 3= "any then

φ′′(sk) = φ(wj).f1 . . . fn, else φ′′(sk) = "any.
Intuitively, field updates that might occur in the execution of q are learned in (1).
Variables which are not output variables of q (2.1) are not affected by this step.
In point (2.2), output numeric variables become "num. In (2.3), the answer for
reference output variables of q is renamed to use them in this calling context.
For this, we need to use the access paths computed for the input variables to
perform the renaming on the output variables. We require that the involved field
signatures are in θ and that the access path for wj is not "any.

Example 7. We now split the program in Ex. 6 in three scopes: S1 = {getSize},
S2 = {setSize} and S3 = {loop, loopc}. The analysis of S1 results in getSize↑(r) =

〈{r #→ "num}, {f}〉 ∈ I(ES1
). The analysis of S3 generates Eloop

S3
, which is as the

one in Ex. 5 except for the equation that refers to the size field. In particu-
lar, equation e1

4(z̄) is replaced by: e1
4(z̄) = τ(getSize(〈s0〉, 〈s0〉), e1

3(z̄)). It results
in the same value for e1

4 as in Ex. 5, i.e., compositional analysis allows con-
sidering size constant in getSize without losing accuracy when composing the
results. Thus, as for the program in Ex. 3, we conclude that in the calls to
getSize(〈this〉, 〈r〉), this has the value l1 .f at program points 2©, 5© and the value
l2 at 3©. Reasoning similarly, we get that for the call to setSize(〈this, n〉, 〈〉),
variable this always has the value l1 .f at program point 6©. !

Theorem 1 (soundness). Let S be a scope and p be an entry. For any equation
ek
i (x̄) = 〈φ, θ〉 ∈ I(Ep

S) and variable z ∈ dom(φ), if φ(z) = lj .f1 . . . fn, then z is
constant w.r.t. lj .f1 . . . fn at program point (k, i). !

Our method is parametric w.r.t. the choice of scopes. As a rule of thumb,
the larger scopes are, the more context information we can propagate in the
subsequent value analysis, but the less likely that numeric field accesses can
be considered trackable. As motivated above, scopes should not be larger than
methods, unless they are mutually recursive. For cost and termination, defining
the scopes by first computing the SCCs and then grouping non-recursive SCCs
that form a chain (consecutive SCCs in topological order) works well in practice.

4 An Instrumentation for Tracking Numeric Fields

We now identify sufficient conditions for instrumenting the program by adding
ghost variables which correspond to the value of numeric fields. As for RCA, we
define the instrumentation in a compositional way, guided by a set of scopes.

4.1 Finding Trackable Numeric Fields

Given an instruction bk
j and a reference variable y, we use acc path(y, bk

j) = " as

a shortcut for ek
j−1(x̄) = 〈φ, θ〉 ∈ I(ES) ∧ φ(y) = ". We use S∗ to refer to the

union of S and all other scopes reachable from S. Given a scope S and a numeric
field signature f , the set of read access paths for f in S, denoted R(S, f), is the
set of access paths of all variables y used for reading (i.e., instructions of the form
x:=y.f) a field with the f signature in S∗. R+(S, f) denotes the set of access
paths that originate from read accesses in S, and R∗(S, f) those which originate
from read accesses in S∗\{S}. Thus, R(S, f) = R+(S, f) ∪ R∗(S, f) where:

R+(S, f) =
{

acc path(y, bk
j)

∣

∣ bk
j ≡ x:=y.f ∈ S

}

R∗(S, f) =

{

"′
∣

∣

∣

∣

bk
j ≡ q(〈x̄〉, 〈ȳ〉) ∈ S, q ∈ S′ 3= S, " ∈ R(S′, f)

if " = lh.p then "′ = acc path(xh, bk
j−1).p else "′ = "any

}

In R+(S, f), for each access x:=y.f , we add the access path that the analysis
has computed for y. Computing the read access paths for a scope S requires
computing the read access paths for all other scopes in S∗. Since scopes subsume
SCCs, read access paths can be computed in reverse topological order without
iterating. For each call q(〈x̄〉, 〈ȳ〉) such that q is the entry of scope S′, we take
R(S′, f) and rename it according to the calling context. This requires renaming
each lh using the access path of xh at bk

j−1. The set of write access paths for f in
S, denoted W (S, f), is computed in a similar way by just considering the access
path of all variables y in instructions of the form y.f :=x, instead of x:=y.f .

Example 8. Following Ex. 7, the set R+(S1, size) = {l1}, due to the instruction
s0 = s0.size, and R∗(S1, size) = ∅, since S1 does not have calls to other scopes.
R+(S2, size) = R∗(S2, size) = ∅ since no read accesses to the field size occur
in setSize. Also, R+(S3, size) = ∅, since S3 does not access size directly, but
R∗(S3, size) = {l1.f, l2}. Note that l1.f originates from program point 2© and 5©
and l2 from program point 3©. Finally, W (S1, size) = ∅, W (S2, size) = {l1} and
W (S3, size) = {l1.f}, where l1.f originates from program point 6©. !

Definition 5 (trackable numeric field signature). Given a scope S from a
program P and a numeric field signature f ∈ NF (P), f is trackable in scope S
if (1) f is trackable in all scopes in S∗\{S} and one of the following conditions
holds: (2) W (S, f) = ∅; or (3) W (S, f) = {"} and " is of the form lj .f1 . . . fn.

Condition (1) is required in order to have a sound transformation, as we cannot
track accesses which are not trackable in transitively reachable scopes. Then,
Condition (2) refers to scenarios where we do not have any write access to f ,
like example b©. In such case, the value of numeric fields read through (possibly)
different access paths will be stored in different ghost variables. Condition (3)
requires that all write accesses are done through the same path, like examples a©,
c© (inner loop) and e©. This is the reason why the field accesses in the examples
d© and f© are not trackable. An essential point is that, though it is allowed to
have read accesses to f through access paths different from ", they cannot be
tracked. This is the case in the read access y.size in example e©.

4.2 Instrumenting Trackable Numeric Fields

The following transformation describes how to instrument a scope S with ghost
variables for the different trackable uses of a numeric field f :

1. If f is not trackable go to 4
2. Add Arguments: each head or call p(〈x̄〉, 〈ȳ〉) such that p ∈ S is con-

verted to p(〈x̄·v̄r〉, 〈ȳ·v̄w〉) with v̄w = {v!.f | % ∈ W (S, f)} and
(a) if W (S, f) = ∅ then v̄r = {v!.f | % (=%any ∈ R(S, f)}
(b) if W (S, f) = {%} then if % ∈ R(S, f) then v̄r = {v!.f} else v̄r = ∅

3. Replicate Field Accesses:

(a) each bk
j ≡ y.f :=x ∈ S produces a subsequent assignment v!.f :=x, if

acc path(y, bk
j) = %

(b) each bk
j ≡ x:=y.f ∈ S produces a subsequent assignment x:=v!.f , if

acc path(y, bk
j) = % (= %any ∧ W (S, f) ⊆ {%}

4. Handle External Calls: Let bk
j ≡ q(x̄, ȳ) ∈ S be an external call, and

q(〈x̄′·v̄′
r〉, 〈ȳ

′·v̄′
w〉) be the head of the definition of q after transforming

its corresponding scope. The call is translated to q(〈x̄·v̄r〉, 〈ȳ·v̄w〉) where,
given a variable v′

! ∈ v̄′
r ∪ v̄′

w with % = lh.f1 . . . fn.f , its corresponding
variable vm is:
(a) if acc path(xh, bk

j−1) = %any or f is not trackable in S, then vm = ∗;
(b) otherwise, m = acc path(xh, bk

j−1).f1 . . . fn.f .

The scopes in a program are instrumented in a reverse topological order. For sim-
plicity, in the presentation, a scope S is instrumented iteratively, once for each
field in NF (P). However, in the implementation, each scope is instrumented just
once, simultaneously for all field signatures. The key features in our instrumen-
tation are: (i) Ghost variables have names of the form vl.f , where l is an access
path function and f a numeric field. (ii) If the field access is not trackable in the
current scope, then it is not safe to propagate the value of numeric fields to/from
external calls. To handle this, we use the mark ’∗’ which, at the input, should be
interpreted as a random integer and, at the output, it indicates that we should
ignore the corresponding output value when we return from a call. This syntax
can be easily supported by modifying rules 5 and 6 in the semantics, and treat-
ing it in value analysis is straightforward. (iii) When there are updates to a field
signature, we can only track read accesses which refer to the same access path
function used for the updates (see explanation of condition 3 in Def. 5).

Intuitively, each step in the instrumentation of a scope S w.r.t. a field sig-
nature f is: (1) If f is not trackable in S, we only need to instrument external
calls (step 4a) by ignoring the value of ghost variables. E.g., when we instrument
the calling scope to the loop in example b©, we cannot track the value of the
field x.f . (2) Input and output ghost variables are added as follows. For out-
put ghost variables, the definition of trackable ensures that there is at most one
access path in the write set. For the input ones, if there are no write accesses,
we can track all their possible read uses (step 2a); otherwise, we can only track
the accesses through the same access path (step 2b), hence we have at most one
variable. The same arguments are also added to internal calls. (3) We replicate
field accesses with accesses to its corresponding ghost variable. The condition
W (S, f) ⊆ {"} takes care of issue (iii) above. (4) For calls to other scopes, it is
guaranteed that they have been already instrumented. We have to look up at
the reference constancy information to find out which ghost variables we must

use in the calling context, step 4b. In step 4a, if the field is not trackable or its
access path is not constant, it is not safe to track its value.

Example 9. We first transform S1 in Ex. 7 w.r.t. size. Recall that R(S1, size) =
{l1} and W (S1, size) = ∅. Thus, we add an input variable v1 for the ghost
variable vl1.size, resulting in: “ getSize(〈this, v1〉, 〈r〉)←s0:=this, s0 :=v1 , r :=s0”.
Note that we have replaced the read access statement s0=s0.size by s0=v1, which
reads the ghost variable v1. Similarly, the transformation of S2 w.r.t. size gen-
erates the rule: “setSize(〈this, n〉, 〈v1〉) ←s0:=this, s1:=n, s0.size:=s1, v1:=s1”,
where now v1 is an output value which stores the modification of vl1.size. Note
that the write access s0.size:=s1 is replicated using variable v1, which results in
the additional statement v1:=s1. This corresponds to the intuition shown in the
instrumentation of the Java code in Sec. 1, though it is more sophisticated as
we have an inter-procedural transformation which allows multiple output vari-
ables. Hence, it could not be directly done in the original Java program. The
instrumented version of rules (1), (2) and (3) of S3 is:

(1) loop(〈x, y, i, v1〉, 〈r, v1〉)←
s0:=x, s0:=s0.f,
getSize(〈s0, v1〉, 〈s0〉),
loopc(〈x, y, i, s0, v1〉, 〈r, v1〉).

(2) loopc(〈x, y, i, s0, v1〉, 〈r, v1〉)←
s0 ≤ 0, s0:=i, r:=s0.

(3) loopc(〈x, y, i, s0, v1〉, 〈r, v1〉) ←
s0 > 0, s0:=i, s1:=y, getSize(〈s1, ∗〉, 〈s1〉),
s0:=s0 + s1, i:=s0, s0:=x, s0:=s0.f,
s1:=s0, getSize(〈s1, v1〉, 〈s1〉),
s2:=1, s1:=s1 − s2, setSize(〈s0, s1〉, 〈v1〉),
loop(〈this, x, y, i, v1〉, 〈r, v1〉).

Since the write set is {l1.f}, only one variable v1 can be added for the read access
l1.f (i.e., ghost variable vl1.f.size) and we cannot track the one corresponding to
the read access l2 (step 2b). An important point is that, in the calls to getSize, we
use either v1 or ∗ depending on the access path of the first argument, computed in
step 4b. Field-insensitive value analysis of the instrumented program is now able
to infer that v1 (i.e., x .f.size) is decreasing and has 0 as lower limit. This is due to
the fact that, for getSize(〈this, v1 〉, 〈r〉), field-insensitive value analysis can now
infer that r = v1 (which corresponds to this.size) and for setSize(〈this,n〉, 〈v1 〉)
it infers that v1 decreases by one. Cost and termination analyses hence succeed
to bound the number of loop iterations by the ranking function v1. !

The following theorem guarantees that we can safely use the instrumented pro-
gram for value analysis instead of the original one.

Theorem 2. Let P be a program, PF be its instrumentation for NF (P), and
C = 〈start, p(〈x̄〉, 〈ȳ〉), tv〉;h an initial configuration. If there is a trace t of
the form C "

n
P Cn then there exists a trace t′ of the form C ′

"
m
PF

Cm s.t.
C ′=〈start, p(〈x̄ · ∗̄〉, 〈ȳ · ∗̄〉), tv〉;h; m ≥ n; s.t. if we remove all ghost variables
and states that originate from the instrumentation from t′, we obtain t. !

Even though the instrumented program may have non-deterministic behaviour
due to ghost variables whose values are unknown (’∗’), this does not introduce
a loss of precision w.r.t. field-insensitive value analysis, since such unknowns
correspond to numeric fields which are also unknown in field-insensitive analysis.

5 Experiments in the costa System

costa [2] is a static analyzer able to prove termination and obtain upper bounds
on resource usage for a relatively large class of Java bytecode programs. We
have integrated our method in costa as a pre-process to the existing field-
insensitive value analysis. In order to assess its practicality on realistic programs,
we have tried to infer termination of all the loops which contain numeric field
accesses in their guards for all classes in the subpackages of “java” of the Sun’s
implementation of J2SE 1.4.2. In total, we have found 133 methods which contain
loops of this form, which we have taken as entries. costa has an application
extraction algorithm (or class analysis) which pulls methods transitively used
from each entry. costa failed to analyze 11 methods because when analyzing
context-independently, it is required to analyze more methods than it can handle.

Bench. Ru Ln Rs Ri Trca Ttr Tgh Ti Ts SD

lang 315 13 13 0 0.12 0.01 0.02 3.33 5.47 1.64
util 685 24 24 0 0.58 7.88 4.90 20.21 39.36 1.95
beans 90 3 3 0 0.05 0.00 0.00 1.42 1.65 1.16
math 662 15 12 1 0.22 0.18 0.17 7.84 9.84 1.26
text 1743 24 20 1 0.79 0.34 0.37 37.33 141.04 3.78
awt 4524 90 87 0 2.44 7.56 7.59 98.56 248.49 2.52
io 716 6 5 2 0.61 0.49 0.27 17.79 23.94 1.35
security 58 1 1 0 0.03 0.01 0.00 0.90 0.98 1.09
total 8793 176 165 4 4.84 16.47 13.32 187.38 470.77 2.51

The above table shows our experimental results for the 122 methods which
costa can handle which belong to the packages whose name appears in the
first column. For each package, we provide the size of the code to be analyzed,
given as number of rules (Ru), the number of loops (Ln) analyzed in each
package which contain numeric field accesses in their guards. The column Rs

shows the number of loops involving numeric guards for which costa has been
able to find a ranking function using our proposed approach to field-sensitive
analysis. Column Ri shows the same for field-insensitive analysis. It can be
observed that, before applying our technique, costa could prove termination
of only 4 of the 176 loops. In those 4 loops it is possible to prove termination
using a field-insensitive analyzer because, for example, termination is guaranteed
by reaching exceptional states. When we apply our approach to field-sensitive
analysis, we prove termination of 165 of the 176 loops. It is also worth mentioning
that only in 3 loops we fail to prove termination because the numeric field in
the guard is not trackable (in particular, the reference is not constant). In the
other 8 loops, though the fields are trackable, we failed due to limitations of the
underlying termination techniques used in costa, and which are not related to
our approach. In most cases, the problem is that the termination condition does
not depend on the size of the data structure, but rather on the particular value
stored at some location within the data structure, and also to the use of linear
arithmetic operations.

The next set of columns evaluate time efficiency. The experiments have been
performed on an Intel Core 2 Quad Q9300 at 2.5GHz with 1.95GB of RAM,
running Linux 2.6.27-11. Analysis times are shown in seconds. The time of the
RCA is shown in Trca . Columns Ttr and Tgh show, resp., the times to infer the
trackability condition and to instrument the program with ghost variables. We
have observed that the examples which require more time to infer trackability
always involve a high number of numeric fields and thus the transformation also
has to consider a high number of ghost variables. The total analysis time of
the field-sensitive analysis, which includes the previous three columns is in Ts .
The field-insensitive analysis time is shown in Ti . Finally, the SD column shows
the slowdown introduced by field-sensitive analysis. The total overhead is 2.51.
We argue that our results are quite positive since the overhead introduced is
reasonable in return for the quite significant accuracy gains obtained.

6 Conclusions and Related Work

This paper proposes, to the best of our knowledge, the first static analysis to
support numeric fields in cost and termination analysis of object-oriented byte-
code. A complementary analysis for reference fields is [17]. Traditionally, existing
approaches to reason on shared mutable data structures either track all possible
updates of fields (endangering efficiency) or abstract all field updates into a sin-
gle element (sacrificing accuracy). Our work does not fall into either category,
as it does not track all field updates but rather only those which behave like non
heap-allocated variables. Miné’s [11] value analysis for C takes a different ap-
proach by enriching the abstract domain to make the analysis field-sensitive. His
motivation is different from ours, such analysis is developed to improve points-
to analysis in the presence of pointer arithmetics. We argue that our approach
is sufficiently precise for context-independent analysis as required by important
applications of value analysis such as termination analysis, while introducing a
reasonable overhead. Also, [4] enriches a numeric abstract domain with alien
expressions (field accesses). Without additional information, such as our RCA,
this domain would be rather limited (imprecise) for bytecode. The notion of
restricted variables used in [1] for C programs is related to our notion of ref-
erence constancy. However, [1] imposes more restrictive conditions, namely it
avoids global pointers to be used locally and local copies to escape from the
local context and, thus, it does not imply our reference constancy condition. In
general, more accurate aliasing analysis (see [1] and its references) can be used
to improve the precision of our analysis when computing the read and write sets,
but at a higher performance cost and, besides, such further precision might not
be required in practice for analyzing subprograms context-independently. Must-
aliasing (aliases at program points) does not imply constancy of references, since
the values of two variables might but still alias at the program point of interest.
However, infering transitive relations of must-aliasing, i.e., between variables at
different program points might enable the inference of constancy information,
but this results in a much more expensive analysis than ours. Our work shares

its motivation with the evolving field of local reasoning [14], such as separation
logic [16] and regional logic [3] which provide expressive frameworks to reason
about programs with shared mutable data structures. While our goals are more
restricted, our technique has the advantage of allowing fully automatic inference.

Acknowledgments. This work was funded in part by the Information Soci-
ety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS and IST-231620 HATS projects, by
the Spanish Ministry of Education (MEC) under the TIN-2005-09207 MERIT,
TIN-2008-05624 DOVES and HI2008-0153 (Acción Integrada) projects, and the
Madrid Regional Government under the S-0505/TIC/0407 PROMESAS project.

References

1. A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking and inferring local
non-aliasing. In Proc.of PDLI’ 03, pages 129–140. ACM, 2003.

2. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termi-
nation Analysis of Java Bytecode. In FMOODS, LNCS 5051, pages 2–18, 2008.

3. A. Banerjee, D. Naumann, and S. Rosenberg. Regional logic for local reasoning
about global invariants. In ECOOP, LNCS 5142, pages 387–411, 2008.

4. B.-Y. E. Chang and K. R. M. Leino. Abstract interpretation with alien expressions
and heap structures. In VMCAI’05, 2005.

5. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. J. Log. Program., 41(1):103–123, 1999.

6. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL’77, pages 238–252. ACM, 1977.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. POPL. ACM, 1978.

8. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In
PLDI, pages 230–241, 1994.

9. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

10. F. Logozzo. Cibai: An abstract interpretation-based static analyzer for modular
analysis and verification of java classes. In VMCAI, LNCS 4349, 2007.

11. A. Miné. Field-sensitive value analysis of embedded c programs with union types
and pointer arithmetics. In LCTES, 2006.

12. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

13. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
2005. Second Ed.

14. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local Reasoning about Programs
that Alter Data Structures. In Computer Science Logic, 2001.

15. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI, LNCS, pages 465–486, 2004.

16. J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.
In LICS, pages 55–74, 2002.

17. F. Spoto, P. Hill, and E. Payet. Path-length analysis of object-oriented programs.
In EAAI’06, ENTCS. Elsevier, 2006.

18. R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java optimization framework. In CASCON’99, pages 125–135, 1999.

	Field-Sensitive Value Analysis by Field-Insensitive Analysis
	Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla

