The Denotational Semantics of slotted-Circus

Pawel Gancarski! and Andrew Butterfield!

Trinity College Dublin, Andrew.Butterfield@cs.tcd.ie

Abstract. This paper describes a complete denotational semantics, in
the UTP framework, of slotted-Circus, a generic framework for reason-
ing about discrete timed/synchronously clocked systems. The key result
presented here is a comprehensive semantics of the entire language that
addresses various semantics issues that have been uncovered, whilst lay-
ing foundations for future extensions, particularly towards prioritized
choice.

1 Introduction

1.1 Circus and slotted-Circus

The formal notation Circus is a unification of Z and CSP, and has been given
a UTP semantics [OCWO09]. A Circus text describes behaviour as a collection
of actions, which are a combination of processes with mutable state. However,
apart from event sequencing, there is no notion of time in Circus. A timed version
of Circus (Circus Time Action or CTA) has been explored [SH02, She06] that
introduces the notion of discrete time-slots in which sequences of events occur.
The semantics of CTA has been developed using UTP, and there we find a
two-level notion of history: the top-level views history as a sequence of time-
slots; whilst the bottom-level records a history of events within a given slot.

Our interest in hardware compilation languages such as Handel-C [Cel02] led
to a development of semantic theories based on the notion of time-slots in CTA,
but with much more structure (“microslots”) to the events within the timeslots
[BWO05]. Looking for a way to formally link Circus as a specification language
to Handel-C as an implementation language, and given that CTA was a step in
this direction, we decided to explore a UTP semantics for Handel-C.

As the Handel-C semantics had three levels of complexity, each supporting
a larger range of language features, it was decided to develop a generic the-
ory (called slotted-Circus), with time-slots whose bottom-level contents could be
parameterised, as simple traces, or multisets of events, or as one of the three
successively more complex “micro-slot” structures [BSWO07]. That paper dis-
cussed a number of fundamental issues that had to be addressed, most regarding
healthiness conditions. More recent work [GBWO09] looked at subtleties involving
communication and state update.
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Another reason for using UTP was that it will allow us, in the future, to ex-
plore refinement links to other specification/programming languages also treated
using the UTP framework.

This paper describes a complete denotational semantics, in the UTP frame-
work, of slotted-Circus, finishing off earlier work. The key contribution here, apart
from the completion, is an understanding of the key role played by refusals in
the theory, particularly with respect to the semantics of hiding.

1.2 UTP: General Principles

Theories in UTP are expressed as second-order predicates’ over a pre-defined
collection of free observation variables, referred to as the alphabet of the theory.
The predicates are generally used to describe a relation between a before-state
and an after-state, the latter typically characterised by dashed versions of the
observation variables. A predicate whose free variables are all undashed, referring
only to the before-state, is called a condition. So for example, the program below
on the left could be described by the predicate on the right:

fi=fxx;x:=x—1 flf=fxzAna’ =zx-1

Here logical variables f and f’ denote the before- and after-values of the program
variable £. We note that UTP follows the key principle that “programs are
predicates” [Hoa85b] and so does not distinguish between the syntax of some
language and its semantics as alphabetised predicates. In practise, we also need
auxiliary logical variables to capture other aspects of a programs behaviour. For
example, in a theory of simple imperative programming, we might use ok and
ok’ to model respectively the successful start and termination of a program. Our
above example would then have its full semantics as follows:

ok = (k' Nf'=fxaAa’ =2-1)

A given theory is characterised by its alphabet, and a series of healthiness con-
ditions that constrain the valid assertions that predicates may make. A healthi-
ness condition is a property of a predicate that distinguishes sensible predicates
from nonsense. So, for example the following predicate is clearly nonsense under
our intended interpretation:

- ok A ok’

It asserts that a program has not been started, but yet has terminated! It can
be ruled out by the following healthiness condition (which yields false for the
above predicate):

P = (ok = P)

Note that healthiness conditions should not be confused with ordinary conditions
(predicates with only before-variables).

! Most definitions are in fact 1st-order, but we need 2nd-order in order to handle the
notion of “healthiness”, and recursion.



Action ::= Skip | Stop | Chaos | Wait t

| Comm — Action | Action M Action | Action O Action

| Action |[VS | CS | VS]| Action | Action\CS | ;xName e F'(Name)

| Name' := Expr™ | Action; Action | Action <IExprt> Action | Expr * Action

Comm ::= Name.Expr | Name!Expr | Name?Name
Expr ::= expression
t ::= positive integer valued expression
Name ::= channel or variable names
CS ::= channel name sets
VS ::= variable sets

Fig. 1. Slotted-Circus Syntax

1.3 Structure and Focus

The main technical emphasis of this paper is on the details of the semantics
definitions of the language constructs, to ensure that the desired laws can be
verified. We first present the syntax §2, generic framework §3, and healthiness
conditions §4. We then discuss semantics §5 in some detail, and present some
laws with a sketch of the proof of one of interest §6. We finish by mentioning
related §7 and future §8 work, and concluding §9.

2 Syntax

The syntax of Slotted-Circus is similar to that of Circus, and a subset, relevant
to this paper, is shown in Figure 1. The notation X denotes a sequence of
one of more X. We assume an appropriate syntax for describing expressions and
their types, subject only to the proviso that at least booleans and non-negative
integers are included.

The basic actions Skip, Stop, Chaos, as well as event prefix (e — A) and
hiding (4 \ H) are similar to the corresponding CSP behaviours [Hoa85a, Sch00],
while we also introduce variable assignmement (:=). Actions can be combined
with internal (M) or external (O) choice, sequential composition (; ), parallel
composition (| | — | J|), or conditional choice (<cr>). Iteration can be described
explicitly (x), or defined recursively (1_ o _). The key construct related to
time-slots, and hence not part of Circus, is Wait ¢ which denotes an action that
simply waits for ¢ time-slots to elapse, and then terminates.

As an example we present a simple one-shot “factorial server” (Fig. 2) that
waits for a request (channel freq) containing a natural number n, and then
computes its factorial, exploiting parallelism where possible, finally returning
the result as a response message (channel fresp). The server has the timing of a
Handel-C program, where each assignment and channel communication takes a
full time-slot (a.k.a. “clock-cycle”). A run of the server showing communication
events, state variable changes, and the passage of time-slots is shown in Figure



FS = freq?n — Wait1; FCOMP; fresp!f — Wait1
FCOMP = f :=1; Waitl;
(n>D)*((f:=nxf; Watl) [{f}|0|{n}] (n:=n—-1; Waitl))

Fig. 2. Factorial Server

Slot 1| 2 [3|4]|5|6|7|8 9
Event|—|freq.4|—|—|—|—|— | — |fresp.24
Varin|—| 4 [4]|3|2]1|1]|1 1
Var:f |—| — |1]4]12]24|24(24| 24

Fig. 3. Factorial Server Run

3. Here we wait one slot for a request to compute 4!, and the client looks for the
result two slots after it becomes available.

3 Generic Slot-Theory

Both the semantics of Handel-C [BWO05] and the timed extension to Circus called
“Circus Timed Actions (CTA)” [SH02, She06] have in common the fact that the
models involve a sequence of “slots” that capture the behaviour of the system
between successive clock ticks. In [BSWO07] a comprehensive account is given of
a generic UTP framework that captures the common aspects of these semantic
models. The reason for developing a generic slot theory is that the way that
events are recorded within a slot in CTA and Handel-C differ, with the latter
semantics itself having three distinct variants. Here we provide a summary of
the key concepts involved.

Although we are modelling a “discrete-time” theory, it has to be stressed that
we can allow events to be ordered within a time-slot, albeit without timestamps
at a finer granularity. The key concept is of a system governed by a global clock,
and each slot models all that happens in-between two consecutive clock ticks. A
slot contains information about the events that occurred during one time slot
(“history”) as well as the events being refused at that point. In CTA, a history
is just a sequence (“trace”) of events in the order in which they occurred during
a slot. So the following example shows a run of CTA where events a and b both
occur at least once in some order in every second time-slot:

(0:(a;0), 0 (b, a,a), (), (b, ), (- )

In the multi-set action (MSA) variant, we ignore event ordering within slots,
viewing history as a bag of events, so the above example appears as

{Bfe—Lb=1h{}{a=20= 1} {1 {a—=1Lb—1}{},..)



In fact with each slot we not only record an event history of some form but also
the events being refused during a time-slot. So if we have an event type E and
a history type constructor H, then the type of slots is defined as:

S=EHEXPE

Essentially we now have a semantic domain that is parametric in the choice of
H (plus some supporting definitions). We then build up event observations as
“slotted-sequences”, which are non-empty sequences of slots. The presence of
clock-ticks in the history is denoted by the adjacency of two slots, so a slot-
sequence of length n 4 1 describes a situation in which the clock has ticked n
times. The CTA example above can now be written in full, assuming that neither
a nor b are refused during slots when they don’t occur, but are refused at the
end of the slot in which they do occur:

((0,0), ((a, b), {a,6}), ((), ), ((b, a, a), {a, b}), (), 0), ({b, a), {a, b}), ((), 0), - . )

We can now describe the observational variables of our generic UTP theory:

ok : B —True if the process is stable, i.e., not diverging.

wait : B —True if the process is waiting, i.e., not terminated.

state : Var - Value —An environment giving the current values of slotted- Circus
variables

slots : ST : —A non-empty sequence of slots recording the timed event be-
haviour of the system.

The variables ok, wait play the same role as the in the reactive systems theory
in [HH98, Chp. 8|, while state follows the trend in [SHO2] of grouping all the
program variables under one observational variable, to simplify the presentation
of the theory. We need to be very clear about the distinction between events
and program variables — events denote visible communication actions used for
synchronisation and/or to transfer data, whilst program variables are considered
global in this paper, and the state component tracks their values as the program
executes. In particular, the action of assigning to a variable updates state, but
is not an event, and so is not recorded in slots.

In order to give the generic semantics of the language, we need, in addition
to H, to have definitions supplied of operations on such histories, that satisfy
key properties. For example, we need to know what an empty history looks like,
and how to concatenate histories, so that concatenation is associative, with the
empty history as the identity element. Other operations to be defined include a
history prefix relation, history subtraction, event hiding in histories, and event
synchronisation between histories running in parallel — all satisfying a key set
of laws — see [BSWO07] for details.

Given the definition of H, and the associated functions and relations, we need
to lift many of these to work with slots and slot-sequences (see Fig. 4). Relation
EquTrace(tr, slots), asserts that tr, an event sequence, is compatible with the
history in slots, ignoring time and refusals. Function Refs extracts refusals from



EquTrace : E* < S™
Refs : St — (PE)*"
£,2: 8T - ST
#H " :ST xSt + 8T
SSync :PE — ST x 8T - St
SHide : SLOT xPE — S

Fig. 4. Slot-Sequence Functions/Relations

slot-sequences. The relations < and = denote prefixing and equivalence of slot-
sequences respectively — in this case equivalence is almost equality, except that
the refusals in the last slot are ignored. Operations #f and ~~\ denote slot con-
catenation and subtraction respectively — analogously to sequences, ~x is only
defined if its second argument is a <-prefix of its first. The key point to note
here is that in the result of s; tf so, the last slot of s; is merged with the first
slot of sy. Function SSync(c)(s1, s2) shows the effect of forcing the histories of
s1 and se to synchronise on the events in set ¢, while SHide(s, H) gives a slot
were events in H are hidden (removed).

4 Healthiness Conditions

Healthiness conditions are characterised by idempotent predicate transform-
ers, with a healthy predicate being a fixed point of such a transformer. The
healthiness conditions we introduce here for slotted-Circus parallel some of those
in [HH98, Chp. 8] for general reactive systems, namely R1, R2, R3, CSP1 and
CSP2. Here we shall only consider R3, CSP1,2 in detail as they are explicitly
invoked. R1 and R2 deal with the infeasibility of time travel and (direct) mem-
ory of past events, and are well covered elsewhere, and satisfied by all definitions
we present in any case. The reactive conditions are aggregated as R, defined as
the composition of R1-3.

The healthiness condition R3 is one associated with all “reactive” systems
in the UTP, covering process-algebras like ACP, CSP, and CCS.

R3(P) = I <wait> P
I = DIV V ok’ A wait’ = wait A slots’ = slots
DIV = = ok A slots < slots’

R3 deals with the situation when a process has not actually started to run,
because a prior process has yet to terminate, characterised by wait = TRUE. In
this case the action of a yet-to-be started process should simply be to do nothing,
an action we call “reactive-skip” (I). Reactive skip has two behavioural modes: if
started in an unstable state (i.e the prior computation is diverging), then all it
guarantees is that the slots may get extended somehow; otherwise it stays stable,
and leaves most other observations unchanged.



Conditions CSP1 and CSP2 In [HH98, Chp. 8] there are five of these pre-
sented, but for our purposes it suffices to consider only the first two.

A process is CSP1 healthy if all it asserts, when started in an unstable state
(due to some serious earlier failure), is that the event history may be extended:

CSP1(P) = P V = ok A slots < slots’

Healthiness condition R1 simply states that we can never undo past events, but
CSP1 deals with behaviour in a particular starting condition — it says that
if ok is false, then the only thing we can assert is that events may happen in
accordance with R1.

A process predicate is CSP2 healthy if it does not mandate instability, so
if true with ok’ = False, it is also true with ok’ = True, all other observation
variables being unchanged.

CSP2(P) = P; (ok = ok’) A wait’ = wait A slots’ = slots N state’ = state
1)
The effect of post-composing P with (ok = ok’) A ... is remove any assertion
of = ok’ so for example calculation shows that CSP2(P A — ok’) = P whereas

by contrast CSP(P A ok’) = P A ok’.

5 Slotted Semantics

The language constructs of sequential composition, internal and conditional
choice, iteration all have the same semantics as in standard UTP:

P; Q@ = Fo0bsy, @ Plobsy,/obs’] A Q[obs,, /obs]

PRQ = PVQ
Pde>Q = ¢cAPV—-cAhAQ

cxP = pLe(P; L)<acr> Skip

I

Recursion (X e F(X)) is defined as the least fixed-point of F w.r.t to the
refinement ordering (reverse implication), and obs is shorthand for all the ob-
servational variables.

5.1 Semantic Building Blocks

We define the semantics of slotted-Circus in terms of a number of basic building-
blocks, largely to do with events and communication, that we now describe.
This building blocks are all R1-,R2-healthy, but in general will not satisfy R3
or the CSP healthiness conditions in themselves— they are intended to be used
in constructions that do.

First we provide a predicate NOEVTS that describes a situation that allows
time to pass (#slots’ > #slots) but disallows the occurrence of any events:

NOEVTS = EquTrace((), slots’ ~\ slots)



It asserts that if we take the difference between before- and after-slots, then this
will only be equivalent to the empty list (), which requires that every slot must
contain an empty history component. A CTA example of this might be (r; are
arbitrary refusals):

slots” ~ slots = (), 1), (), r2), (O 13), (), 7))

Another very useful predicate asserts that a given set of events (E) have
occurred, but that the clock has not yet ticked:

EVISNOW (E)
= Jtt e elems(tt) = E A EquTrace(tt, slots’ ~\ slots) A #slots = #slots’

We are describing a situation where events occur in the first, and to date only
time slot. We can find a trace ¢t equivalent to the observed slots, whose elements
are the events in F, and where the before- and after-slots are of the same length,
signifying that no clock tick has occurred. In CTA, this might be (r an arbitrary
refusals, F = {a, b}):

slots’ ~~ slots = {({a, b, a), r))

In some situations, we want to describe events that occur immediately (in the
first slot), as described by the predicate IMMEVTS:

IMMEVTS =3E e E# 0N EVISNOW (E) ; slots < slots’
We require the existence of a non-empty sets of events that occur “now” (i.e. in
the first time-slot), followed by an arbitrary extension of slots.
5.2 Semantics of Basic Actions
We now give the semantics of the basic actions, construct by construct.
Chaos = R(true)

The worst possible action in slotted-Circus is Chaos. It is the most unpredictable
healthy process, and bottom of the refinement lattice.

Stop = CSP1(R3(ok’ A wait’ AN NOEVTS))

Action Stop has deadlocked — is stable, never terminates and never performs
any event.

Skip = R3(CSP1(state = state’ N —~wait’ A ok’ A slots = slots’))

Action Skip terminates immediately in a stable state, without performing any
events. In keeping with the CSP definition, Skip ignores the refusals of any



preceding process, hence the use of slot-equivalence rather than slot-equality
here.

Wait t = CSP1(R3(ok’ A del(t) A NOEVTS))
del(t) = (#slots’ — #slots < t) Qwait't> (F#slots’ — #slots = t A state’ = state)

The action that introduces explicit timed behavior is Wait t. It never performs
any events and has only two possible behaviors. The first one is to wait for ¢
clock ticks, the second to terminate when the right time is reached.

/ ) ~ /
v = ¢ = CSP1 <R3 ( ok’ N ~wait’ A slots = slots >)

A state’ = state ® {z — wval(e, state)}

Assignment is performed immediately, and for that reason is very similar to
Skip — stable termination with no events or passing time observed. Valuation
function val evaluates an expression given an environment. A key point to keep
in mind here is that state-changes are recorded in the state variable and are not
regarded as “events”. The state here is globally visible — there are provisions in
UTP and Circus for delimiting variable visibility but these are beyond the scope
of this paper.

comm — A = (comm — Skip); A

Unlike in CSP/CCS, an input communication binds an input value to a program
variable, rather than the free occurrences of that name in the following process,
so, for example, the input communication c¢?z — Skip ends by assigning the
communicated value to the variable z. This allows us to treat the action comm —
Skip as a basic building block and define more general prefixes in terms of it. We
distinguish two basic behaviors of the prefix action: waiting for communication
and performing it.

WTC(c) = POSS(c) A NOEVTS
POSS(c)=c ¢ U Refs(slots’ ~\ slots)
TRMC(c) = EVISNOW {c}

While waiting for communication (WTC') we allow time to pass but we perform
no events. We also inform the environment that we are ready to perform the
specified event, by not refusing it (here Refs returns the refusals in each slot as
a list). When we finally perform an event and terminate (TRMC) we have to
make sure that the event is noted in the trace model. We also have to ensure
that the specified event was not refused during the time-slots before the event
occurred. For that reason we define the behavior of performing an event as
WTC(c); TRMC(c). We assemble all of this to get the following definition of
prefix, noting in passing a key point that program variable state information is
only propagated once the prefix action has terminated.

PN , " state’ = state A
¢ — Skip = CSP1 (()k AR3 (WTC(C) <wait' > ( WTC(c): TRMC(c) )))



The prefix action is also used to define channel-based communication. As per
the usual CSP convention, sending a value is defined as performing an event
- channelName.value, whilst receiving is defined as an external choice over all
possible values allowable on a channel followed by assignment of the received
value to the target variable. If we assume that channel ¢ carries values of type
T= {k’l, kQ, .. .}, then

cle — Skip = c.e — Skip
c?r — Skip = kl;lT o (¢c.k — Skip; x :=k)

Here Oy, e P(z) is shorthand for P(k) O P(ke) O .. ..

5.3 Semantics of Composite Actions

External choice (4 O B) allows external events to determine which action runs,
so for example if we have (¢ — A) O (b — B), then, if the environment performs
a, we see that event occur, followed by an execution of action A. Unfortunately
the very simple definition? of external choice proposed in [HH98|, no longer
suffices, as we may have to wait for several clock-ticks before an external event
arises that resolves the choice.

A0 B =CSP2(Stop NANB V Choice(A,B) V Choice(B,A))

Choice(C,R) = C A (R A NOEVTS:; ( nes it v ok ))
Predicate Choice(C, R) describes the circumstances where action C' has been
chosen, whilst R has been refused, which occurs in situation where R has per-
formed no events. We capture these cases as follows: conjoin R with NOEVTS,
and follow it sequentially with some “end”-condition FE. All of this is conjoined
with C to give

C AN (RN NOEVTS; E)

i.e an execution of C' consistent with R having done no events, and then ending
in the situation described by E.

Now we can characterise three possible cases were C either: (i) performs an
event after a delay: £ = IMMEVTS); (ii) terminates without performing any
events: E = slots = slots’ A —wait’ or (iii) diverges but performs no event:
E = slots = slots’ A —ok’.

The parallel composition A [sa | { ¢s [} | sg] B runs A and B in lock-
step parallel (clock ticks at same time for both), with both actions required to
synchronise on any channels mentioned in ¢s. Both actions run on local copies
of the variables and are only allowed to modify those variables in their disjoint
permission sets (sa for A, sg for B). The construct terminates when both actions

2A0B = AAB<Stop> AV B



have terminated — if one ends early then its behaviour is padded out with empty
slots. If s4 and sp overlap, or A (B) assigns or inputs into variables not in s
(sB), then the construct is ill-formed. At present, we do not consider shared-write
access to variables as constituting a healthy or well-formed process. The reason
for this restriction is that reasoning about parallel processes with global shared
variables is a complex business [WHO02]. There is of course scope for investigating
more liberal forms of parallel composition, but that is left for future work.

The definition of parallel composition (for well-formed compositions) is large
but conceptually straightforward:

Allsal{eslt|sp] B=3obsa,obsg e Alobsa/obs’] A Blobsg/obs'] A
ok’ = oka A okp N
wait’ = (waita V waitg) A
ValidMerge(cs)(slots, slots’, slotsa, slotsg) A
(waity = fslotsa > fslotsg) A
(waitg = slotsa < tislotsg) A
(—wait’ = state’ = (statea—sp) ® (stateg—s4))

Both actions are running on local copies of observation variables A[obsa/obs’] A
Blobsp/0bs’] and the outcome is determined as an appropriate merge of these:
The composition is stable if both A and B are, and is waiting if either action
is. The resulting slots are a valid merge of compatible slot-sequences from each
action. If an action is still waiting for events then it has seen at least as many
clock ticks as the other process (which may have terminated). When the whole
construct has terminated, the final state’ value is determined by merging the
changes from each side.

ValidMerge : PE — ((S E)")* = B
ValidMerge(cs)(s, s',s0,51) = (8"~ s) € TSync(cs)(s0 N 5), (51~ 8))

Merging the traces of parallel actions is captured by a predicate (ValidMerge)
that asserts that the final slots execution (slots’ ~\ slots) is a member of all
the valid ways in which the two actions slots can be merged, taking the syn-
chronisation sets c¢s into account (7'Sync). The TSync function returns all the
possible fusings of two slot-sequences, slot-by-slot, with individual slots merged
using SSyne, the history-specific synchronisation parameter (see Fig 4). If one
slot sequence is shorter than the other, then the shortest is padded out with null
slots.

Our semantics, and that of CTA, differs here from that of timed-CSP [Sch00].
There Skip need not terminate immediately, but can delay, so facilitating the
following law:

(a — Skip || Skip) = a — Skip

The same law holds for slotted-Circus, even though Skip terminates immediately,
because the singleton slots-sequence for the righthand Skip is padded out by the
definition of parallel, to match that of the lefthand action as it waits for, and



Wait n O Wait n +m = Wait n
(Skip O (Wait n; P)) = Skip, n >0
(¢ — P) O (Wait n; (¢ — P)) =(c— P)
StopO A=A
(¢ — Skip) \ {c} = Skip

Fig. 5. (Some) Laws of slotted-Circus

eventually performs the event a.

I e A[s'/slots’] A
A\ H=R3 slots’ ~\ slots = map(SHide(H))(s' ~x slots) | ; Skip
A H C () Refs(s' ~ slots)

The hiding operator A \ H denotes an execution of action A, but with any
events in event-set H hidden. The last assertion above about H and Refs(...)
is implied by the definition of SHide, but is useful for proofs to have stated
explicitly here. It has the effect of forcing a key properting of hiding, namely
that of mazimal progress, i.e. hidden events occur as soon as they are enabled.
Without this semantic feature the following undesirable law would hold:

(a — Skip) \ {a} = WaitON Wait1 M ..M Waitn M ...

This law is undesirable because it makes the performance of a single hidden event
followed by termination equal to a wait for an arbitrary number of clock cycles
— effectively a weak form of livelock. By forcing hidden events to be refused
during every slot, we prevent them from waiting for a clock-tick, because the
definition of prefix action requires events not to be refused when waiting. This
results in the desired law, namely

(a — Skip) \ {a} = Skip

At the end we add Skip to unconstrain the refusals set of the last slot.

6 Laws

The language constructs displayed here obey a wide range of laws, many of which
have been described elsewhere [HH98, WC01, SH02, She06] for those constructs
that slotted-Circus shares with other related languages like CSP or Circus(e.g.
non-deterministic choice, sequential composition, conditional, guards, STOP,
SKIP). Here we simply indicate (Fig.5) some of the laws that are peculiar to
slotted- Circus, or whose proof was a challenge. The first law is a consequent of
the fact that external choice treats termination as an “event” that can resolve
an external choice. The proof of the latter two laws forced a lot of the design
of the details of the semantic model described here. The definition of external
choice and the its properties lead to the discovery of the state visibility issue



addressed in [GBWO09]. The last law vindicates the semantic choice (used here,
in CTA, and Timed-CSP) that entangles refusals up with the individual slots,
rather than keeping them seperate from the event history, as in the Fuailures
model of CSP [Ros97].

The proof of (¢ — Skip) \ {c¢} = Skip was long and difficult, based on a
large range of properties from the very top level (healthiness conditions and
circus specific actions), to a very low level, that of a single slot. The whole proof
is roughly sixteen pages and for that reason we leave it to a technical report
[BG09]. What makes this law special is that interaction between hiding and
communication is the only place where refusals influence the behavior of the
action and is actually responsible for a set of accepted traces. This can been
seen by considering the following lemma which forms the core of the proof:

(WTC(c); TRMC(c)) A c € ﬂ Refs(slots’ ~\ slots)
= TRMC(c) N c € ﬂ Refs(slots’ ~\ slots)

Predicate WT'C(c); TRMC(c) is a part of the prefix definition which describes
a situation where the action waited (for zero or more clock ticks) to perform
¢, and then did so. During the waiting period, ¢ was not being refused. By
contrast, the predicate ¢ € () Refs(slots’ ~\ slots) comes from the definition of
hiding and requires that ¢ be refused during any slots that have occurred. The
only observations that satisfy both these requirements are ones where no clock
ticks occur and communication is immediate, i.e TRMC(C).

7 Related Work

In addition to the work done on state-rich reactive processes in UTP [OCW09]
there has been attention paid to merging state and concurrency by others. The
implementors of occam [SGS95] had to deal with the integration of state with
its concurrency aspects, those being derived from CSP. An early integration
of state and concurrency was the work on joining Object-Z and CSP [SDO01],
which was then followed up with real-time extensions [Smi02]. However these
languages are very much at the specification level, with no explicit notion of
assignment or global shared variables, as Object-Z schemas are interpreted as
message-passing objects, so the concerns of this paper do not arise. The work on
unifying CSP and B [But00] looks at linking the process of CSP with the actions
of B. However while it converts CSP-like descriptions of behaviour into B state-
machines, it has concept, at the CSP level of assignment to variables. Taking the
denotational semantics of CSP and merging it with the algebraic semantics of
CASL has resulting in a “data-rich’ process algebra called CSP-CASL [Rog06].
Here the richness of CASL datatypes is made available for use as the types of
values transmitted over communications channels. However there is no notion of
state update through assignment in the theory.

A UTP semantics for Timed Communicating Object-Z (TCOZ [MDO00]) is
given in [QDCO03]. The theory presented there has a communication component



which is a variant of He and Sherif’s CTA [SH02], with a richer notion of event
that differentiates between interprocess communication, and the interaction of
the environment with sensors and actuators. Like the CTA semantics, it embeds
R3 into the definition of sequential composition, and defines communication to
only assert the state is unchanged when communications has completed. Again
“active objects” in TCOZ have their variable-state encapsulated. However TCOZ
has an asynchronous interface mechanism of sensors and actuators, with the
actuators linking a local variable to a global one. This mechanism can be used
for internal communication as well as with the external environment.

8 Future Work

In [BSWO07] we described a number of different ways to instantiate event histories
within a time-slot, including:

— CTA: histories are just events sequences (essentially the CTA theory [She06]).

— MGSA: histories are multisets or bags, so ordering within a slot is irrelevant

— SCSP: histories are simple event sets — however these fails to satisfy the
required laws on which the theory depends.

An important aspect that has yet to be covered is what distinguishes the various
instantiations from one another, i.e. how do the laws of C7A differ from those
of MSA, for instance. We know for example that the following is not a law of
MGSA, but does apply in CTA:

(a—b—P)|| (b —a— P)= Stop

In MS&A the deadlock can be avoided if both a and b occur in the same time-slot.

Another key concept, which has guided the precise form of the definition
of external choice, is that of modelling priority among choices, which makes
sense in a slotted-theory because we have a deadline (next clock-tick) against
which any priority resolution scheme can operate. We plan to explore schemes
to give semantic support to prioritised choice by appropriate modifications to
the external choice definition. Interestingly, early indications are that a notion
of priority will work in the MSA instantiation, but not the C7A incarnation !

Also worthy of exploration are the details of the behaviour of the Galois
links [HH98, Chp 4] between different instances of slotted-Circus, and between
those and standard Circus. These details will provide a framework for a com-
prehensive refinement calculus linking all these reactive theories together. The
goal is a scheme whereby Circus is a specification language and slotted-Circus is
a refinement stage, on the way to a hardware implementation.

9 Conclusions

A denotational semantics for slotted-Circus has been presented, backed up by a
techreport giving fuller details[BG09]. The general layers of the theory have been



shown along with higher level building blocks used for defining the semantics.
The key result presented here is a comprehensive semantics of the entire language
that addresses various semantics issues that have been uncovered whilst laying
foundations for future extensions, particularly towards prioritized choice.

A disadvantage of UTP is that some of the key proofs can be quite long and
involved, as seen in the discussion regarding the hiding law. However, UTP also
brings certain key advantages, which for our purposes outweigh this disadvan-
tage:

— We are involved in a program of semantics unification — in this case bringing
together Circus(itself a Z/CSP fusion), with related timed languages that
combine both state and concurrency with message passing (CTA, Handel-
Q).

— Whilst standalone semantic models for each of the above are simpler, con-
necting them together formally is not.

— UTP is a common semantics foundation framework that supports both the
merging of theories and the formal linking of them: given a predicate linking
the observations of two different theories, the derivation of a galois connec-
tion putting them together in a refinement relationship is almost automatic
[HH98, pp40-41]

The pain of developing formal models of languages, already well understood and
formalised by other means, is, in our opinion, rewarded by the ease with which
their formal interrelationships can then be explored.

Finally, the need to explicitly identify healthiness conditions, rather than
have them emerge implicitly from the structure of a tailored semantic domain,
seems to us to provide key comparative insights into the nature of languages
under study.

The large amount of hand-proving involved has thrown the need for tool-
support into sharp relief. This is exacerbated by the additional complexity that
arises once time is added to the theory.
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