
An Executable Calculus for Service Choreography

Paolo Besana1 and Adam Barker2

1University of Edinburgh, 2University of Melbourne

Abstract The Lightweight Coordination Calculus (LCC) is a compact
choreography language based on process calculus. LCC is a directly ex-
ecutable specification and can therefore be dynamically distributed to a
group of peers for enactment at run-time; this offers flexibility and allows
peers to coordinate in open systems without prior knowledge of an inter-
action. This paper contributes to the body of choreography research by
proposing two extensions to LCC covering parallel composition and cho-
reography abstraction. These language extensions are evaluated against
a subset of the Service Interaction Patterns, a benchmark in the process
modelling community.

1 Introduction
A core challenge in today’s ever connected world is in combining distributed
resources on-demand to perform coordinated tasks. Coordination of distributed
resources can be achieved through the use of workflow technologies. Workflow
specifications defined using standard orchestration languages such as the Busi-
ness Process Execution Language1 typically facilitate statically defined work-
flows to be enacted by a centralised workflow engine. The resulting workflow
specifications can be brittle due to the highly dynamic nature of distributed
resources and scalable only to a point [1]. Dynamic composition of resources
around tasks can address these issues.

The OpenKnowledge project2 has produced a framework providing the mid-
dleware that assorted peers can use to interact within an open system. Peers in-
teract following protocols, named interaction models, that define their externally
observable behaviours. These protocols provide a global view of the interactions,
and therefore fit into the definition of choreography, as opposed to the one of or-
chestration, considered to be a description of coordination from the perspective
of a single process. The protocols are written in the Lightweight Coordination
Calculus (LCC), a compact choreography language based on process calculus.

This paper introduces the LCC syntax, corresponding OpenKnowledge frame-
work (Section 2) and discusses its current limitations and possible workarounds
(Section 3). We propose two extensions to the LCC language (Section 4) and
evaluate these changes by analysing the representations of two interaction pat-
terns (Section 5). Related work is discussed (Section 6) in the context of our
language extensions. Finally our contributions are summarised (Section 7).
1 www.oasis-open.org/committees/wsbpel/
2 www.openk.org/



2 OpenKnowledge and LCC
The OpenKnowledge kernel [7] has been designed with the goals of light weight-
ness and compactness. The core concept is the set of shared interaction models,
enacted by participants, called peers, that play roles within them. Interaction
models are written in the Lightweight Coordination Calculus (LCC) [5], a com-
pact, executable choreography language based on process calculus.

An interaction model in LCC is a set of role clauses. Clauses can refer to
entry-roles, which participants initially assume, and auxiliary-roles, that can be
reached only from other roles. Participants in an interaction take their entry-
role and follow the unfolding of the clause specified using a combination of the
sequence operator (‘then’), or choice operator (‘or’) to connect messages and
changes of role. A participant can take several roles during an interaction and
can recursively take the same role (for example when processing a list). Messages
are either outgoing to (‘⇒’) or incoming from (‘⇐’) another participant in a
given role. Message input/output or change of role is controlled by constraint
satisfaction.

a(auctioneer(Product, Bidders), A) ::
a(caller(Product, Bidders), A)
then a(waiter(Bidders, curwinner(nul, 0), Winner)
then sold(Product, Price)⇒ a(bidder, WB)← curwinner(WB, Price) = Winner

a(caller(Product, Bidders), A) ::
null← Bidders = [] %no bidders left

or

(
invite_bid(Product)⇒ a(bidder, BH)← Bidders = [BH|BT]
then a(caller(Product, BT), A) % recursion

)
a(waiter(Bidders, Bids, curwinner(WinBidder, WinBid), Winner) ::
null← allarrived(Bids, Bidders) and Winner = curwinner(WinBidder, WinBid)
or null← timeout() and Winner = curwinner(WinBidder, WinBid)

or

bid(Offer)⇐ a(bidder, B) then(
a(waiter([B|Bidders], curwinner(B, Offer), Winner)← Offer > WinBid

or a(waiter([B|Bidders], curwinner(WinBidder, WinBid), Winner)

)
or a(waiter(Bidders, curwinner(WinBidder, WinBid), Winner)← sleep(1000)

a(bidder, B) ::
invite_bid(Product)⇐ a(caller, A)
then bid(Product, Offer)⇒ a(caller, A) ← bid_at(Product, Offer)
then sold(Product, Price)⇐ a(auctioneer, A)

Figure 1. Auction protocol, % represents a comment.

Figure 1 shows an interaction model for an auction. The interaction starts
with the auctioneer role that receives the product to sell and the list of bidders
as an input parameters. It immediately changes its role to caller passing in
the list of bidders and the product to sell. The caller recurses over the list of



bidders in Bidders. If the list of peers is empty, it returns to the calling role;
otherwise, it sends the invite_bid message to the peer at the head of the list
and recurses over the remaining peers. Once all the messages are sent, the peer
takes the waiter role, passing the list of bidders. The parameter Winner is an
output parameter, and its value is set when the role waiter ends. The waiter
role first checks if all the replies have arrived or if the period has timed out: if
one of these two conditions is true, then it assigns the current winner as the final
winner. Otherwise, it checks if there is a message in the incoming queue. If there
is an offer and it is higher than the current highest offer, it recurses making the
current bidder the current winner, otherwise it simply recurses. If there is no
offer in the queue, then it waits for a second and recurses.

Symmetrically, the bidder receives the request to bid, and sends the offer.
It may then receive the sold message if the offer was successful. If unsuccessful,
the framework will signal the end of interaction. Through this pattern (an imple-
mentation of the synchronisation pattern [6]) asynchronous message reception
is possible: messages are received in any order, and bidders act independently.

3 Limitations
While developing interactions for the various scenarios, we encountered limit-
ations in the current version of OpenKnowledge. It was often possible to find
workarounds but these ad-hoc solutions lacked generality and clarity. The limit-
ations can be divided in two categories: design and execution. We will describe
two design-time limitations: the impossibility of representing different levels of
abstraction in a clean way and the lack of a parallel operator.

In LCC, a single interaction model includes all activities and messages at all
levels of abstraction. The only abstraction available is provided by roles, that
have to belong to the same interaction model. One possible work-around, applied
in various cases in the testbeds used for evaluating OpenKnowledge [8], is for a
peer to start a new interaction from within a constraint. However, this solution
has two drawbacks: starting a new interaction is the action of single peer, of which
other peers are not aware. This makes it hard to include participants involved
in the first interaction into the sub-interaction. It is also a brittle solution, as it
is not possible to specify how constraints are solved by peers.

Another important limitation is the lack of a parallel operator. Parallel oper-
ations, as described in the parallel split pattern [6], can be obtained by sending
a sequence of messages to a set of roles waiting for them. Sending a message
is a non-blocking operation (we saw before that it requires only to insert the
message in a queue) so, from the perspective of the auctioneer, the operations
in the bidders are started nearly simultaneously. In the example the replies from
the bidders are merged back by the waiter role.

However, in this specific case we know the number of parallel operations (that
is, the number of bidders) before the start of the interaction. In the general case
it is not possible to know in advance how many parallel operations need to be
performed: if peers have to be bound to these roles in advance it is not possible
to increase their number once the interaction has started. Moreover, it may not
be clear who should perform these roles.



4 Proposed Design Extensions
4.1 Scene Operator

To address the lack of an abstraction mechanism and to maintain at the same
time clarity at design-time, we introduce the concept of scenes, which are ab-
stractions of interaction models. In turn interaction models implement scenes.
We also introduce the new operator scene(scenename, role), that defines the
execution of a role in another scene.

a(auctioneer(Product), A) ::
a(caller(Product, Bidders, Winner), A)← getPeers(“bidder”, Bidders)
then sold(Product, Price)⇒ a(bidder, WB)← curwinner(WB, Price) = Winner

then scene(payment, a(payee(Price), A))

a(bidder, B) ::
invite_bid(Product)⇐ a(caller, A)
then bid(Product, Offer)⇒ a(caller, A) ← bid_at(Product, Offer)
then sold(Product, Price)⇐ a(auctioneer, A)
then scene(payment, a(payer(Price), B))

Figure 2. Extending the auction with scenes.

An interaction models makes no assumption of how the scene will be per-
formed: the operation has to be matched to another interaction model imple-
menting the scene. This has to be performed by the enactment framework. A
scene can succeed or fail, like a standard interaction model. Figure 2 shows how
the auction protocol could be modified to include scenes. Once the winning bid-
der has been alerted, both the auctioneer and the bidder go into the payment
scene, respectively in the payee and payer roles. The requirement is that all
the peers in the calling interaction model that have encountered the same scene
invocation are registered to participate in the run of the matched interaction
model. The new scene can also include other roles and other participants. The
addition of scenes does not influence the correspondence between LCC and π-
calculus: at run-time the operation is equivalent to a normal role change. What
changes is how the role is located and matched.

The use of scenes allows the creation of hierarchies of scenes at different
levels of abstraction, in which the root is itself a scene. At each level, scenes are
implemented by interaction models, that can contain other scenes, implemented
by further interaction models and so forth.

4.2 Parallel Operator

The parallel operator we introduce here focuses around the operation of role
change. While in the current version of LCC the role change operator inside
a clause is always a sequential operation, we distinguish between two different
role calls, one for blocking and one for non-blocking execution of a role clause:
b:a(type,ID) and nb:a(type,ID).



The current role call is blocking: the execution of the calling role is halted,
the called role is executed, and when it terminates the caller resumes. The non-
blocking call corresponds to spawning a new role in a parallel process: a role
can spawn a new role, executed by the same peer. The spawned process has its
own process identifier and its own incoming and outgoing message queues, like
a normal participant.

a(auctioneer(Product, Time), A) ::
b : a(caller(Product, Bidders), A)← getPeers(“bidder”, Bidders)
then nb : a(timer(Time), G) then

then b : a(waiter(Bidders, curwinner(nul, 0), Winner)
then sold(Product, Price)⇒ a(bidder, WB)← curwinner(WB, Price) = Winner

a(timer(Time), T) ::
timeout⇒ a(waiter, A) ← wait(Time)

a(waiter(Bidders, Bids, curwinner(WinBidder, WinBid), Winner) ::
null← allarrived(Bids, Bidders) and Winner = curwinner(WinBidder, WinBid)

or
(
bid(Offer)⇐ a(bidder, B) then . . .

)
or timeout⇐ a(timer, T)

Figure 3. Auction interaction model with timer role.

While in a blocking call, it is possible to have both input and output para-
meters; in non-blocking calls, to avoid concurrency issues in accessing the para-
meters, the called role can only have input parameters. In the blocking role call
the variable containing the process identifier contains the caller process, while
in the non-blocking role call it is instantiated with the process identifier of the
newly created process. To avoid zombie processes, the spawned role maintains a
link with the spawner: if the spawner terminates, the spawned also terminates.

An interesting use of the parallel role is for timers. Using a parallel operator
the auctioneer can start a parallel timer role that waits a finite amount of time
and then sends a message. For instance, in Figure 3 the auction protocol is
modified to include a timer, that after a fixed amount of time sends a message
to the waiter. The waiter receives the message if some bidder has not replied
before the deadline.

5 Evaluation

In order to evaluate our proposed extensions, we discuss how a subset of the
interaction patterns described in [3] can be represented in the extended version
of LCC. While all patterns that use time-frames can benefit from the intro-
duction of the non-blocking role change, we will analyse in detail two of these
patterns: the one-from-many receive and the one-to-many send/receive, as their
representation most benefits from its introduction.



5.1 One-from-many receive

A party receives several related messages from autonomous events at different
parties. Correlation of messages should occur within a time-frame. The number
of messages may not be known at design or run-time [3].

a(receiver(Gs), R) ::

msg(X)⇐ a(customer, C)
then b : a(findgroup(Gs, X, G)
thennull← isStopCondition(G)

then nb : a(groupHandler(G), GH)
then b : a(receiver(NewGs), R)
← subtract(G, Gs, NewGs)




ortimeout(G)⇐ a(timer, T)

then b : a(groupTimeout(G), R)
then b : a(receiver(NewGs), R)

← subtract(G, Gs, NewGs)



a(findgroup(Gs, X, G), R) ::(
null← Gs = [] and newGroup(X, G)
then

nb : a(timer(G, R), T)

)
or

null← Gs = [G|GT]
then(
null← inGroup(X, G)
then

null← addToGroup(X, G)

)
or

b : a(checkgroup(GT, X, G)


a(timer(Group, Rx), T) ::
null← wait(Time)
then timeout(Group)⇒ a(receiver, Rx)

Figure 4. One-from-many receive implementation in LCC.

The solution is to create separate processes for each time-frame, for handling
the proceeding after the stop condition, and using the central process for man-
aging the reception and the dispatch of messages in groups. Figure 4 shows the
implementation of the pattern using LCC. The receiver role is the recipient of
the message about an event X from a customer or of a timeout message from
a timer. When the message arrives, the peer in the receiver role first finds the
group corresponding to the event X using the auxiliary role findgroup. This role
recurses through the list of groups: at each recursion the membership of X to the
current group is checked. If the corresponding group is found, it is returned in
the output parameter G. If no group is found, a new group is created and a new
parallel role timer is spawned. Back to the main role receiver, if the group is in
stopCondition (sufficient messages have been received), a new role is spawned
for handling the group. This role (not listed here) could contain the reference to
a new scene that all the senders should perform. If a timeout message is received,
the receiver takes the groupTimeout role. The role is not listed, but we assume
a message is sent to every sender in the group to inform them of the timeout.

5.2 One to many send/receive

A party sends a request to several parties. Responses are expected within a time-
frame and some parties may not respond. The number of parties may not be
known at design time and the responses need to be correlated to their request [3].



Sending the requests is handled easily using the original LCC and a pattern
similar to the one used in the auction protocol by the waiter role. The second
part is difficult and clumsy to represent using the original LCC syntax. Using
the non-blocking call we can write compact code, as it is shown in Figure 5.

a(caller(Rs), D) ::
null← Rs = []
or(

(nb : a(invoker(R), C)← Rs = [R|RT]
then b : a(caller(RT), D)

)
a(invoker(R), C) ::
msg(X)⇒ a(remote, R)
then nb : a(timer(T, C), Z)
then(

reply(Y)⇐ a(remote, R)
or timeout()⇐ a(timer, Z)

)
Figure 5. One to many send/receive implementation in LCC.

The peer in the caller role recurses over a list of recipients and spawns a
new role invoker for each message to be sent. The invoker role, initialised with
the identifier of the remote peer to contact, sends the message to the peer, spawn
a timer role for the timeout and then waits for the reception of either the reply
from the remote peer or a timeout from the timer process.

6 Related Work

There are relatively few languages targeted specifically at service choreography,
for a survey refer to [2][1]. The most widely known are:
• WS-CDL [9] or the Web Services Choreography Description Language is

the proposed W3C standard for service choreography. WS-CDL has native con-
structs supporting the functionalities provided by the extensions described in
this paper, that is a mechanism for dealing with complex interactions and sup-
port for parallel operations. A package in WS-CDL can contain more than a
single choreography. The perform activity can be used to launch other choreo-
graphies sharing variables between the caller and the called choreography. It also
has a specific <parallel> construct.
• Let’s Dance [10] is a language that supports service interaction modelling

both from a global and local viewpoint. In a global (or choreography) model, in-
teractions are described from the viewpoint of an ideal observer who oversees all
interactions between a set of services. Local models, on the other hand focus on
the perspective of a particular service, capturing only those interactions that dir-
ectly involve it. Let’s Dance supports parallel operations with a specific operator
for repeated interactions; it does not provide a mechanism for abstraction.
• BPEL4Chor [4] is a proposal for adding an additional layer to BPEL to shift

its emphasis from an orchestration language to a complete choreography lan-
guage. BPEL4Chor is a collection of three artifact types: participant behaviour
descriptions, participant topology and participant groundings. In BPEL4Chor it
is possible, using an attribute, to define repeated interactions as parallel. It does
not provide mechanisms for abstraction.



7 Conclusions
OpenKnowledge and LCC have been deployed in various scenarios, such as bio-
informatics, emergency response simulation and health informatics. The extens-
ive use (more than 200 different interaction models) has highlighted some of
the limitations of the language and of the framework. In this paper we have
analysed two limitations encountered in designing interactions: the lack of an
abstraction mechanism to separate different levels of detail and the lack of a
parallel operator.

In order to address these limitations, this paper proposed two extensions
to LCC. The first is the introduction of the concept of scenes: a scene is an
abstraction of an interaction model. The second is the introduction of a non-
blocking role invocation, that allows the creation at run-time of new processes
performing roles. The evaluation has shown that the new extensions allow a
cleaner representation of service interaction patterns.

References

1. A. Barker, P. Besana, D. Robertson, and J. B. Weissman. The Benefits of Service
Choreography for Data-Intensive Computing. In Proceedings of CLADE ’09, pages
1–10. ACM, 2009.

2. A. Barker and J. van Hemert. Scientific Workflow: A Survey and Research Dir-
ections. In R. Wyrzykowski and et al., editors, Seventh International Conference
on Parallel Processing and Applied Mathematics, Revised Selected Papers, volume
4967 of LNCS, pages 746–753. Springer, 2008.

3. A. Barros, D. M, and A. ter Hofstede. Service Interaction Patterns. In BPM 2005,
pages 302–318. Springer, 2005.

4. G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4Chor: Extending BPEL
for Modeling Choreographies. In Proceedings of IEEE ICWS 2007, pages 296–303.
IEEE Computer Society, July 2007.

5. D. Robertson, C. Walton, A. Barker, and P. Besana et al. Models of Interaction
as a Grounding for Peer to Peer Knowledge Sharing. Advances in Web Semantics
I: Ontologies, Web Services and Applied Semantic Web, 4891/2009:81–129, 2009.

6. N. Russell, A. ter Hofstede, W. van der Aalst, and N. Mulyar. Workflow Control-
Flow Patterns: A Revised View. Technical Report BPM-06-22, BPM Center, 2006.

7. R. Siebes, D. Dupplaw, S. Kotoulas, A. P. de Pinninck, F. van Harmelen, and
D. Robertson. The OpenKnowledge System: An Interaction-Centered Approach
to Knowledge Sharing. In Proceedings of CoopIS, 2007.

8. G. Trecarichi, V. Rizzi, L. Vaccari, M. Marchese, and P. Besana. OpenKnow-
ledge at Work: Exploring Centralized and Decentralized Information Gathering in
Emergency Contexts. In ISCRAM 2009, 2009.

9. W3C. Web Services Choreography Description Language Version 1.0.
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/, November 2005.

10. J. M. Zaha, A. Barros, M. Dumas, and A. ter Hofstede. Let’s Dance: A Language
for Service Behaviour Modeling. In OTM 2006, volume 4274 of LNCS, pages 145–
162. Springer, 2006.


