
CLON: Overlay Networks and Gossip Protocols
for Cloud Environments∗

Miguel Matos1 António Sousa1 Jose Pereira1

Rui Oliveira1 Eric Deliot2 Paul Murray2

1 Universidade do Minho, Braga, Portugal
{miguelmatos,als,jop,rco}@di.uminho.pt

2 HP Labs, Bristol, United Kingdom
{eric.deliot,pmurray}@hp.com

Abstract

Although epidemic or gossip-based multicast is a robust and scalable approach
to reliable data dissemination, its inherent redundancy results in high resource con-
sumption on both links and nodes. This problem is aggravated in settings that have
costlier or resource constrained links, as happens in Cloud Computing infrastruc-
tures composed by several interconnected data centers across the globe.

The goal of this work is therefore to improve the efficiency of gossip-based
reliable multicast by reducing the load imposed on those constrained links. In
detail, the proposed CLON protocol combines an overlay that gives preference to
local links and a dissemination strategy that takes into account locality. Extensive
experimental evaluation using a very large number of simulated nodes shows that
this results in a reduction of traffic in constrained links by an order of magnitude,
while at the same time preserving the resilience properties that make gossip-based
protocols so attractive.

1 Introduction
Cloud Computing is an emerging paradigm to deliver IT services over the Internet,
ranging from low level infrastructures, to application platforms or high level applica-
tions. It promises elasticity, the ability to scale up and down according to demand, and
the notion of virtually infinite resources in a pay-per-use business model.

However there are several pending issues to solve in order to consolidate this
paradigm, such as availability of service, data transfer bottlenecks and performance
unpredictability [3]. Another crucial issue is the management of the underlying in-
frastructure as the Cloud provider needs to be able to properly meter, bill, and abide
by the Service Level Agreements of its customers among other essential management
operations.

The ongoing Dependable Cloud Computing Management Services project [1] aims
to offer strong low levels primitives in order to leverage the management of Cloud in-
frastructures. We identified Reliable Multicast as an important building block to the

∗This work is supported by HP Labs Innovation Research Award, project DC2MS (IRA/CW118736).
The original publication is available at www.springerlink.com.

1

http://www.springerlink.com/content/3854045244375306/

management of such infrastructures as it offers strong abstractions on top of which
other essential services could leverage such as data aggregation, consensus and the dis-
semination of customer-related information. Unfortunately, due to the characteristics
of a typical Cloud scenario, existing proposals are not able to properly address the
problem of reliable dissemination in a highly scalable and resilient fashion. This is
due to the underlying network infrastructure and to the assumptions and requirements
about the dynamics of the environment.

The Cloud infrastructure is composed by several data centers spread worldwide
and organized in a federation. The members of the federation are interconnected by
long-distance expensive WAN links with high aggregate bandwidth demands, while
the links that internally connect its components typically have less stringent require-
ments. The communication demands intra-data center and inter-data center are very
different, both in terms of latency and bandwidth required to provide a reliable service,
and in the need of timeliness of information available across the federated infrastruc-
ture. In a smaller scope, this can be also observed in the architecture of a single data
center, as collections of nodes are also grouped in a federated manner. The increasing
aggregate bandwidth demand could be alleviated, but not solved, by using a fat tree
network layout [2], where leaf nodes are grouped in a way to mitigate the load imposed
on the individual network devices, while at the same time providing transparent load
balancing and failover capabilities among those devices.

On the other hand these scenarios are highly dynamic with nodes constantly join-
ing and leaving the system due to failures or administrative reasons, and as such the
assumption of a stable system does not hold. In fact in systems of this scale, failures
are commonplace as has been presented in [19], which studies the pattern of hard drive
disk failures in very large scale deployments.

The goal of this paper is therefore to build a reliable multicast service that is able
to cope with the requirements of a cloud environment, namely its massive scale, the
dynamics of the infrastructure where nodes constantly join and leave the system, the
inherently federated infrastructure where the aggregate bandwidth requirements vary
considerably, while offering strong reliability even in the presence of massive amounts
of failures, as demanded by an infrastructure that needs to run 24/7. This is addressed
at two distinct levels: the Peer Sampling Service which follows a flat approach that
does not rely on special nodes or global knowledge but instead takes into account lo-
cality at construction time; and the dissemination protocol, which is also locality aware
and can be configured to clearly distinguish between transmission to remote or local
neighbors. By disseminating on top of the right overlay, and carefully choosing which
strategy to use on a per node basis, we are able to reduce bandwidth consumption on
undesirable links without impairing the resilience and reliability of both the overlay
and the dissemination.

The rest of this paper is organized as follows: Section 2 introduces the concepts
used throughout the paper; Section 3 describes existing protocols, how they relate to
our work and why they fail do meet the requirements pointed above; Section 4 presents
our proposal to address the aforementioned problems; Section 5 describes the experi-
mental evaluation conducted and finally Section 6 concludes the paper.

2 Background
Reliable Multicast is an important building block in distributed systems, as it offers a
strong abstraction to a set of processes that need to communicate reliably. The overlay

2

is a fundamental concept to Reliable Multicast as it abstracts the details of the under-
lying network by building a virtual network on top of it, which can be seen as a graph
that represents the ’who knows who’ relationship among nodes.

To construct those overlays two main approaches exist: structured and unstruc-
tured protocols. The former is frugal in resource consumption of both nodes and links,
but is highly sensitive to churn. This is because the overlay is built as a spanning
tree that takes into account optimization metrics such as latency or bandwidth that is
built before-hand and thus can take advantage of nodes and links with higher capacity.
However, due to this pre-building, upon failures the tree must be rebuilt, precluding
the dissemination while this process takes place. As such, in highly dynamic environ-
ments where the churn rate is considerable, the cost of constantly rebuilding the tree
may become unbearable. Furthermore, nodes closer to the root of the tree handle most
of the load of the dissemination thus impairing scalability. On the other hand, in the
unstructured approach links are established more or less randomly among the nodes,
without any efficiency criteria. Thus, to ensure that all nodes are reachable, links need
to be established with enough redundancy, which has a significant impact on the over-
lay. First, as the overlay is redundant each node receives multiple copies of a given
message through its different neighbors due to the existence of multiple implicit dis-
semination trees. While this is undesirable from an efficient resource usage point of
view, it yields strong properties: reliability, resilience and scalability. The first two
come naturally from to the inherent redundancy in the establishment of links: as there
are multiple dissemination paths available, failure does not impair the successful deliv-
ery of a given message as it will be routed by some other path. Furthermore, as there is
no implicit structure on the overlay the churn effect is mitigated as there is no need to
global coordination or rebuilding of the overlay. By requiring each node to know only
a small subset of neighbors the load imposed on each one in the maintenance of the
overlay and in the dissemination is minimized, which allows those protocols to scale
considerably.

The key overlay properties, according to [11] are: Connectivity, that indicates node
reachability and attests the robustness of the overlay; Average Path Length, that is the
average number of hops separating any two nodes and is related to the overlay diameter;
Degree Distribution, which is the number of neighbors of each node, and measures a
node reachability and its contribution to the connectivity; and Clustering Coefficient,
which measures the closeness of neighbor relations, and is related to robustness and
redundancy.

The mechanism used to construct the overlay in the unstructured approach is known
as the Peer Sampling Service [11], and several works before have focused on building
such a service in a fully decentralized fashion [8, 16, 20, 14, 15, 9]. With the abstrac-
tion provided by the Peer Sampling Service, peers wishing to disseminate messages,
simply consult the service to obtain a subset of known neighbors, and forward those
messages to them.

Dissemination on top of unstructured overlays typically uses the epidemic or gossip-
based approach. This approach relies on the mathematical models of epidemics [4]: if
each infected element spreads its infection to a number of random elements in the uni-
verse, then all the population will be infected with high probability. The amount of
elements that need to be infected by a given element - the fanout - is a fundamental
parameter of the model, below that value the dissemination will reach almost none of
the population, and above it it will reach almost all members. The gossip process, i.e.
the decision of when and how to send the message payload to the neighbors may follow
several approaches [13], which we describe next. The most common gossiping strategy

3

is eager push, in which peers relay a message as soon as received to a number of targets
for a given number of rounds, and is used by several well known protocols [7, 12, 18].
The major drawback of this strategy is the amount of bandwidth required, as multi-
ple message copies are received by nodes. Oppositely, in lazy push, peers forward an
advertisement of the message instead of the full payload. Peers receiving the adver-
tisement could then ask the source for the payload, and achieve exactly once message
payload delivery. Assuming that the message payload tends to be much larger than an
advertisement with its id, this strategy drastically reduces the bandwidth requirement
of the previous strategy but increases the latency of the dissemination process, as three
communication steps are needed to obtain the payload. Furthermore, this also has an
impact on reliability as the additional communication steps increases the time window
to network and node faults. A different strategy relies on pulling, where nodes periodi-
cally ask neighbors for new messages. In the eager variant, when a node asks for news
to a neighbor, the latter will send all new known messages to the petitioner. In contrast,
in the lazy approach the node that receives the news request only sends new message
ids. The petitioner would then be able to selectively pull messages of interest.

The eager versus lazy strategy is clearly a trade-off between bandwidth and latency,
while the difference between a push and pull scheme is more subtle. In push, nodes
behave reactively to message exchanges, while on pull nodes behave in a proactive
fashion by periodically asking for news. Thus, in an environment where messages are
generated at low rates, a push strategy has no communication overhead, while the pull
approach presents a constant noise due to the periodic check.

3 Related Work
In this section we will briefly describe several unstructured overlay construction algo-
rithms, and analyse how they relate to our work.

Scamp [8] is a peer-to-peer membership service with the interesting property that
the average view size converges naturally to the adequate value by using local knowl-
edge only. This is achieved by integrating nodes in the local view with a probability
inversely proportional to the view size and by sending several subscription requests for
each node that joins the overlay. With this mechanism the protocol ensures that the
view size converges to (c + 1)log(N), where c is a protocol parameter related to fault
tolerance and N is the system size. As pointed by its authors, Scamp is oblivious to
locality and is a reactive protocol as it does not do any effort on the evolution of the
overlay.

Cyclon [20] is a scalable overlay manager that relies on a shuffling mechanism to
promote link renewal among neighbors. In opposition to Scamp, Cyclon is a proactive
protocol that continuously tries to enhance the overlay by means of periodic executions
of the shuffle mechanism. The shuffle operation is very simple: each peer selects a
random subset of peers in its local view and chooses an additional peer to which it will
send this set. The receiving node also selects a subset of known neighbors and sends
it to the initial node. After the exchange, each node discards set entries pointing to
themselves and includes the remaining peers on their views, discarding sent entries if
necessary. By including links in the exchange set accordingly to their age, the protocol
provides an upper bound on the time taken to eliminate links to dead nodes.

HyParView [14] also uses shuffling to build the overlay. However, each node main-
tains two views: a small active view with stable size used for message exchange; and
a larger passive view maintained by shuffling and used to restore the active view on

4

the presence of failures. By relying on a large passive view, the protocol is able to
cope with massive failures, and by using a small sized active view the redundancy of
message transmissions is reduced.

The Directional Gossip Protocol [15], aims at providing dissemination guarantees
in a WAN scenario. To accomplish this, the authors adopt a two-level gossip hierarchy:
the lower level runs a traditional gossip protocol in the LAN, and the other level is
responsible for gossiping among LANs, through the WAN links. The latter is achieved
by using gossip servers, for each LAN there is a selected gossip server that is inter-
nally seen as yet another process. When a server receives a message from its LAN, it
sends the message to the known gossip servers of the other LANs. When receiving an
external message, it disseminates the message internally using traditional gossip pro-
tocols. While this protocol achieves good results in the amount of messages that cross
WAN links, it relies on the undesirable selection of nodes with special roles, the gossip
servers.

The Localizer algorithm [16], builds on the work done in Scamp by constantly try-
ing to optimize the resulting overlay according to some proximity criteria. Periodically,
each node chooses two nodes randomly, computes the respective link cost and sends
those values to both. The receivers reply with their respective degrees and additionally,
one of the nodes sends the estimate cost of establishing a link with the other. The ini-
tiator locally computes the gain of exchanging one of its links with one between the
other nodes and, if desirable, the exchange is performed with a probability p, given by
a function which weights the trade-off between the closeness to an optimal configura-
tion and the speed of convergence. Localizer has not been deeply studied in presence
of high churn rates and requires the interaction among three nodes to work properly.

HiScamp [9], is a hierarchical protocol that leverages on the work done in Scamp,
by aggregating nodes into clusters according to a distance function. Joining nodes con-
tact a nearby node and, based on the distance function, either join an existing cluster
or start a new one. The protocol uses two views, an inView which is used to handle
subscriptions, and a hView used to disseminate messages. The hView has as many lev-
els as the hierarchy, where the lowest level contains gossip targets in the same cluster,
and the other levels contain targets on each hierarchy level. The inView has one lesser
level than the hierarchy, is common to all nodes in the same level, and contains all
nodes belonging to that level. Each cluster is seen as an individual abstract node on
the next level, and each level runs a Scamp instance that manages its overlay. To avoid
the single point of failure of having a single node representing a cluster, an algorithm
is run periodically to ensure that a given cluster is represented by more than one node.
HiScamp effectively reduces the stress imposed on long distance links, but at the cost
of decreased reliability.

Araenola [17] relies on the properties of k-regular graphs to build overlays with
a constant degree K. The protocol thus imposes a constant overhead on each node,
with low latency and high connectivity. A recent extension proposes a mechanism for
biasing the overlay to mimic a given network topology that works by finding nearby
peers and establishing additional links to them up to a certain protocol parameter.

Scamp, Cyclon and HyParView are flat protocols that do not take into account lo-
cality and therefore fail to cope with the requisite of distinguishing links characteristics.
This is important as we want to reduce the load imposed on the long-distance links that
connect the members of the federation to increase the aggregate bandwidth available
to them. Nonetheless they are highly resilient to churn and failures of links and nodes,
and address our reliability concerns. On the other hand, Localizer, Directional Gossip
and HiScamp are protocols that take into account locality and therefore are able to re-

5

duce the stress imposed on the long-distance links but unfortunately they are sensible
to churn and failures as the experimental evaluation of the respective papers attest. This
weakness precludes their use in scenario with requirements such as ours, and is due to
the reliance on nodes with a special role to handle locality. Upon failure of those nodes,
new nodes need to be selected for the special role to guarantee the connectivity of the
members of the federation. However, this is hard to achieve in a fully distributed and
dynamic environment as it requires some sort of distributed agreement to elect which
nodes are special. Even if the special nodes are chosen in a probabilistic fashion, it is
not clear how to get them to know each other and how to properly handle their failures,
as it will imply some a-priori knowledge of which nodes are on the other locations
of the federation to establish the long-distance links with them. Areanola relies on
post optimizations to the original overlay, and relies on the establishment of a constant
number of additional links to handle locality. While due to the properties of k-random
graphs the constant number of links of the base algorithm does not impair reliability, it
is not clear if this is the case in the network-aware extension.

There are other protocols [10, 6] that are able to manipulate the probabilities of
infecting neighbors based on metrics such as interests. However, due to this they do
not consider delivery of a message to all participants of the universe, and as such we
do not cover them in detail.

4 Clon Protocol
In this section, we describe our Reliable Multicast service, whose goal is to address
the reliability and resilience requirements of a Cloud scenario, while coping with its
aggregate bandwidth demands. Instead of starting with an hiearchical approach as the
ones presented above and improving its resilience to churn and faults, we rely on the
resilience of the unstructured flat approach and improve it to approximate the desirable
perfomance metrics, namely with respect to the bandwidth requirements on the costlier
long-distance links.

This is achieved at two distinct levels, the Peer Sampling Service and the dissem-
ination process. First, the peer sampling service builds an overlay that mimics the
structure of the underlying network but without relying on special nodes as in the ap-
proaches presented previously or in any type of global knowledge. With this approach
our protocol is able to tolerate considerable amounts of failures and be resilient to churn
as the traditional flat protocols. Finally, the dissemination protocol builds atop the
Peer Sampling Service and is responsible for the actual exchange of messages between
peers. This protocol supports different dissemination strategies, that could be used to
achieve different latency versus bandwidth trade-offs without endangering correctness.
Additionaly, the dissemination also takes into account locality further reducing the load
imposed on the costlier links.

4.1 Peer Sampling Service
The Peer Sampling Service uses the same philosophy of the Scamp [8] protocol, namely
the probabilistic integration of nodes and the injection of several subscription requests,
which allows the average node degree to adjust automatically with the system size.
However, instead of relying only on the view size of the node integrating the joiner,
the protocol relies on an oracle to manipulate the view size perceived by the integration

6

1 upon i n i t
2 c o n t a c t = g e t C o n t a c t N o d e ()
3 send (c o n t a c t , S u b s c r i p t i o n (mys e l f))
4
5 p roc h a n d l e S u b s c r i p t i o n (nodeId)
6 f o r n ∈ view
7 send (n , J o i n (nodeId))
8 f o r (i =0 ; i < c ; i ++)
9 n = randomNode (view)

10 send (n , J o i n (nodeId))
11
12 proc h a n d l e J o i n (nodeId)
13 keep = randomFloa t (0 , 1)
14 keep = Math . F l o o r (l o c a l i t y O r a c l e (v iewSize , nodeId)) ∗ keep)
15 i f (keep == 0) and nodeId /∈ view
16 view . Add (nodeId)
17 e l s e
18 n = randomNode (view)
19 send (n , J o i n (nodeId))

Listing 1: CLON protocol: Peer Sampling Service

routine. Thus, nodes could be integrated with different probabilities based on the local-
ity of the joiner, but nonetheless maintain the convergence and adaptability to varying
system sizes. In detail, the oracle should provide higher virtual view sizes to remote
nodes and therefore reduce their probability of integration, or lower virtual view sizes
to achieve the opposite result. By properly configuring the oracle it is possible to ma-
nipulate the views of the nodes in order to achieve desirable configurations, namely
have them know mostly local nodes and some remote nodes and thus bias the over-
lay to the underlying network topology. As all the nodes contribute to the network
awareness, the protocol retains its reliability in face of faults as it does not depend on
special nodes to handle it, while at the same time reducing the load imposed on the
long-distance links, as fewer links to remote nodes are established when comparing to
the traditional flat approaches.

The rest of this section describes the Peer Sampling Service developed, that can be
observed in Listing 1.

Upon boot, a node obtains a contact node from an external mechanism and sends
a Subscription request to it (lines 1 to 3).1 The receiver of the subscription creates
a Join request and forwards it to all nodes in its view, and to c additional random
nodes (lines 5 to 10). A node receiving a join request (lines 12 to 19) generates a
random seed and weights it with the value returned by the localityOracle. The oracle
receives the view size and the id of the node joining the overlay and should return a
value indicating the preference that should be given to the integration of the joiner, as
pointed previously. If the calculation in line 14 yields zero, the joiner is integrated into
the view of the node, otherwise the subscription is forwarded to a random node.

This service offers two calls to the dissemination protocol PeerSampleLocal and
PeerSampleRemote that return a set of local and remote nodes, respectively.

4.2 Dissemination Protocol
This section presents the dissemination protocol which improves the work in [5]. The
original protocol combines eager and lazy push strategies to achieve desirable band-
width/latency trade-offs in a single protocol without endangering correctness. It is
divided in two main components: one responsible for the selection of the communi-
cation targets, and the other for the actual point-to-point communication and selection
of the transmission strategy. In this work we bring locality awareness to the dissemi-

1In fact the problem of how to know the initial contact node is still a pending issue.

7

1 i n i t i a l l y
2 K = ∅ /∗known messages∗/
3
4 p roc M u l t i c a s t (d)
5 Forward (mkdId () , d , 0 , 0)
6
7 p roc Forward (i , d , r l , r r)
8 D e l i v e r (d)
9 K = K ∪ { i }

10 P = ∅
11 i f r r < maxRRemote
12 P = P ∪ PeerSampleRemote (r e m o t e F a n o u t)
13 i f r l < maxRLocal
14 P = P ∪ Pee rSampleLoca l (l o c a l F a n o u t)
15 f o r each p ∈ P
16 L−Send (i , d , r l +1 , r r +1 , p)
17
18 upon L−Rece ive (i , d , r l , r r , s)
19 i f i /∈ K
20 i f i sRemote (s)
21 r i = 0
22 Forward (i , d , r l , r r)

Listing 2: Dissemination Protocol: Peer Selection

nation process by introducing distinct round types to remote and local nodes, and by
reordering the queue of pending lazy requests.

The rationale behind the introduction of different round types is that the number of
nodes in a given local area and the number of local areas in the system will likely differ
by some orders of magnitude (for example a scenario with 5 local areas and 200 nodes
on each area), and therefore the number of rounds necessary to infect each one of those
entities is quite different. Instead of coping with the necessity of reaching all the nodes
with a higher global round number, we split that in a local round and a remote round.
As such it is possible to infect some nodes on the remote areas and stop disseminating
to them, and let the local dissemination infect the remaining local nodes, thus reducing
the number of messages that traverse the long-distance links. This flexibility allows the
dissemination of the message only to a given portion of the population without wasting
resources to send it to the other portion.

The peer selection algorithm is show in Listing 2. Initially, the algorithm is started
with an empty set of known messages, that is used to avoid delivering duplicates to
the application via the Deliver upcall. An application wishing to send a message,
calls the Multicast primitive on line 4 that generates a unique message id, initializes
the rounds to zero and Forward the message. In Forward, the message id is added
to the known set of messages, and the protocol enters the peer selection phase, from
line 11 to 14, where the distinction between remote and local peers is made. The
amount of peers specified by the respective fanouts is collected independently, if the
respective round number has not expired, and then the L − Send primitive of the
point-to-point communication strategy selection is invoked for all the collected peers.
When the point-to-point communication layer delivers a message to this level, via the
L − Receive upcall, the message id is checked against the known set of ids and, if
the message is new, it is forwarded. The last important remark is the reset to the local
message round if the message comes from a remote origin (lines 20 and 21). This is
because messages being received remotely have a local round count that is meaningless
to this local area and therefore must be reset to zero for dissemination to be successful
locally. The isRemote oracle must then indicate whether the origin of the message is
considered to be remote or not.

In Listing 3 it is possible to observe the point-to-point communication part of the
protocol. The L−Send function called by the previous layer queries the strategy oracle
isEager to infer whether the message should be sent in a eager or lazy approach. If the

8

1 i n i t i a l l y
2 ∀ i : C[i] = ⊥
3 R = ∅
4
5 proc L−Send (i , d , r l , r r , p)
6 i f i s E a g e r (i , d , r l , r r , p)
7 send (p ,MSG(i , d , r l , r r))
8 e l s e
9 C[i] = (d , r l , r r)

10 send (p , IHAVE(i))
11 R = R ∪ { i }
12
13 proc handleIHAVE (i , s)
14 i f i /∈ R
15 QueueMsg (i , s)
16
17 proc handleMSG (i , d , r l , r r , s)
18 i f i /∈ R
19 R = R ∪ { i }
20 C l e a r (i)
21 L−Rece ive (i , d , r l , r r , s)
22
23 proc handleIWANT (i , s)
24 (d , r l , r r) = C[i]
25 send (s ,MSG(i , d , r l , r r))
26
27 f o r e v e r
28 (i , s) = Schedu leNex t ()
29 send (s , IWANT(i , mys e l f))
30
31 proc QueueMsg (i , newSource)
32 i f i /∈ Queue
33 Queue . add (i , newSource)
34 e l s e
35 (i , o l d S o u r c e) = Queue . g e t (i)
36 Queue . add (i , newSource)
37 i f i s C l o s e r (newSource , o l d S o u r c e)
38 Queue . swap (newSource , o l d S o u r c e)

Listing 3: Dissemination Protocol:Point-to-Point Communication

message should be sent eagerly, then a MSG is sent with the actual payload, otherwise
an advertisement with the id is sent via IHAV E. Messages sent lazily may then be
retrieved with the IWANT call that will send the actual payload to the requester (lines
23 to 25). If an advertisement is received (lines 13 to 15), the message is queued to
be retrieved in a point in the future via the ScheduleNext function. The requests are
added to the retrieval queue in an order that puts request to local nodes first. Thus,
if a request is already scheduled to retrieval from a remote node and the incoming
advertisement is from a local node, the requests order is swapped (lines 31 to 38). This
simple procedure further reduces the transmissions on remote links, as the payload
retrieval is first attempted on local nodes. The isCloser oracle simply compares the
distance between the two potential sources and can be built upon the isRemote oracle
defined previously. Upon reception of a new message (lines 17 to 21), the message id is
added to the set of known messages, any pending requests on the message are cleared,
and the payload is delivered to the peer selection layer via the L−Receive upcall.

Finally, this layer of the CLON service will offer a Multicast primitive which
an application could use to disseminate messages, and a Deliver upcall which will be
used to deliver disseminated messages to the application.

5 Evaluation
This section describes the experimental evaluation conducted in order to verify that the
devised protocols address the requirements presented in Section 1.

All experiments have been run on a simple round-based simulator and assuming
1000 nodes distributed evenly among 5 local areas, that are connected to each other
by long-distance links, i.e. links were we want to reduce the bandwidth consumption

9

whithout impairing reliability. As CLON is based on a flat approach, we compare it
with the Scamp protocol, to assess the performance improvement that CLON brings
while offering the same resilience to faults.

5.1 Peer Sampling Service
In the first experiment, depicted in Figure 5.1, we analyse the properties of the overlays
generated by Scamp and CLON , and the impact of each one in the reduction of the
load imposed on the long-distance links. To access the reliability of both protocols in
the presence of failures we devised three drop strategies that randomly remove nodes
from the overlay, without healing, from 0% to 100%, in steps of 10%. The strategy
UniformDrop drops nodes from the universe of nodes in a random fashion. Addi-
tionally, OneAreaDrops/TwoAreaDrops remove nodes from one/two pre-selected
local areas to access the contribution of a particular local area to the overall connectiv-
ity. Both protocols are configured with the c = 6 which makes the average view size
9. After observing the connectivity level of Scamp with this configuration, we config-
ured the localityOracle of CLON such that the protocol provides the same reliability
level as Scamp. It is important to notice that the oracle configuration should take into
account the way the contact node is chosen. In our experiments the contact is chosen
randomly across the set of existing nodes, and thus nodes will receive four more times
subscriptions from remote nodes than local ones, as in this scenario we have four times
more nodes than local ones. Therefore if we want to have the same amount of local and
remote nodes in a view, the oracle should increase by four times the virtual view sizes
when receiving subscriptions for remote nodes, to compensate for the greater amount
of remote subscriptions received, and therefore match the desired ratio of remote and
local nodes in a view.

Figure 1a depicts the evolution of both protocols when applying the dropping strate-
gies presented above. As Scamp is not locality-aware, its views are composed, on aver-
age, by 6.8 and 2.2 remote and local nodes respectively, which reflects the fact that we
have much more remote nodes than local ones. On the other hand, we observed that to
maintain the same reliability level in CLON , it is only necessary to have views with 2.7
and 6.3 remote and local nodes respectively. It is important to note that the composition
of the view is an essential metric to obtain the desired reliability level while at the same
time reduce the load imposed on the long distance links. In fact, simply by changing
the ratio of remote/local nodes in the view of the nodes, it is possible to directly affect
the number of messages that traverse the long distance links, and consequently the load
imposed on them. As it is possible to observe, with this configuration both protocols
are able to tolerate up to 60% node drops, in the UniformDrop strategy, without com-
promising the reachability of the alive nodes. Nonetheless after 70% failures both pro-
tocols fail to achieve the desired reachability level of > 90%. The impact of localized
failures in a given local area has no practical impact on the reachability, which means
that local areas are inter-connected with enough redundancy to tolerate those localized
failures as can be observed in the OneAreaDrop/TwoAreasDrop dropping strate-
gies. The lines depicting the connectivity of OneAreaDrop and TwoAreasDrop
only go to 20% and 40% respectively, because that is the amount of global failures that
a complete failure of one/two local areas represent.

On Figure 1b depicts the evolution of the clustering coefficient in presence of in-
creasing drop rates. As expected, the clustering coefficient of CLON is a little higher
than that of Scamp, because CLON tends to mimic the underlying network structure,
which is inherently clustered among the local areas.

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

%
 A

liv
e

N
od

es
 R

ea
ch

ab
le

% Nodes Dropped

Scamp UniformDrops
CLON UniformDrops

Scamp OneAreaDrops
CLON OneAreaDrops

Scamp TwoAreaDrops
CLON TwoAreaDrops

(a)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90

 C
lu

st
er

in
g

% Nodes dropped

Scamp UniformDrops
CLON UniformDrops

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90

 P
at

h
Le

ng
th

% Nodes dropped

Scamp UniformDrops
CLON UniformDrops

(c)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Scamp Clon

N
um

be
r

of
 m

es
sa

ge
s

R
ec

ei
ve

d

Protocol

Messages received remotely/locally by each protocol

Local
Remote

(d)

Figure 1: Overlay properties and impact on the dissemination with a flooding protocol.

11

The average path length of the overlay could be observed in Figure 1c, and shows
that CLON has a slightly larger average path length than Scamp. This comes directly
from the fact that due to the lower ratio of known remote nodes not all the local areas
are reachable directly by all the nodes and therefore some nodes need some extra hops
to reach the entire overlay.

Finally, Figure 1d depicts the number of messages exchanged when disseminating
on top of both overlays, before applying any drop strategy. To this end, we used a naive
eager push dissemination protocol, that just floods all its known neighbors, in an infect
and die fashion. Every alive node multicast exactly one new message and after all
messages have been delivered we count the average number of messages by each node
received through remote and local neighbors. The amount of total messages received
in both protocols is around 9000, which reflects the injection of 1000 new messages
on the system, one by each node, and the fact that they are sent on average 9 times by
each node, the average view size. As it is possible to observe, Scamp receives around
7000 messages through remote nodes, which reflects the average number of remote
neighbors each node has. On the contrary, due to the biasing to the underlying network
that gives preference to local links over remote ones, CLON receives around 2000
messages via remote neighbors, thus being able to achieve a reduction of more than
70% on the amount of messages that traverse the long-distance links, while tolerating
the same amount of failures.

In the next experiment, depicted in Figure 2, we made the biasing to the underlying
network more aggressive, by further reducing the number of remote nodes known, on
average. While previously, the goal has to achieve the reliability level of Scamp, which
in this configuration tolerates around 60% global node failures, here we intended to
tolerate up to 20% and 30% failure rates, while guarantying that more than 99% of the
alive nodes are reachable. On the left we have the reachability, as in Figure 1a, and in
the right the respective amount of messages received locally and remotely. The labels
Scamp and CLONI refer to the previous configuration for reference purposes, while
CLONII and CLONIII are configured to tolerate up to 30% and 20% global failures
respectively. As it is possible to observe, CLONII (blue line on the left plot) tolerates
up to 30% global failures with more than 99% confidence with a slight reduction on the
number of remotely received messages (right plot) when compared to the original con-
figuration (CLONI). On the other hand, the configuration CLONIII tolerates up to 20%
total failures with the same confidence level but further reduces the number of mes-
sages received remotely to slightly more than 1000. This experiment shows that with
the adequate oracle configuration CLON is able to offer different reliability guaran-
tees and consequently that directly impact the load imposed on the long-distance links.
This trade-off is related to the amount of remote neighbors a given node has, with
smaller values the reliability decreases as a local areas are more prone to become dis-
connected from each other but the number of messages that traverse the long-distance
links is reduced. Nonetheless, with a reliability level equivalent to standard flat overlay
management protocols such as Scamp, CLON is able to significantly reduce the load
imposed on the long-distance links, and contribute to increase the aggregate bandwidth
available on them, as per the requirements presented in Section 1.

5.2 Dissemination Protocol
In this section, we evaluate the proposed dissemination protocol. The protocol is run
atop the Peer Sampling Service with the same configuration of the first experiment. To
fully understand the advantages of the strategy combination, it is important to assume

12

 95

 96

 97

 98

 99

 100

 0 10 20 30 40 50 60 70 80 90

%
 A

liv
e

N
od

es
 R

ea
ch

ab
le

% Nodes Dropped

Scamp
CLON I
CLON II
CLON III
99% line

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

Scamp ClonI ClonII ClonIII

N
um

be
r

of
 m

es
sa

ge
s

R
ec

ei
ve

d

Protocol

Messages received remotely/locally by each protocol

Local
Remote

(b)

Figure 2: Different oracle configurations.

that message advertisements are considerable smaller than the actual payload, which
holds true on many real scenarios. If this assumption does not hold, the oracle could
just be configured to a pure eager strategy as in this case the lazy strategy has no
advantage over the eager one.

The results obtained are depicted in Figure 3. On the left the dissemination protocol
is configured with a simple strategy: it uses eager push to local nodes and lazy push
to remote ones. The rationale behind this strategy is to disseminate very fast on local
areas, by means of the eager strategy, and send advertisements to remote areas. When
a given local area lazily receives the payload of a new message, it will spread it quickly
inside it. As more local nodes receive the payload eagerly transmitted, the queued
requests for those payloads via remote nodes are dropped and therefore a considerable
amount of remote transmissions is avoided. Although the latency is considerable in
this configuration due to the lazy pushing to remote nodes, the objective is to observe
the lower bound on the number of messages that traverse the long-distance links. The
improvement bring by this configuration of the dissemination protocol is clear as in
both Scamp and CLON the number of messages received through remote neighbors
(red bar) significantly decreases. In Scamp this value goes down from around 7000
with the flooding protocol to slightly more than 2000, whereas in CLON the value
goes down to around 600 messages received remotely, an improvement of an order of
magnitude if we consider the combination of Scamp with a flooding gossip protocol.
As expected the number of messages received locally (green bar) is much higher than
Scamp, due to the biasing to the underlying network, which gives preference to the
local links, over the remote ones. Finally, the number of advertisements received is
considerably higher in Scamp than in CLON , again due to Scamp having much more
remote neighbors on average. The reduced number of announcements on CLON is due
to two facts: the average number of known remote nodes is smaller than Scamp and
therefore fewer announcements are generated; and only a fraction of payloads are lazily
pushed (and therefore the IWANT announcements sent) due to the prior infection by
local nodes.

Finally, in Figure 3b, we analyse the bandwidth/latency trade-offs offered by the
dissemination protocol. The goal is to observe the impact of the chosen payload trans-
mission strategy (by means of the isEager oracle, see Listing 3) on the latency and
bandwidth consumption of the dissemination process. To this end we run a set of
experiments where the isEager oracle returns False if and only if the target node is

13

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000

Scamp Clon

P
ay

lo
ad

s/
A

nn
ou

ce
m

en
ts

 r
ec

ei
ve

d

Protocol

Payloads/Annoucements received by each protocol

AnnoucRemote
Local
Remote

(a)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1 2 3 4 5 6 7 8 9
 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 M
sg

 P
ay

lo
ad

s
R

em
ot

el
y

R
ec

ei
ve

d

 M
ax

. H
op

 C
ou

nt

 Lazy after round

Bandwidth
Latency

(b)

Figure 3: Latency/Bandwidth trade-off.

external and the external round is below a given threshold. The rationale is to transmit
the message payloads eagerly for a certain number of rounds and then fall back to lazy
strategy. In the experiment we varied the TTL value from 0 to 9, and for each value
we run the dissemination protocol on top of the same overlay of the first experiment of
the previous Section. On the X axis it is possible to observe the different TTL used for
each run. As such on the leftmost part of the axis we have a completely lazy strategy
that becomes gradually eager as we move to the right. On the left Y axis we measure
the bandwidth consumption, blue line, with respect to the number of message payloads
transmitted over the long distance links. On the right Y axis we measure the latency
of the dissemination, green line, in the number of hops necessary to infect all nodes
in the overlay. For instance, in the completely lazy strategy, i.e. when lazy after the
round zero, nodes receive on average slightly more than 600 messages through remote
links, which in fact is the experiment of the left. With this configuration the latency to
infect all nodes is 11 hops. As expected, the bandwidth increases with the eagerness
to transmit the payloads, as more redundant messages are sent, while the latency de-
creases, as messages reach all nodes quicker, without the additional roundtrips of a lazy
strategy. It is interesting to notice that in this scenario the latency reaches its minimum
after the 4th rounds, when it becomes close to the overlay diameter. On the other hand,
the bandwidth tends to stabilize only around the 7th round. Therefore, in this scenario
using a eager strategy for more than four rounds will only waste bandwidth without
bringing any improvement on the latency of the dissemination process.

The point where the two lines intersect presents an interesting trade-off as it is
when the bandwidth overhead required for the dissemination is small, with a moderate
latency penalty. This accounts for around 1000 message payloads received remotely
which is half of the value obtainable with a flooding protocol as the one used in Fig-
ure 1d. In fact, even if the latency should be reduced to a minimum, for instance by
switching to the lazy push strategy after the 3th round, the impact on the bandwidth
consumption on the long-distance links is still attractive as only around 1400 remote
messages are received.

To finalize, we showed that by combining eager and lazy push strategies, it is pos-
sible to considerably reduce the stress put on resource constrained links. For instance,
from the initial setting of having a flooding protocol on top of Scamp, to a combined
dissemination protocol on top of CLON , it is possible to achieve a reduction on the
number of payloads transmitted from more than 7000 messages to around 1400, while

14

offering an attractive latency value. Furthermore, the excess of locally received mes-
sages on CLON , could have been mitigated by also using the eager/lazy strategy
combination.

6 Conclusion
On this work we presented CLON , a Reliable Multicast Service that aims to cope
with the requirements of a Cloud environment, namely the reduction of the bandwidth
consumption on undesirable costlier links, such as inter data center links, while coping
with the reliability and resilience required in such environments. We addressed the
problem at two different levels: the Peer Sampling Service which is related to the
construction and maintenance of the overlay network, and the dissemination protocol
which disseminates messages on top of the built overlay.

By taking into account locality at construction time, and by refusing to rely on
nodes with special roles to handle locality, we obtained an overlay that is biased to the
network topology, without compromising the key properties that ensure the reliability
and robustness of unstructured protocols. On the dissemination protocol, we also take
into account locality by having different rounds for remote and local nodes, and by
offering to the programmer different latency/bandwidth trade-offs on a single protocol,
by the configuring an oracle to behave accordingly to the desired policy.

By relying on oracles to configure the protocol different trade-offs, and abstract-
ing those particular configurations out of the model, we obtained a highly configurable
service that can be used on a wide range of scenarios, from the low level infrastruc-
ture management in a Cloud environment, to a added-value service offered to client
applications.

The experimental results obtained are promising, as we achieved a reduction of an
order of magnitude on the number of message payloads that traverse the long distance
links.

References
[1] DC2MS: Dependable Cloud Computing Management Services.

http://gsd.di.uminho.pt/projects/projects/DC2MS, 2008.

[2] M. Al-Fares, A. Loukissas, and A.Vahdat. A scalable, commodity data center
network architecture. SIGCOMM Computer Communication Review, 38(4):63–
74, 2008.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A
berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.

[4] N. Bailey. The Mathematical Theory of Infectious Diseases and its Applications.
Hafner Press, second edition edition, 1975.

[5] N. Carvalho, J. Pereira, R. Oliveira, and L. Rodrigues. Emergent structure in
unstructured epidemic multicast. In Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 481–490,
Washington, DC, USA, 2007. IEEE Computer Society.

15

[6] P. Eugster and R. Guerraoui. Hierarchical probabilistic multicast. Technical Re-
port LPD-REPORT-2001-005, Ecole Polytechnique Fédérale de Lausanne, 2001.

[7] P. Eugster, R. Guerraoui, S. Handurukande, P. Kouznetsov, and A.-M. Kermarrec.
Lightweight probabilistic broadcast. ACM Transactions on Computer Systems,
21(4):341–374, 2003.

[8] A. Ganesh, A.-M. Kermarrec, and L. Massoulié. Scamp: Peer-to-peer lightweight
membership service for large-scale group communication. In Networked Group
Communication, pages 44–55, 2001.

[9] A. Ganesh, A.-M. Kermarrec, and L. Massoulié. Hiscamp: self-organizing hi-
erarchical membership protocol. In Proceedings of the 10th workshop on ACM
SIGOPS European workshop, pages 133–139. ACM, 2002.

[10] K. Hopkinson, K. Jenkins, K. Birman, J. Thorp, G. Toussaint, and M. Parashar.
Adaptive gravitational gossip: A gossip-based communication protocol with user-
selectable rates. IEEE Transactions on Parallel and Distributed Systems, 99(1),
5555.

[11] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. The peer sampling
service: experimental evaluation of unstructured gossip-based implementations.
In Proceedings of the 5th ACM/IFIP/USENIX International Conference on Mid-
dleware, pages 79–98, New York, NY, USA, 2004. Springer-Verlag New York,
Inc.

[12] B. Kaldehofe. Buffer management in probabilistic peer-to-peer communication
protocols. In Proceedings of the 22nd International Symposium on Reliable Dis-
tributed Systems, pages 76–85, Oct. 2003.

[13] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor
spreading. In Proceedings of the 41st Annual Symposium on Foundations of Com-
puter Science, page 565, Washington, DC, USA, 2000. IEEE Computer Society.

[14] J. Leitão, J. Pereira, and L. Rodrigues. Hyparview: A membership protocol for
reliable gossip-based broadcast. In Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 419–428.
IEEE Computer Society, 2007.

[15] M. Lin and K. Marzullo. Directional gossip: Gossip in a wide area network.
In Proceedings of Third European Dependable Computing Conference, volume
1667 of Lecture Notes in Computer Science, pages 364–379. Springer, 1999.

[16] L. Massoulié, A.-M. Kermarrec, and A. Ganesh. Network awareness and fail-
ure resilience in self-organising overlay networks. In Proceedings of the 22nd
Symposium on Reliable Distributed Systems, pages 47–55, 2003.

[17] R. Melamed and I. Keidar. Araneola: A scalable reliable multicast system for dy-
namic environments. Network Computing and Applications, IEEE International
Symposium on, 0:5–14, 2004.

[18] J. Pereira, L. Rodrigues, R. Oliveira, and A.-M. Kermarrec. Neem: Network-
friendly epidemic multicast. In Proceedings of the 22nd Symposium on Reliable
Distributed Systems, pages 15–24. IEEE, 2003.

16

[19] B. Schroeder and G. A. Gibson. Disk failures in the real world: what does an
mttf of 1,000,000 hours mean to you? In Proceedings of the 5th USENIX confer-
ence on File and Storage Technologies, pages 1–16, Berkeley, CA, USA, 2007.
USENIX Association.

[20] S. Voulgaris, D. Gavidia, and M. Steen. Cyclon: Inexpensive membership man-
agement for unstructured p2p overlays. Journal of Network and Systems Man-
agement, 13(2):197–217, June 2005.

17

	Introduction
	Background
	Related Work
	Clon Protocol
	Peer Sampling Service
	Dissemination Protocol

	Evaluation
	Peer Sampling Service
	Dissemination Protocol

	Conclusion

