Model-Driven Development of Adaptive
Applications with Self-Adaptive Mobile
Processes

Holger Schmidt!, Chi Tai Dang?, Sascha Gessler!, and Franz J. Hauck!

! Institute of Distributed Systems, Ulm University, Germany
{holger.schmidt,franz.hauck}@uni-ulm.de
2 Multimedia Concepts and Applications, University of Augsburg, Germany
dang@informatik.uni-augsburg.de

Abstract. Writing adaptive applications is complex and thus error-
prone. Our self-adaptive migratable Web services (SAM-WSs) already
provide adaptation support in terms of location, available state, provided
functionality and implementation in use. Yet, SAM-WSs still require de-
velopers implementing the adaptation logic themselves.

In this work, we present an approach to ease the implementation of
adaptive applications with SAM-WSs. We introduce our concept of a
self-adaptive mobile process (SAMProc), an abstraction for adaptive ap-
plications, and SAMPFEL, an XML application to describe a SAMProc.
We show a tool that automatically generates SAM-WSs adaptation code
on the basis of the SAMPEL description. Then, we go even one step fur-
ther by providing an Eclipse plug-in that allows automatic generation of
the SAMPEL description on the basis of a graphic model. This enables
generating a SAM-WS implementation with few clicks; developers have
to write pure application logic only.

1 Introduction

Mobile and ubiquitous computing (UbiComp) [1] scenarios are characterised by
a high heterogeneity of devices, such as personal digital assistents (PDAs), mo-
bile phones and desktop machines. They face a very dynamic environment due
to the fact that devices, users and even applications can potentially be mobile.
For tapping the full potential of the environment, such scenarios require adap-
tive applications. For instance, such applications should be able to use as much
resources as possible on powerful devices and only few resources on resource-
limited devices. Additionally, they should be mobile in terms of migration to
enable applications running on the best-fitting devices in the surroundings (e.g.,
to run on a specific user’s device or on the most powerful device).

Our approach to tackle such scenarios is self-adaptive migratable Web services
(SAM-WSSs) [2]. We advocate that Web services will become a standard mech-
anism for communication in mobile and UbiComp scenarios due to the fact
that Web services have already gained acceptance in standard environments to
provide a heterogeneous communication model. This is supported by the fact

727

that there is already work on Web services providing reasonable communica-
tion between heterogeneous sensors [3]. Our SAM-WS's provide means to adapt
themselves in terms of their location (i.e., weak service migration [4]), avail-
able state, provided functionality and implementation in use. At the same time,
SAM-WSs maintain a unique service identity that allows addressing the Web
service independent of its current location and adaptation (i.e., required to fos-
ter the collaboration between different SA M- WS—based applications). Although
SAM-WSSs provide a great flexibility for adaptive applications, developers have
to manually implement the actual adaptation logic on their own.

In this work, we present a model-driven approach to ease the development
of adaptive applications on the basis of SAM-WSs. Therefore, we build on our
concept of a self-adaptive mobile process (SAMProc), which provides a novel
abstraction for an adaptive application [5]. The basic idea is to describe the
application as a SAMProc and to use this information to automatically gener-
ate the SAM-WS adaptation logic. As a novel description language, we present
the self-adaptive mobile process execution language (SAMPEL), our new XML
application to describe a SAMProc. Due to the fact that the business process
execution language (BPEL) already provides means for orchestration of standard
Web services, we implemented SAMPEL as a BPEL extension, which addition-
ally supports describing SAM-WS behaviour regarding adaptation. We provide
a tool, which automatically generates the adaptation logic of the correspond-
ing SAM-WS'; developers have to implement the pure application logic only. In
comparison to related work [6,7], our approach is more lightweight because we
generate node-tailored code which is not interpreted but executed at runtime.
Additionally, we present an Eclipse plug-in that allows describing adaptive ap-
plications with a graphical notation. Modelling leads to an automatic generation
of an appropriate SAMPEL description. In the overall process, our approach al-
lows generating the adaptation logic of an adaptive application with only few
clicks.

The rest of the paper is structured as follows. First, we introduce SAM-WS
and an appropriate example application. In Section 3, we present our model-
driven approach to develop adaptive applications with our SA MProc abstraction.
After a discussion of related work in Section 4, we conclude and show future work.

2 Preliminaries

In the following, we introduce Web service basics and our SAM-WS' extension.
Then, we present a novel mobile report application, which acts as an exemplary
adaptive application for the rest of the paper.

2.1 Web Services and Adaptive Web Service Migration

Web services are a common XMIL-based communication technology built upon
standard Internet protocols [8]. They implement a service-oriented architecure
(SOA) approach, in which functionality is provided by services only [9]. Web ser-
vices are uniquely identified by uniform resource identifiers (URIs). The service

728

interface and its protocol bindings are specified with the Web services descrip-
tion language (WSDL) [10]. WSDL binds the interface to a message protocol
that is used to access the Web service. Therefore, Web services commonly use
SOAP [11]. Due to the fact that Web services are built on top of XML technolo-
gies they are independent of platform and programming language. Thus, they
perfectly suit heterogeneous environments.

We advocate that Web services will become a standard for communication
in UbiComp. They have already gained acceptance in standard environments to
provide heterogeneous communication and there is already work on Web services
providing reasonable communication between heterogeneous sensors [3]. Yet, for
tapping the full potential of UbiComp environments applications require adap-
tivity. In recent work [2], we proposed the concept of a self-adaptive migratable
Web service (SAM-WS), which provides means for dynamic adaptation in terms
of location (i.e., migration'), state, functionality and implementation.

For making Web services adaptive we introduce a facet concept. A facet
represents a particular characteristic of the SAM-WS running on a particu-
lar mode and comprising a particular interface, implementation and state. A
SAM-WS adaptation can dynamically be applied at runtime by changing the
location, interface, implementation or state of the SAM-WS (multiple concur-
rent changes are supported as well). A unique SAM-WS identity, which is used
for continuously addressing the application, is maintained while adapting the
SAM-WS.

! Target Node lB: load
:AWSMStateStore]
6: create y'y
‘Source Node [’ 3 save
[:AWSMService]Z’L"a"{[:AWSMManager ~ |[#1719Factores [»\sMFactoryFinder]
i S — I
1: adapt 5: selectFactory

..

Fig. 1. Collaboration of adaptive Web service migration (AWSM) entities

Figure 1 shows our infrastructure services and their collaboration for the
adaptation of a SAM-WS. For providing adaptation methods SAM-WSs have
to implement our AWSMService interface. For easing application develop-
ment the SAM-WS is able to use a generic service-internal AWSMManager en-
tity?, which manages the remaining adaptation steps (see Figure 1, step 2).

b SAM-WSs support weak migration [4]. Here, only application state is transferred
but no execution-dependent state, such as values on the stack and CPU registers.

2 Our AWSM prototype provides an AWSMManager. It is generic in the sense that it
can be used within any SAM-WS.

729

The AWSMManager stores the active state® into an AWSMStateStore (step 3). The
target location is determined by our AWSMFactoryFinder service*. The URI of
an appropriate AWSMGenericFactory service is returned, which provides means
to create SAM-WSs on a remote node. For allowing an application-specific se-
lection of the best-fitting factory out of the list of appropriate factories returned
from the factory finder we use a basic call-back mechanism (step 5). Then, the
AWSMGenericFactory creates the desired target facet with the needed active
state being loaded from the state store. If the code for the facet to create is
unavailable at the target location, our infrastructure tries to load the code for a
specific AWSMFactory, which is able to deploy the required SAM-WS facet (more
details about our dynamic code loading feature can be found in [2]). In a last
step, the old SAM-WS facet is removed.

Currently, application development support regarding SAM-WSs is quite
limited. Our system provides generic adaptation code in terms of an abstract
AWSMServiceImpl class for Java but the actual adaptation logic has to be im-
plemented by the developer. Due to the fact that this is a non-trivial issue, there
is still a need for further development support.

2.2 Example Application

Our example application supports crisis management by providing means for
spontaneous reporters in the crisis surroundings to document the current situa-
tion (see Figure 2). Such a system is able to support rescue coordination centres
with up-to-date information about the scene. Additionally, it can help afterwards
with the investigation of causalities.

First, spontaneous reporters enter text, audio and video messages into a report
application on their mobile device. The report is sent to virtual first-aiders, which
undertake the task of reviewing the report. They prove the documentation and
reject meaningless reports to disburden the rescue coordination centre where the
accepted report is eventually presented.

The report application is implemented as a SAM-WS. With respect to this,
unique reports are self-contained SAM-WS instances, which are adapted in
terms of location to implement the mobile workflow. Additionally, our report
application provides adaptivity in terms of programming language (due to het-
erogeneous environment with different hardware), functionality (each step in the
mobile workflow needs different functionality) and state (e.g., anonymous review-
ing: information about reporters should not be available at the virtual first-aiders
but at the rescue coordination centre).

3 Only implementation-independent state is externalised. It comprises only variables
being interpretable by any possible implementation of a particular functionality.
Moreover, we differentiate the overall SAM-WS state into active and passive state [2].
Thereby, active state is used within a particular SAM-WS facet while passive state
is not. Passive state is stored in the AWSMStateStore and can be activated within
another facet again.

4 Due to the available universal description, discovery and integration (UDDI) mech-
anism for Web services [12], the AWSMFactoryFinder is implemented as a UDDI
extension.

730

Centre

Mobile Device
Reporter
=,

Stationary Device &
Rescue Coordination '

Mobile Device [:]‘
Virtual First Aider
=,

i Create Report | I l= Review Report | l= Handle Report |

Fig. 2. Basic report application workflow

3 Building Adaptive Applications with SAMProc

The following sections present our model-driven approach to ease the implemen-
tation of adaptive applications with SAM-WSs.

3.1 Self-Adaptive Mobile Processes

In previous work [5], we introduced SAMProc:

A SAMProc can be seen as an ordered execution of services. It is able
to adapt itself in terms of state, functionality and implementation to the
current context and to migrate either for locally executing services or for
accessing a particular context, while maintaining its unique identity.

Thus, a SAMProc provides a high-level abstraction for adaptive applications.
The idea is that developers should be able to model the application with its in-
teractions and deployment aspects as a SAMProc. After a two-stage process (i.e.,
graphical model and its textual representation), a code generator automatically
generates the application adaptation code, which is implemented as SAM-WS.
Thus, only the pure application logic has to be provided by the developer.

In the following, we present SAMPEL, our textual SAMProc representation.

3.2 Self-Adaptive Mobile Process Execution Language

We introduce the self-adaptive mobile process execution language (SAMPEL)
as our novel XML application, which is an extension of BPEL [13]. BPEL is an
XML application being commonly used for describing business processes that
are realised by Web services. Such a business process consists of the involved
Web service interfaces, the interaction between them and a process state. Thus,
BPEL is commonly characterised as a means for orchestration of Web services
to build a business process. Such as Web services, BPEL uses WSDL to describe
the involved Web service interfaces. A BPEL process itself is offered as a Web
service. It is interpreted by BPEL engines, such as ActiveBPEL [14].

The way to describe processes with BPEL is suitable for describing SA M Procs
as well. Yet, there are some issues why BPEL does not meet all requirements for
SAMProcs. First, BPEL was particularly designed for business processes with
focus on orchestration of Web services whereas SA MProcs rely on advanced con-
cepts such as Web service facets and active process state. BPEL lacks support
for these concepts. Additionally, BPEL processes are designed to be executed at

731

a static location. Hence, BPEL does not provide the indispensable support for
distribution aspects of SAMProcs. For instance, before migrating, a SAMProc
has to select an appropriate location. Therefore, it needs context information
about possible targets, such as available resources, being matched with its own
context requirements. BPEL has to be extended for describing required context.
Furthermore, current devices being used in UbiComp environments are highly
resource-limited. Thus, it is in general not feasible to run a BPEL engine on
these devices due to their high resource usage. Unlike BPEL, the SAMPEL pro-
cess is not executed by a particular SAMPFEL engine but used for node-tailored
code generation. Additionally, SAMPEL provides support for the concepts of
SAMProcs, in which the process is able to adapt itself according to the current
execution platform. In Section 3.3, we present a code generator, which is able to
automatically create code skeletons for all required implementations (i.c., Web
service facets) of a SAMPEL process description. These code skeletons have al-
ready built-in support for process adaptation. Application developers have to
implement the pure application logic only.

In the following subsections, we present SAMPFEL in more detail. We attach
particular importance to our extensions of BPEL.

Description Language. Like BPEL, a SAMPEL description is always paired
with at least one WSDL description, which declares the SAMProc interfaces
(i.e., interfaces of the Web service facets being implemented by the SAMProc).

Processes and Instances. A crucial difference between BPEL and SAMPEL is
the conceptual view on a process. A BPEL process is an instance within a BPEL-
engine and always has similar behaviour (e.g., starting with accepting a purchase
order then communicating with involved Web services and eventually inform-
ing the purchaser about the shipping date). Unlike this, a SAMPFEL process
(i.e., SAMProc) is characterised by a highly dynamic behaviour since it can
get adapted and migrated to another location at runtime, where it exists as an
instance and handles user interactions (e.g., report application). Additionally,
SAMProcs provide means to change the process state at runtime. Due to the
inherent dynamics, a SAMPEL process is more functional oriented as opposed
to a BPEL process (i.e., SAMPEL focuses on process functions instead of offer-
ing predefined process behaviour, such as in the purchase order example). This
difference is reflected in the BPEL description by the placement of activities.

Figure 3 shows the process definition of a BPEL process with its activities.
Activities specify the process behaviour, such as invoking a Web service and
assigning a value to a variable. A BPEL process has activities in the main scope,
wherecas a SAMPEL process has not. Due to the functional oriented design,
the activities of a SAMPFEL process are basically determined by the activi-
ties within the method definitions (i.e., eventHandler, see below). Figure 4
shows the basic layout of a SAMPEL description. The process element con-
tains all remaining parts of a SAMProc, which are explained in more detail in the
following.

732

1 | <process ...>

2 R

3 ACTIVITIES

4 | </process>

Fig. 3. Basic BPEL process description

1 | <process ...>

2 <partnerLinks>+

3 -

4 </partnerLinks>

5 <variables>?

6 S5

7 </variables>

8 <correlationSets>
9 “u
10 </correlationSets>
11 <eventHandlers>
12 .
13 </eventHandlers>
14 | </process>

Fig. 4. Basic SAMPEL process description

Scopes. A scope is a container for activities. As such, it is a structuring element
that forms the control sequence of other elements. There are two kinds of scopes:
the main scope and its sub-scopes. The main scope is implicitly defined by the
process element and contains global variables, correlation sets and methods as
shown in Figure 4. It must contain at least one method definition. Otherwise,
the process has no activities. Sub-scopes (i.e., local scopes) can be defined by
the scope element. As shown in Figure 5, sub-scopes must contain the activities
to be executed and can contain elements that are used by the activities within
the scope or its sub-scopes, such as local variables.

<scope>
<partnerLinks>?

</partnerLinks>
<variables>?

</variables>

ACTIVITIES+
</scope>

O WUk WN

—

Fig. 5. Basic SAMPEL scope description

PartnerLinks. Partner links are a SAMPFEL concept inherited from BPEL.
They allow declaring the communication endpoints of the SAMPEL process
and its partner services. SAMPFEL allows declaring partner links in the main
scope as well as in sub-scopes. Figure 6 shows the concept of partner links illus-
trated for the report application. There, both processes—the reporter and the

733

supervisor’—are represented by their SAMPEL description and WSDL descrip-
tion. Each process describes its communication endpoint by means of a partner
link (i.e., RLink for the reporter process and SLink for the supervisor process).
Each partner link relates to a partner link type of its WSDL description, which
works as a bridge between partner links and a specific WSDL port type (i.e.,
contains the available operations). The same applies to the endpoints of other
Web services (see Figure 6 for the partner link RLink1 which links to the partner
link type SType of the supervisor process). These definitions allow referring to
communication partners within the process description.

Process: Reporter H E Process: Supervisor
SAMPEL b SAMPEL
partnerLink: RLink E H partnerLink: SLink
I myRole: Reporter E H myRole: Supervisor !
i——— partnerLinkType: RType ! E partnerLinkType: SType +——!
partnerLink: RLink1 H E partnerLink: SLink1
partnerRole: Supervisor
partnerLinkType: SType

wSDL vl wSDL

partnerLinkType: RType H : partnerLinkType: SType
i L+— role: Reporter | i role: Supervisor T
portType: Port1 - portType: Port2
portType: Port1 J portType: Port2
operation: ... - operation: ... — E

Fig. 6. Partner links

Figure 7 outlines the corresponding definition of partner links in a process
description and a WSDL description. The upper part belongs to the SAM-
PFEL description and the lower part to the corresponding WSDL description.
A partner link must be defined inside a partnerLinks container element and is
composed of a role, a name and the partner link type. The name of the part-
ner link is referred within the process description to specify a communication
endpoint for an activity. The role and partner link type refer to the WSDL de-
scription to select the WSDL port type for that communication endpoint. As
shown in Figure 7, a partner link type has a name and must have at least one
role element inside. A partner link from the process description points to a
specific role element in the WSDL description by following the role and the
name of the partner link type. Eventually, the role element refers to a WSDL

port type.

® Here, we extended our report application with a particular supervisor entity that
provides information about currently required information. This can highly increase
the report quality.

734

<!-- SAMPEL -->
<process name="Report" xmlns:rpt="el.wsdl">
<partnerLinks>
<partnerLink myRole="Reporter"
name="RLink1"
partnerLinkType="rpt:RType" />
</partnerLinks>
</process>

© 00O Uk WN K

10 | <!-- WSDL -->
11 | <definitions targetNamespace="el.wsdl"

12 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-1link/"...>
13 ce

14 <plnk:partnerLinkType name="ReportPLT">

15 <plnk:role name="Reporter"

16 portType="tns:ReportPortType" />

17 </plnk:partnerLinkType>
18 | </definitions>

Fig. 7. Partner link example

Variables. An important means for storing temporary values or maintaining the
process state are variables. SAMPFEL allows variable declarations in the main
scope and sub-scopes with the variable element. The variables in the main
scope arc global variables and are treated as the implementation-independent
process state (i.e., considered for migration; see Section 2.1). Variables within
sub-scopes are local variables used by activities in the sub-scope and its nested
sub-scopes. Figure 8 shows an example for two variable declarations with respect
to the report application. A variable must be declared within the variables
container and is composed of a variable name and a data type for the value. The
data type can be declared either using an XML schema type (see Figure 8, line
2) or as a reference to a WSDL message type (line 3).

<variables>
<variable name="report" type="xsd:string" />
<variable name="recID" messageType="rpt:ID"/>

Tl W N

</variables>

Fig. 8. Variable description example

Correlation Sets. SAMProcs are created at a particular location. Then, they are
able to migrate to other locations. Thus, there can be multiple instances of the
same SAMProc at the same location. For distinguishing between them, SAMPEL
inherits the concept of correlation sets from BPEL to create a unique identifier
(i.e., composed of two parts in the form process-id.instance-id). The process
identifier identifies the SAMPFEL description and the instance identifier identifies
an actual process instance. The instance identifier is derived from one correlation
set only. Therefore, it must be defined within the process element.

Figure 9 shows how to define a correlation set for identifying a report appli-
cation instance within SAMPFEL and WSDL. Correlation sets have to be defined

735

1 | <!-- SAMPEL -->

2 | <process ...>

3 <correlationSets>

4 <correlationSet name="ID"

5 properties="rep:ReporterID rep:ReportNr" />

6 ces

7 </correlationSets>

8 -

9 | </process>
10
11 | <!-- WSDL -->
12 | <definitions xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop" ...>
13 $53
14 <vprop:property name="ReporterID" type="xsd:int" />
15 <vprop:propertyAlias propertyName="ReporterID" messageType="inMsg" part="ID" />
16 s5s
17 | </definitions>

Fig. 9. Correlation set to identify report instance

in the process description inside a correlationSets element and consist of a
name and properties. The name of a correlation set is referenced from within
the process description, whereas the properties have to be defined in the cor-
responding WSDL description (properties must be mapped to message types
defined in the WSDL description). This way, correlation to an instance can be
determined from incoming messages. All properties have a name, are of partic-
ular XML schema type and can be assigned to a WSDL message type by means
of a propertyAlias element. The property alias refers to a property and to a
WSDL message type. If the WSDL message type has more than one part, the
part attribute addresses the appropriate part.

Methods. The behaviour of SAMPEL processes is basically described by the
activities in methods, which are specified with the onEvent element. In Figure 10,
we specify a setReport method as part of our report application. An onEvent
element requires several mandatory attributes: a reference to a partner link that
declares the communication endpoint, the port type of the partner link, a name
for the method and a message type that declares the input to the method.
Beside these mandatory attributes, there is an optional variable attribute that
implicitly creates a local variable in the scope of the method and fills that variable
with the values submitted at method invocation. Each method must have a scope
for activities and a reference to the correlation set to use (i.e., to address the
right instance on the basis of the received message).

Distribution Aspects. Distribution aspects are specified with the requires ele-
ment, which can be placed as part of an onEvent element (see Figure 10, line
11-13). It can also be placed before an activity and thereby effect only the fol-
lowing activity. Figure 10 shows a basic example where the scope is restricted
to the reporter role. A property element needs a key and a value. We allow
multiple properties inside the requires element, which are interpreted as fol-
lows. If two properties have different keys, then the values are linked in a logical

736

1 | <eventHandlers>
2 <onEvent partnerLink="ReporterPL"
3 portType="ReporterPT"
4 operation="setReport"
5 messageType="ReportMsg"
6 variable="Message" >
7 <correlations>
8 <correlation set="ReporterCS" />
9 </correlations>
10
11 <requires>
12 <property key="role" value="Reporter" />
13 </requires>
14
15 <scope>
16 css
17 </scope>
18 </onEvent>
19 css
20 | </eventHandlers>

Fig.10. SAMPEL: method description for reporter

’and’” manner. They are linked in a logical ’or’ manner in case of the same keys.
This forms a property set with key/value-pairs that restricts an activity. It is
a flexible means to describe requirements regarding distribution. Unlike BPEL,
this feature is unique to SAMPEL.

Basic Activities. Activities determine the behaviour of a process. Therefore,
SAMPFEL inherits most of the BPEL activities. Basic activities actually con-
tribute to a process step and are essential elements, such as a variable copy
operation and waiting for an answer.

Communication with other Web services is covered by the invoke activity (see
Figure 11 for an invocation at the supervisor within our report application). For
invoking a Web service, a partner link to the desired Web service has to be
specified. Furthermore, the name of the operation must be provided and an
optional port type can be specified. Parameters of the Web service invocation
have to be specified with the toPart element. Waiting for an invocation (i.e.,
at server-side) can be established with a receive activity, which is similar to an
invoke activity for the partner link, operation and port type.

Sending a reply to an invocation is an important activity for communication
with other services. A reply element either corresponds to an onEvent or a
receive element (there has to be a partner link to identify the corresponding
element). Additionally, a variable containing the return value has to be provided.

Assigning a value to a variable is done by the assign activity copying a value
to a destination variable. Within the assign element, multiple copy elements
are allowed. Each copy element performs a copy operation to a declared variable.

An explicitly waiting activity is possible with the wait element. It allows
specifying a blocking wait state either for a particular duration or until a given
date and time. This can be used as part of polling sequences.

Extensible activities allow extending SAMPEL with custom activities.
Figure 12 shows how to define an extensible activity by the activity element.

737

<invoke partnerLink="SupervisorPL" operation="getRequiredInfo" portType="SupervisorPT" >
<toParts>
<toPart part="ID" fromVariable="varId" />
</toParts>
<fromParts>
<fromPart part="RequiredInfo" toVariable="varRequiredInfo" />
</fromParts>
</invoke>

00O Ul W+

Fig.11. SAMPEL: invocation at supervisor

1 | <activity name="spellCheckReport" />

Fig.12. SAMPEL: custom reporter activity

Here, we define an activity supporting reporters with spell-checker functionality.
There is only one attribute allowed, which denotes the activity name. In a cor-
responding SAM-WS implementation, such an activity is mapped to abstract
methods (supported by our code generator; see Section 3.3), which have to be im-
plemented by application developers. Thus, developers are able to use advanced
programming language features that cannot be specified with pure SAMPEL. In
contrast to SAMPFEL, this feature is not supported by BPEL.

Explicit middleware support for adaptation is realised by the copy and adapt
elements. These elements are not supported by BPEL. The copy activity creates
a copy of the instance and assigns it a new instance identifier. The adapt ele-
ment contains a property set. According to the given adaptation properties the
process is able to adapt in terms of location, state, functionality and implemen-
tation. Figure 13 shows an example that requests an adaptation of the report
application. A corresponding SAM-WS implementation (see Section 3.3) is able
to pass the property set to our AWSM platform, which automatically handles
the required steps to implement the SAMPFEL description.

1 | <adapt>
2 <property key="role" value="Reviewer" />
3 | </adapt>

Fig.13. SAMPEL: adaptation to reviewer

Structuring Activities. Structuring activities form the control sequence for ba-
sic activities and can be arbitrarily nested in order to build complex control
sequences. The first sub-scope of a method represents the top-level structuring
element for starting a control sequence. It contains basic activities and struc-
turing activities. Any structuring activity can contain further sub-scopes. Basic
activities can be executed in sequence by surrounding them with a sequence
element. Execution in parallel can be performed with the flow element, which
starts each containing activity at the same time and ends when the last ac-
tivity has finished. SAMPFEL also offers constructs for conditional execution as

738

known from traditional programming languages. Figure 14 outlines the usage of
an if /elseif/else-construct for our report application. The condition has to be an
XPath expression that evaluates to a Boolean value. Other conditional execu-
tion constructs are loops described with the while and repeatUntil elements.
Both evaluate an XPath expression to repeat the containing activities. The dif-
ference is that the while element stops as soon as the condition evaluates to
a Boolean false, whereas the repeatUntil stops if the condition evaluates to
a Boolean true. For a corresponding SAM-WS implementation, sequential and
conditional activities can be mapped to corresponding programming language
constructs, whereas parallel activities should use threads.

1 | <if>

2 <condition>string-length($report)<=100</condition>
3 <adapt><property key="Mem" value="1MB"/></adapt>

4 <elseif>

5 <condition>string-length($report)<=1000</condition>
6 <adapt><property key="Mem" value="5MB"/></adapt>

7 </elseif>

8 <else>

9 <adapt><property key="Mem" value="10MB"/></adapt>
10 </else>
11 | </if>

Fig.14. SAMPEL: conditional adaptation

3.3 Automatic Code Generation

For implementing the model-driven approach with our SAMProc concept, code
skeletons for the SAM-WS implementations have to be automatically gener-
ated from the SAMPEL description (see Section 3.1). We provide a Java code
generator for this task. It keeps pure application logic written by application de-
velopers separated from generated implementation skeletons by using abstract
classes and inheritance. This allows developers extending and customising the
implementations with the pure application logic.

Figure 15 shows the overall code generation process. The code generator uses
the SAMPEL description and all referenced WSDL documents to generate skele-
tons of appropriate SA M- WS facets (see Section 2.1). In general, code generation
for any programming language is possible but this paper focuses on Java.

First, the code generator determines the interface (i.e., a set of methods) and
available state for each SAM-WS facet. Therefore, it analyses the property sets
of the method definitions within the SAMPFEL description (a method describes
its property set with the requires element). The distinct sets out of all property
sets of the method definitions determine the required facets. Thus, each facet
provides a particular set of properties, which determine the methods building up
the overall interface. For completing a specific facet, the respective active state
is determined by identifying the global variables being used within the methods.
Finally, an XML file is created that holds meta data about the facet and its
implementation. This allows our AWSM platform to register implementations
and take meta data into account for adaptation decisions.

739

SAMPEL
WSDL

A 4

Facet 1

SAM-WS

Implementation
(C++)

Interface .. Automatically
Sl Generated
Application Manually
Code Added

Fig.15. SAMPEL code generator

|4 i 2 | B D+ Qv | Marwos commainer . 8 &) [B8 @5 | &

= b Y RO AR L T B &l
| Tahoma SR R S N o T L = T T
[Package. 5 Wierachy] 0| G0 o,
Ewle T
¥ i deme
i Reporsampal e
a. Kepoit sampe]_dagram
f 1 = Anign
™ Exit
& lnvoke
B Anign & Receive
N ¥ Reply
() wait
Mavee
5‘ R Pt Clone
| Copy
| — | el -
[oumee 225, RIS & == 0) .] ¢ Sequence
| ¥ Kepor T Flow
@
(& While
E) Repeat Lingil
2k
r -
(@ Javadoc [12 protiems (1, Dectaration (&) Ervor Log [Progenties | F =)
+ PFrocess Report
2 |
L Vilhin
Loem Name ¥ Repon I
5 Tarpet Namespace w2 mErpa) fvs-anhormanh ia-ulim. de | repor
L —Naiy .

Fig.16. SAMPFEL diagram editor with a part of the report application model

For each facet, code generation starts with the main scope and recursively
processes sub-elements, such as methods, sub-scopes and activities. Methods are
implemented with conventional methods as provided by programming languages
with the following exception. Due to the fact that SAMPFEL methods allow ac-
tivities after replying to a request, such as a return instruction, the instructions
of each method are wrapped into an own Java thread, which continues with
activities while the requested method can apply its return instruction.

Most basic activities are implemented using their direct programming lan-
guage counterparts or with extensions, such as Apache Axis for Web service

740

invocations. Extensible activities result in abstract methods that have to be
implemented by application developers. For mapping the adaptation logic to a
particular SAM-WS implementation, the property set of an adaptation request
is passed through to our AWSM platform, which automatically manages the
needed steps as described in Section 2.1. Structuring activities, such as condi-
tional execution, are mapped to their direct programming language counterparts
(e.g., flow elements are implemented as threads to achieve parallel execution).

Finally, the generated SAM-WS facet skeletons (i.e., abstract classes) contain
basic adaptation support and programming-language—dependent realisations of
the activities being specified with SAMPFEL. This includes the adaptation logic as
well. Thus, developers only have to add the pure application logic to implement
their adaptive application on the basis of a SAM-WS.

To casc addressing of a specific SAM-WS with our AWSM platform, we im-
plemented an addressing schema, in which the process name and the target
location is sufficient. For this purpose, our code generator creates a proxy Web
service, which should be deployed within the Web service container. The proxy
receives all messages for a particular application (corresponds to a SAMPEL
description) and routes them to the appropriate SAM-WS instance specified by
the correlation set. Therefore, the generated SAM-WS's contain programme logic
that automatically registers the particular instance at the proxy.

3.4 Modelling Self-Adaptive Mobile Processes

Overall, generating an adaptive application requires various XML documents.
Paired with at least one WSDL description, an appropriate SAMPFEL description
provides the adaptation logic. For simplifying the generation of these XML doc-
uments, we developed an Eclipse plug-in to model adaptive applications with a
graphical notation. Since Eclipse already provides a WSDL editor [15], our plug-
in delivers a novel diagram editor that assists application developers in building
SAMPEL descriptions by allowing them to drop and to combine activities onto
a drawing canvas. During modelling, the editor provides further assistance by
validating the structural and semantic correctness of the document. For initially
creating a SAMPFEL description we provide an Eclipse wizard. This wizard allows
selecting different templates, which serve as scaffolds for common use cases.
The diagram editor is realised with the graphical modeling framework
(GMF) [16], which provides a generative component and runtime infrastruc-
ture for graphical editors based on a structured data model (i.e., an Eclipse
modeling framework (EMF) [17] ecore model derived from the SAMPEL XML
schema). Since GMF separately manages data model, graphical representation
and tooling definition, the editor is highly customisable and easy to extend.
Figure 16 shows the user interface of the diagram editor. The graphic notation
is similar to the business process modelling notation (BPMN) [18] that allows
modelling BPEL processes. All SAMPFEL elements inherited from BPEL are rep-
resented with the direct BPMN counterpart. We only introduce new activities
for explicit adaptation support (i.e., move, copy, clone and adapt). The diagram
canvas represents the SAMProc. The palette on the right allows selecting differ-

iw;. Declaration| 2| Error Log| I Praperties | it
2 errors, 1 warning, 0 others
Description [Respurce s Path | Location

w @ Errors (2 tems)
0 The feature "operation’ of '<DocumentRoot> | Report:: <Even Reportsampel_diagram demo | <DocementRoot> Report: < EventHandlers»: <OnEvent>
€ The required feature 'correlationSers’ of "< DocumenRoot> - Reportsampel_diagram deme <DocumentRoot> Report

& Warnings (1 rem)

i =] I

Fig.17. SAMPFEL editor validation

ent tools to edit the process. In particular, there are tools for basic activities and
structuring activities (see Section 3.2). Basic activities are essential elements of
a process and are represented by a rectangular shape with a distinct icon and
title. Since structuring activities form the control sequence for basic activities
they are represented as titled rectangular containers for nested activities. Due
to the fact that every change on the data model is performed using the GMF
command framework, undo behaviour is seamlessly integrated.

The diagram itself does not display all required information to create a valid
document. Otherwise, it would be too cluttered to be readable. Therefore, ad-
ditional information can be captured and edited in the Eclipse Properties View
by selecting the respective diagram element (see Figure 16).

The Eclipse Problem View displays errors and warnings being detected during
validation (see Figure 17). Beside structural flaws, such as the fact that a scope
has to contain at least one method definition, there are also various semantic
correctness constraints. For instance, cach process describes its communication
endpoints by means of a partner link that has to relate to a predefined partner
link type of its WSDL description. Those constraints are specified using the ope-
nArchitectureWare Check (0AW-Check) language [19], which is straightforward
to use. Consequently, constraints can be extended with low efforts.

4 Related Work

There is related work in the area of mobile processes. For instance, Ishikawa et
al. present a framework for mobile Web services, i.e., a synthesis of Web services
and mobile agents [6]. Each mobile Web service has a process description on the
basis of BPEL, which is used for interaction with other processes and for sup-
porting migration decisions at runtime. This approach with its BPEL extension
has similarities with SAMProcs and SAMPEL. Unlike our approach, it does not
support adaptivity. Additionally, while the process description of mobile Web
services is interpreted at runtime, we use SAMPEL for generating code. Kunze
et al. follow a similar approach with DEMAC [7]. Here, the process description
is a proprietary XML application being executed by the DEMAC process en-
gine at runtime. Instead of using Web service and mobile agent concepts, plain
process descriptions are transferred between process engines for achieving mobil-
ity. Unlike the DEMAC approach, we do not require a process execution engine
on each device the platform is running. Additionally, we generate node-tailored
code, which makes our approach more lightweight at runtime.

742

There is a lot of research regarding model-driven development of adaptive
applications on the basis of distributed component infrastructures. Most of these
systems, such as proposed by MADAM [20] and Phung-Khac et al. [21], allow
modelling adaptation (i.e., dynamic component reconfiguration) decisions being
executed at runtime. Unlike our approach, these frameworks are restricted to a
custom component framework and do not support application migration.

Notations such as BPMN [18] define a business process diagram, which is
typically a flowchart incorporating constructs suitable for process analysts and
designers. Yet, the graphical notation for SAMPEL reflects the underlying struc-
ture of the language regarding its specific functional oriented design. This partic-
ularly suits application developers by emphasising the control-flow of an adaptive
application.

5 Conclusion

In this work, we introduced SAMPEL, a novel XML application to describe
adaptive applications on the basis of our SAMProc abstraction. Unlike related
work, SAMPEL is not interpreted at runtime but used for generating the adap-
tation logic for our SAM-WSs. Application developers do not have to implement
adaptation logic; they can focus on pure application logic. Furthermore, we al-
low modelling SAMProc adaptation with a graphic notation. Modelling with our
Eclipse plug-in results in an automatic generation of an appropriate SAMPFEL
description. Thus, this work is a first step towards a model-driven development
of tailored adaptive applications on the basis of SAMProcs.

If an application has many adaptation cases, our tool generates a lot of facets.
For supporting the developer by generating as much code as possible we inves-
tigate adding Java code to custom SAMPFEL activities. Such an approach is
similar to BPELJ [22], which allows using Java code within BPEL descriptions.

References

1. Weiser, M.: The computer for the 21st century. Scientific American 265(3) (1991)

2. Schmidt, H., Kapitza, R., Hauck, F.J., Reiser, H.P.: Adaptive Web service migra-
tion. In: Meier, R., Terzis, S. (eds.) DAIS 2008. LNCS, vol. 5053, pp. 182-195.
Springer, Heidelberg (2008)

3. Luo, L., Kansal, A., Nath, S., Zhao, F.: Sharing and exploring sensor streams over
geocentric interfaces. In: GIS, pp. 1-10. ACM, New York (2008)

4. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE
TSE 24(5), 342-361 (1998)

5. Schmidt, H., Hauck, F.J.: SAMProc: middleware for self-adaptive mobile processes
in heterogeneous ubiquitous environments. In: MDS, pp. 1-6. ACM, New York
(2007)

6. Ishikawa, F., Tahara, Y., Yoshioka, N., Honiden, S.: Formal model of mobile
BPEL4WS process. IJBPIM 1(3), 192-209 (2006)

7. Kunze, C.P., Zaplata, S., Lamersdorf, W.: Mobile process description and execu-
tion. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, pp. 32-47.
Springer, Heidelberg (2006)

oo

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

743

. W3C: Web services architecture (2004), http://www.w3.org/TR/ws-arch/

Barry, D.K.: Web Services and Service-Oriented Architectures. Elsevier, Amster-
dam (2003)

W3C: Web services description language (WSDL) version 2.0 part 1: Core language
(2007), http://wuw.w3.org/TR/wsd120/

W3C: SOAP version 1.2 part 1: Messaging framework (2007),
http://www.w3.org/TR/soapl2-partl/

OASIS: Introduction to UDDI: Important features and functional concepts.
Whitepaper, OASIS (2004)

OASIS: Web services business process execution language version 2.0 (2007)
Active Endpoints: ActiveBPEL open source engine project (2009),
http://www.active-endpoints.com

Eclipse Foundation: Eclipse web tools platform (2009),
http://www.eclipse.org/wtp

Eclipse Foundation: Graphical modeling framework (2009),
http://www.eclipse.org/gmf

Eclipse Foundation: Eclipse modeling framework (2009),
http://www.eclipse.org/emf

OMG: Business process modeling notation (BPMN), version 1.2. OMG Document
formal /2009-01-03 (January 2009)

openArchitectureWare.org: openarchitectureware (2009),
http://www.openarchitectureware.org

Geihs, K., Barone, P., Eliassena, F., Floch, J., Fricke, R., Gjorven, E., Hallsteinsen,
S., Horn, G., Khan, M., Mamelli, A., Papadopoulos, G., Paspallis, N., Reichle,
R., Stav, E.: A comprehensive solution for application-level adaptation. Software:
Practice and Experience 39(4), 385422 (2009)

Phung-Khac, A., Beugnard, A., Gilliot, J.-M., Segarra, M.-T.: Model-driven devel-
opment of component-based adaptive distributed applications. In: SAC, pp. 2186—
2191. ACM, New York (2008)

Blow, M., Goland, Y., Kloppmann, M., Leymann, F., Pfau, G., Roller, D., Rowley,
M.: BPELJ: BPEL for Java. Whitepaper, BEA (2004)

