
An Active Domain Node Architecture

for the Semantic Web

Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

vorgelegt von

Franz Schenk

aus Tegernsee

Göttingen
im Oktober 2008

Referent: Prof. Dr. rer. nat. Wolfgang May,
Universität Göttingen.

Korreferentin: Prof. Dr. rer. nat. Nicola Henze,
Universität Hannover.

Tag der mündlichen Prüfung: 21. November 2008

Abstract

The scope of this work is knowledge management in the Semantic
Web. Its contribution is the design, development, and characterisa-
tion of an application node architecture for the Semantic Web, called
Swan. The core of the Swan architecture consists of an OWL know-
ledge base which is supplemented by a hybrid reasoning mechanism.
Hybrid reasoning in Swan combines F-Logic and Description Logic
reasoning. Update operations for the manipulation of the knowledge
base are provided with a well-defined semantics. Intensional updates
are possible and allow to define updates with respect to implicit
knowledge. A unique trigger mechanism is used for the completion
of intensional updates, but also for the maintenance of knowledge
base integrity. By its ability to process abstract action definitions,
the application node can be integrated directly into the event-driven
Semantic Web architecture Mars. A protoype of this architecture
has been implemented, which shows the flexibility and applicability
of its concepts.

Keywords:
Semantic Web, Event-Driven Architecture, OWL, Active Knowledge
Base, Intensional Updates, Hybrid Reasoning, Description Logic, F-
Logic.

Contents

Abstract 3

I Introduction and Conceptual Background 9

1 Introduction 11

2 Formal Preliminaries 15
2.1 First-Order Logic . 15
2.2 Description Logics . 17
2.3 OWL and DL . 21
2.4 F-Logic . 21
2.5 Default Inheritance . 24

3 Towards the Semantic Web 35
3.1 What is an Ontology? . 35
3.2 Knowledge in the Web . 39
3.3 Managing Knowledge . 40
3.4 RDF: A Data Model for the Semantic Web 42
3.5 Querying Semantic Web Data: SPARQL 47
3.6 OWL and Friends . 49
3.7 Hybrid Reasoning . 54
3.8 ECA Rules . 56

4 MARS 59
4.1 Overview . 59
4.2 MARS Components . 60
4.3 ECA Rules in MARS . 62

4.3.1 ECA Rule Markup . 63
4.3.2 Opaque Rule Components 65
4.3.3 Complex Actions . 66
4.3.4 Composite Events . 67

4.4 MARS Ontologies . 67

5 Domain Ontologies 69
5.1 Events and Actions in Domain Ontologies 69
5.2 Rule-Based Definitions . 70

5.2.1 Derivation Rules . 71
5.2.2 ECE Rules . 71

5

5.2.3 ACA Rules . 73
5.2.4 Dynamic Aspects of Actions and Events 74

II SWAN 77

6 Introduction 79
6.1 SWAN Architecture . 79

6.1.1 RDF Storage . 79
6.1.2 User Interface . 80

6.2 Intensional Data: The Reasoning Layer 83
6.2.1 Limitations of the DIG Interface 83
6.2.2 Pellet . 85

6.3 Updates to the Knowledge Base 86
6.3.1 Retract . 87
6.3.2 Assert . 87

6.4 Formal Specification of Updates 88
6.4.1 Graph Updates . 88
6.4.2 Updates to Intensional and Derived Knowledge 89

7 RDF Triggers 93
7.1 Motivation . 93
7.2 Classification of Triggers . 94

7.2.1 Trigger Basics . 94
7.2.2 Notions of Change . 94
7.2.3 Pre-Reasoning Triggers 95
7.2.4 Post-Reasoning Triggers 96
7.2.5 Trigger Evaluation and Redundancy 97
7.2.6 Actions in Trigger Definitions 98

7.3 Formal Specification of Triggers 98
7.3.1 Computing Changes . 98
7.3.2 Trigger Evaluation . 100

8 ACA Rules 103
8.1 Wrapper Components . 103
8.2 An Application Domain Example 104
8.3 Translating Actions into Updates 106
8.4 Conditions in ACA rules . 107

9 Hybrid DL-F-Logic Reasoning 109
9.1 Introduction . 109
9.2 F-Logic . 110

9.2.1 Basic Concepts . 110
9.2.2 Default Inheritance . 112
9.2.3 Comparison of F-Logic with DLs 113

9.3 Florid . 114
9.3.1 Handling of URIs . 114
9.3.2 Built-In Predicates and Object Creation 114
9.3.3 Architecture . 115
9.3.4 Florid Server . 116

9.4 Hybrid Reasoning in SWAN . 117
9.4.1 Evaluation Strategy . 117
9.4.2 Translation . 118
9.4.3 Handling of Default Inheritance Atoms 120
9.4.4 Optimisations . 124
9.4.5 Limitations . 125

9.5 Application . 128

10 Logical Characterisation 131
10.1 Integration into MARS . 131

10.1.1 Characterisation of Events 131
10.1.2 Events and Rules . 133

10.2 Logical Characterisation of ACA Rules 134
10.2.1 Axiomatising Knowledge Base Updates 134
10.2.2 Reasoning About ACA Rules 135

10.3 Logical Characterisation of Triggers 138
10.4 Conclusion . 140

III Results 143

11 Applicability 145
11.1 Technical Details . 145
11.2 Scenario Description . 146
11.3 Rule Specifications . 150
11.4 Summary . 163

12 Discussion 165
12.1 Limitations of DL Reasoning . 165
12.2 Application of Hybrid Reasoning 166
12.3 Problems with Datatypes . 167
12.4 Practicability . 168
12.5 Related Work . 169
12.6 Further Work . 176

13 Conclusions 179

List of Figures 181

Bibliography 181

Acknowledgements 191

Curriculum Vitae 193

8

Part I

Introduction and

Conceptual Background

9

Chapter 1

Introduction

Overview

The World Wide Web radically changed the ways that mankind can deal with
information. Knowledge of any kind is easily accessible in vast abundance. On
the one hand, the availability of data offers new possibilities. On the other
hand, it poses severe problems: How to deal with all the data? How to find
relevant data? How can related information be combined? Data integration
and knowledge management are areas of research that started long before the
beginning of the World Wide Web but become more and more important now
with the growing amount of available data. How can different sources of infor-
mation be integrated? Is it possible to define the meaning of knowledge such
that also a computer can use that knowledge? How can one find information
that is supposed to be somewhere? These are only some of the questions that
we are challenged with right now.

Information is stored everywhere around the world, often it is globally acces-
sible by web services. Such a service infrastructure normally has to be invoked
in a specific manner, which is defined very strictly for each purpose. Often it is
not known whether and where there exists an appropriate service for a certain
task. In such a situation, one has to locate a service and find a way how to
communicate with the newfound service. With the Web Service Description
Language (WSDL), for example, there is a standardisation for the definition of
some of the properties of a web service (interfaces, access mechanisms, and the
like). Although these descriptions are machine-readable, they offer no way for
the specification of the meaning of a service. Hence, the service calls have to be
designed specifically for every service type. This is diametrically opposed to the
expectation of the user who wants to be able to generically call a web service.

A simpler approach in this respect is to send an abstract description of what
should be done to a broker. Everything else should be taken care of without
further interaction. This is, more or less, what the Modular Active Rules for the
Semantic Web framework (Mars) is about. It offers a rule-based architecture
that is driven by events. The behaviour of the application domain is specified
by rules following the well-known ECA paradigm: on the detection of an event
E, given that a condition C is fulfilled, an action A will be executed. This is

11

12 CHAPTER 1. INTRODUCTION

different from usual web services as the calling of the service does not lead to
the execution of procedural code but to rule evaluation. The set of rules is
not fixed, rather it can be altered or extended easily making the term generic
webservice more appropriate.

ECA rules are triggered by events and result in actions, both of which are no-
tions of the application domain and defined in a domain ontology. The domain
ontology defines the vocabulary of an application domain. This is, with regard
to the static aspects of a domain, comparable to the schema of a relational data-
base, only that it can be augmented with rules (or axioms) for the derivation of
further knowledge from what is known. Moreover, a domain ontology allows for
the specification of dynamic aspects, for example, how actions and events can be
correlated and what their pre- and postconditions are. It is important to stress
that events and actions should not be confused with messages. They are abstract
descriptions of what happened or should be done, using the notions of the do-
main ontology. For example, instead of booking a flight by explicitly contacting
a web service http://travel.com/flightbooking?flightno=LH458&date=20081010
or giving an explicit update command to an SQL server (INSERT INTO flight-
table VALUES(’John Doe’, ’LH458’,20081010)) the following abstract action,
given as an XML fragment, is sent to a domain broker: <book-flight passen-
ger=’John Doe’ flightNo=’LH458’ date=’20081010’/>. The broker ensures that
an appropriate service for the action or event is found. The abstract action does
not contain any references to procedural aspects at all, in fact it is completely
left to the recipient how to react to the event or how to implement an abstract
action. The advantage of abstract action definitions and event definitions is
that ECA rules can be specified independently from the actual programming
languages that are used in the domain.

With regard to abstract actions, this means that the recipient will not receive
explicit specifications using an update language (for example SQL). Rather the
application node applies further rules in order to realise actions (which are
notions of the domain vocabulary) as explicit updates (expressed in the specific
language of the underlying storage facilities).

It is one of the contributions of this thesis to show how a knowledge base
can be integrated into an application domain. This integration is not a tight
binding but realised by a mapping of abstract actions of the application domain
to knowledge base updates. Hereby, the integration depends solely on the se-
mantics of actions and not on their procedural aspects. Moreover, a knowledge
base design is presented, which incorporates ideas from active databases. This
knowledge base architecture is called Semantic Web Application Node (Swan).
The behaviour of the application domain node is also defined and driven by rules
that follow the ECA paradigm. There are two different types of rules: Firstly,
there are ACA rules, which map abstract actions to knowledge base updates.
Secondly, there are simple ECA rules in the form of knowledge base triggers.
Both of these rules can be characterised formally such that it is possible to
reason about the consequences of actions in the application domain.

Internally, the Swan architecture uses RDF as a data model and OWL DL
for the description of the domain ontology. While OWL DL is a reasonably
expressive language for describing concepts, it is quite weak when it comes to
the modelling of properties. Furthermore, reasoning with datatypes is not yet

13

fully supported by existing reasoning engines and non-monotonic features like
defaults are not available. As a solution to these problems, the Swan architec-
ture internally uses a hybrid model which combines ontology-based reasoning
with rule-based reasoning. The rule-based component of the hybrid reasoning
process makes use of F-Logic as an additional deductive formalism.

Structure

This work is organised in three parts. Part I comprises Chapters 2 to 5 and
gives an introduction and all necessary conceptual background for this thesis.
Chapter 2 gives the necessary formal background and notational conventions
for subsequent chapters. Chapter 3 offers a comprehensive description of the
development in knowledge representation from the ancient times up to now.
Besides some background to the relevant philosophical and logical questions an
introduction to the conventional languages for knowledge representation is pro-
vided. This chapter is intended mostly for those readers who are not familiar
with the concepts that are common in Semantic Web research. An abridgement
of the Mars framework is presented in Chapter 4. This framework is the envi-
ronment into which the Swan (Semantic Web Application Node) architecture is
integrated. The chapter includes a description of the concepts and a presenta-
tion of the infrastructural components that are used in the Mars architecture.
Chapter 5 shows how domain ontologies are used in the specification of static
and dynamic aspects of an application domain.

Part II contains the main contribution of this thesis and comprises the Chap-
ters 6 to 10. Chapter 6 starts with an overview about the Swan architecture
and gives details about the update mechanism of the knowledge base. This
is followed by a description of the concept and implementation of knowledge
base triggers in Chapter 7. The ACA rule mapping component is explained in
Chapter 8. By this component it is possible to combine the architectures of
Mars and Swan. Next, the hybrid reasoning component of Swan is presented
in Chapter 9. Both kinds of rules in Swan, ACA rules and triggers, are logically
characterised in Chapter 10, showing how the behaviour of the Swan node can
be specified.

Part III completes this work with Chapters 11 to 13. Chapter 11 gives a
description of travel booking as a motivating example scenario. It demonstrates
how the application domain behaviour can be specified by a set of rules and
how actions and events interact hereby. In Chapter 12 a discussion, a look on
related work, and an outlook to further work can be found. Finally, in Chapter
13 some conclusions are presented.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Formal Preliminaries

This section gives an introduction to the logical formalisms that are used through-
out this work. The semantics of first order logic is given in Section 2.1. This
is followed by the formal definition of the semantics of the Description Logic
SHOIN (D) in Section 2.2. This fragment corresponds to the fragment OWL
DL of the Web Ontology Language which is used in this work. Section 2.4
contains the formal definition of F-Logic. Finally, classical default theory, de-
fault inheritance and the application of defaults in an OWL knowledge base are
formally introduced in Section 2.5.

2.1 First-Order Logic

Each first-order language contains a set of distinguished symbols, consisting
of parentheses “(” and “)”, constants true, false representing the truth values,
boolean connectives ¬, ∧, ∨, →, quantifiers ∀, ∃, and an infinite set of variables
x, y, x1, x2, . . . which is denoted by Var. For first-order logic with equality,
additionally the equality symbol “=” is part of the language.

An individual first-order language is then given by its signature Σ. Σ is
partitioned into a functional part ΣF of function symbols and a relational part
ΣR of predicate symbols, each of the symbols with a given arity which is denoted
by ord(f) and ord(p), respectively. 0-ary functions are also called constants, 0-
ary predicate symbols are called propositional atoms.
The set TermΣ of terms over Σ is defined inductively as

• each variable is a term,

• for f ∈ ΣF , ord(f) = n and terms t1, . . . , tn, also f(t1, . . . , tn) is a term.

The set of atomic formulas over Σ is given as

AtΣ := {s = t | s, t ∈ TermΣ}∪
{p(t1, . . . , tn) | p ∈ ΣR, ord(p) = n, t1, . . . , tn ∈ TermΣ} .

The set of first-order formulas, FOΣ over Σ is defined as the least set with the
following properties:

• all atomic formulas are formulas,

15

16 CHAPTER 2. FORMAL PRELIMINARIES

• true and false are formulas,

• for formulas A and B, a variable x, ¬A, A ∨ B, and ∃x : A are formulas
(additionally, A∧B and ∀x : A are derived as abbreviations for ¬(¬A∨¬B)
and ¬∃x : ¬A, respectively).

The notions of bound and free variables are defined in the usual way, free(F)
denoting the set of variables occurring free in a set F of formulas.

A substitution (over a signature Σ) is a mapping σ : Var → TermΣ where
σ(x) 6= x for only finitely many x ∈ Var. σ : σ(x) = t is written as [x ← t].
Substitutions are extended to terms and formulas as usual.
The semantics of first-order logic is given by first-order structures over a given
signature:

Definition 2.1 (First-Order Structure)
A first-order structure I = (I,U) over a signature Σ consists of a nonempty set
U (universe) and an interpretation I of the signature symbols over U which
maps

• every constant c to an element I(c) ∈ U ,

• every n-ary function symbol f to an n-ary function I(f) : Un → U ,

• every propositional atom A to a truth value I(A) ∈ {t,f},

• every n-ary predicate symbol p to an n-ary relation function I(p) : Un →
{t,f}.

For short, I consists of two mappings IF : ΣF → (Uω → U) and IP : ΣR →
(Uω → {t,f}).1

For a given signature Σ, the set of all first-order structures over Σ is denoted
by SΣ. The set of interpretations of a signature Σ with a given universe U is
denoted by IΣ,U . 2

A variable assignment over a universe U is a mapping

χ : Var→ U .

The set of variable assignments is denoted by Ξ.
For a variable assignment χ, a variable x, and d ∈ U , the modified variable
assignment χd

x is identical with χ except that it assigns d to the variable x:

χd
x : Var→ U :

{
y 7→ χ(y) if y 6= x ,
x 7→ d otherwise.

Every structure I induces an evaluation I of terms

I : TermΣ × Ξ→ U

and tuples of terms, I : Termn
Σ × Ξ→ Un, as follows:

I(x, χ) := χ(x) for a variable x ,
I((t1, . . . , tn), χ) := (I(t1, χ), . . . , I(tn, χ)) for terms t1, . . . , tn ,
I(f(t1, . . . , tn), χ) := (I(f))(I((t1, . . . , tn), χ)) = (I(f))(I(t1, χ), . . . , I(tn, χ))

for a function symbol f ∈ Σ, ord(f) = n and terms t1, . . . , tn.

1the equivalent definition of a predicate as a relation I(p) ⊆ Un is not followed here since
in the sequel also partial interpretations are needed.

2.2. DESCRIPTION LOGICS 17

To indicate the truth of a formula F in a structure I under a variable assignment
χ, the standard notation |=FO (or simply |=) is used: Let s, t be terms, p a
predicate symbol, ord(p) = n, t1, . . . , tn terms, x a variable, A and B formulas.
Then

(I, χ) |= true ,
(I, χ) |= p(t1, . . . , tn) :⇔ (I(t1, χ), . . . , I(tn, χ)) ∈ I(p) ,
(I, χ) |= ¬A :⇔ not (I, χ) |= A ,
(I, χ) |= A ∨B :⇔ (I, χ) |= A or (I, χ) |= B ,
(I, χ) |= ∃x : A :⇔ there is a d ∈ U with (I, χd

x) |= A .

The symbols A∧B := ¬(¬A∨¬B), A→ B := ¬A∨B and ∀x : F := ¬∃x : ¬F
are defined as usual.

2.2 Description Logics

Description logics (DL) are a family of logic-based knowledge representation
formalisms [BCM+03]. Knowledge is described in terms of concepts, roles and
individuals, hence the name description logics.

The most basic DL is AL (“attributive language”), from which other de-
scription languages differ in expressivity by allowing or disallowing parts of the
language constructs. In AL, concepts can be defined using concept conjunction
(⊓), negation (¬) of atomic concepts, limited existential quantification (∃R.⊤
with ⊤ as the only allowed filler) and universal restrictions (∀R.C). Further-
more, the bottom concept (⊥) and the top concept (⊤) are available.

Extensions to AL are indicated by the use of single letters, appended to the
logics name, according to the following schema:

U concept union
E full existential quantification
C negation of arbirary concepts
I inverse roles
N unqualified role restrictions (number restrictions)
Q qualified cardinality restrictions
H role hierarchies
R+ transitive roles
F functional properties
O nominals

Note that U and E can be expressed by C. AL without atomic negation is
named FL− (“frame language”), whereas FL0 denotes AL without existential
quantification. Usually, ALC plus transitively closed primitive rolesR+ is called
S.

The ontology description language OWL can be seen as a syntactic variant
of the description logic SHOIN (D). In the following, the syntax and semantics
of SHOIN (D) are given.

Concept Descriptions. The elementary descriptions in a DL knowledge base
are atomic concepts and atomic roles. Concepts are the building blocks and
can be seen as classes of individuals. Complex descriptions can be built from

18 CHAPTER 2. FORMAL PRELIMINARIES

combinations of atomic concepts, roles, and the concept constructors that the
logic offers. Individuals are objects that can belong to any number of concepts.
Properties of individuals and their relationships can be modeled with roles.
Rolefillers can be either objects (individuals) or literals. The latter are concrete
datatypes, and it depends on the particular Description Logic, which kind of
datatypes are supported. If a DL is parameterised with a set D of datatypes,
this is indicated with an appended ′(D)′ to the DL’s name. Datatypes can be
used in such logics via concrete roles.

Definition 2.2 (Syntax)
The set of SHOIN (D) concepts is defined by the following syntactic rules,
where A is an atomic concept, C and D are concept descriptions, R is an
abstract role, S is an abstract simple role, Ti are concrete roles, d is a concrete
domain predicate, ai and ci are abstract and concrete individuals, respectively,
and n is a non-negative integer.

C → ⊤ | ⊥ | A | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃R.C | ∀R.C |

≥ nS | ≤ nS | {a1, . . . , an} | ≥ nT | ≤ nT |

∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

If more than one type of constructor occurs, the precedence order {¬} >
{∃,∀} > {⊓,⊔} applies. 2

Definition 2.3 (Semantics)
Let Nrole be the set of role names and Ncon the set of concept names. Fur-
thermore let Nind be the set of individual names. Ncon, Nrole and Nind are
pairwise disjoint finite sets. The formal semantics of the basic DL concepts
is defined by an interpretation I that consists of a non-empty set ∆I (the do-
main of interpretation) and an interpretation function ·I , which assigns to every
concept C ∈ Ncon a set CI ⊆ ∆I , to every role R ∈ Nrole a binary relation
RI ⊆ ∆I ×∆I and aI ∈ ∆I to every individual a ∈ Nind.

The interpretation function is extended to concept descriptions according to
the following inductive definition:

top concept ⊤I = ∆I

bottom concept ⊥I = ∅
concept negation (¬C)I = ∆I\CI

conjunction (C ⊓D)I = CI ∩DI

disjunction (C ⊔D)I = CI ∪DI

value restriction (∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
existential quant. (∃R.⊤)I = {a ∈ ∆I | ∃b.(a, b)}
full existent. quant. (∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}
at-most restriction (≤ nR)I = {a ∈ ∆I | #{b | (a, b) ∈ RI} ≤ n}
at-least restriction (≥ nR)I = {a ∈ ∆I | #{b | (a, b) ∈ RI} ≥ n}
nominals {a1, . . . , an}

I = {aI
1 , . . . , aI

n}

The cardinality of a set S is denoted by #S.

The concepts and roles of a DL ontology are related by the use of axioms,
namely equality (≡) and inclusion (⊑). The validity of an axiom ǫ (either a

2.2. DESCRIPTION LOGICS 19

concept or a role axiom) in an interpretation I is called a model of ǫ, which
is denoted by I |= ǫ and defined as follows: I |= (C ⊑ D) iff (CI ⊆ DI) and
I |= (C ≡ D) iff (CI = DI).

Equivalence of two concepts C and D is given if CI = DI and is denoted
with C ≡ D. A concept D includes another concept C if CI ⊆ DI . This is
denoted with C ⊑ D.
I satisfies a set of axioms E iff I satisfies each element in E, in that case I is

called a model of E. Two sets of axioms E1 and E2 are equivalent if they have
the same models. In the same way E1 is entailed by E2 (denoted by E2 |= E1

if all of the models of E1 are also models of E2. 2

Definition 2.4 (Knowledge Base)
A SHOIN (D) knowledge base K = 〈T ,R,A〉 consists of a TBox T , an ABox
A and an RBox R. The notions of a TBox, an ABox and an RBox are explained
in the following.

TBox. A TBox T consists of a finite set of terminological axioms, either con-
cept inclusion axioms C ⊑ D or equality axioms C ≡ D for concepts C and D.
An equation where the left-hand side is an atomic concept is called a definition
(of that concept): new concepts are defined in terms of previously defined con-
cepts. The use of concept inclusion (⊑) is called an incomplete definition or a
specialisation.

Let Ncon have partitions Nconb
and Ncond

being the sets of base concept
names and defined concept names. Base concept names occur only on the
right-hand side of axioms, whereas defined concept names occur on the left-
hand side of some axioms. Hence, the terminology defines the defined names
in terms of base names. A ≡ C is a definition of A for A ∈ Ncond

and C over
Ncon, Nrole, and Nnom.

A terminology is unequivocal such that there is at most one definition for
every atomic concept A ∈ Ncon.

A terminology is acyclic iff T is of the form {Ai ≡ Ci | 1 ≤ i ≤ n} such
that for every i ∈ {1, . . . , n} only defined names from {A1, . . . , Ai−1} occur in
Ci.

RBox. An RBox R is a finite set of role inclusion axioms of the form R ⊑ S
where R and S are abstract roles. An abstract role is an abstract role name
or the inverse R− of an abstract role name R. A set of abstract role names
Nrole consists of transitive role names R+ and normal role names RP where
R+∩RP = ∅. The set of abstract roles can be defined as Nrole∪{R−|R ∈ Nrole}.
A role hierarchy is a finite set of role inclusion axioms.

An interpretation I consists of a non-empty set ∆I (the domain of interpre-
tation) and an interpretation function ·I , which maps every role to a subset of
∆I ×∆I such that, for P ∈ Nrole and R ∈ R+

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P− , and if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI , then 〈x, z〉 ∈ RI .

Role composition ’◦’ is interpreted as an associative binary operator with
rI1 ◦ rI2 := {(x, z) | (x, y) ∈ rI1 ∧ (x, z) ∈ rI2 } for every r1, r2 ∈ Nrole.

A role inclusion axiom is defined by r1 ◦ · · · ◦ rn ⊑ r for n ∈ N+ and
r1, . . . , rn, r ∈ Nrole. A simple role is a role that has no transitive sub-roles
(where n = 1).

20 CHAPTER 2. FORMAL PRELIMINARIES

To avoid considering roles such as R−−, a function Inv is defined on roles such
that Inv(R) = R− if R is a role name, and Inv(R) = S if R = S−. For an RBox
R a role hierarchy R+ is defined as

R+ := (R∪ {Inv(R) ⊑ Inv(S) | R ⊑ S ∈ R},⊑∗)

where ⊑∗ is the transitive-reflexive closure of ⊑ overR∪{Inv(R) ⊑ Inv(S) | R ⊑
S ∈ R}.

An interpretation I satisfies a role hierarchy R+ iff RI ⊆ SI for each R ⊑∗

S ∈ R+, which is denoted by I |= R+ . I is then a model of R+ (recall that
R+ is a set of axioms).

ABox. An assertional box (ABox) A is a finite set of concept and role assertions
C(a), R(a, b), T (a, c) plus individual (in)equality relations a

.
= b and a 6

.
= b.

The interpretation I maps each individual a ∈ Nind to an element aI ∈ ∆I .
It is assumed (following the unique name assumption) that distinct individual
names denote distinct objects. Therefore, for distinct individuals a, b ∈ Nind

holds aI 6= bI . Note that this is handled strictly different in OWL where no
UNA can be applied, as will be shown later. Moreover, I satisfies the concept
assertion C(a) if aI ∈ CI and the role assertion R(a, b) if (aI , bI) ∈ RI . I |= A
iff I satisfies each assertion in A and is then called a model of the ABox A.

If an interpretation I is a model of an ABox A, an RBox R and a TBox T ,
it satisfies A with respect to R and T .

I is a model of a knowledge base K iff I is a model of each component T ,R
and A. 2

Definition 2.5 (Concrete domain)
DL knowledge bases are not only capable of defining structural properties of
concepts, moreover quantitative properties can be expressed. Accordingly, there
exists the notion of concrete domains that express the availability of concrete
data types (e.g. strings or integers) in role definitions.

Let Nrolec
be the set of concrete role names cr. Every cr in Nrolec

must be
interpreted by a mapping ∆I

D → 2D . Furthermore let a concrete domain D be
a pair 〈∆D,ΦD〉, where ∆D is an interpretation domain and ΦD a set of concrete
domain predicates d over that domain with a predefined arity n ∈ N\{0} and
an interpretation dD ⊆ ∆n

D. For every d ∈ ΦD with arity n and cr1, . . . , crn ∈
Nrolec

, d(cr1, . . . , crn) is a concrete domain restriction. An interpretation I is a
pair (∆I , ·I) consisting of a non empty set ∆I (the domain) that is disjoint from
∆D and an interpretation function ·I , d(cr1, . . . , crn) is interpreted as follows:

d(cr1, . . . , crn)I := {x ∈ ∆I | ∃y1, . . . , yn ∈ ∆D :

crIi (x) = yi for all 1 ≤ i ≤ n

∧ (y1, . . . , yn) ∈ ΦD}.

For instance, consider the concrete domain D = (ND,ΦD) over the set of
natural numbers N. Let Φ = {≥12,≥16,≥18,≥21} be the set of concrete domain
predicates in this example. The interpretation of the predicate ≥12 is ≥D

12=

2.3. OWL AND DL 21

{(x) ∈ N | x ≥ 12} = {12, 13, 14, 15, . . .}, denoting the set of integers equal or
greater than 12. Given that {hasAge} ∈ P, the concept of GrownUpPerson
can be defined as persons being at least 18 years old, similarly the concept
AdultPerson requiring an age of at least 21.

GrownUpPerson ⊑ Person ⊓ ≥18 (hasAge)

AdultPerson ⊑ Person ⊓ ≥21 (hasAge)

Note that this notation for concrete domain predicates should not be con-
fused with role restrictions. For example,

ExtendedFamilyPerson ≡ ≥ 6 hasChild ⊓ Person

defines the concept of persons having at least 6 children.

Binary concrete predicates can be used likewise, e.g. ≤ which is interpreted
by ≤D= {(x, y) ∈ N | x < y}. For example, the concrete roles shoesize and
IQ can thus be related: ≤ (shoesize, IQ).

2.3 OWL and DL

Most of the examples in this work are not given in description logic directly.
Rather the Web Ontology Language variant OWL-DL is used as the ontology de-
scription language. Whereas in OWL-Full (and RDFS) classes can be instances
of both themselves and other classs, this is forbidden in OWL-DL. This is the
most prominent reason that allows to relate OWL-DL to the description logic
SHOIN (D) [HPS04] such that computing ontology entailment in OWL-DL has
the same complexity as computing knowledge base satisfiability in SHOIN (D).
For the extension from SHOIN (D) to SHOIQ(D) another decision procedure
was found that (although SHOIQ(D) is NExpTime-complete) performs well
in typical cases [HS07]. A recent extension to OWL is OWL1.1, which was a
W3C working draft at the time of writing of this thesis and extends the expres-
siveness of the underlying DL to SHROIQ(D).

Table 2.3 shows most of the common axioms in OWL (including RDF and
RDFS axioms) and how they correspond to DL expressions. Reasoners for OWL
like Pellet, Racer or FaCT++ support full OWL-DL.

Entailment in OWL is defined as usual and is denoted by |=OWL.

2.4 F-Logic: Language and Basic Concepts

The following section gives a formal definition of the deductive object-oriented
database language F-Logic [KLW95].

Definition 2.6 (Syntax of F-Logic)

The syntax of F-Logic (without multivalued methods and schema reasoning) is
defined as follows:

22 CHAPTER 2. FORMAL PRELIMINARIES

OWL : x ∈ C DL Syntax
C C
intersectionOf(C1, C2) C1 ⊓ C2

unionOf(C1, C2) C1 ⊔ C2

complementOf(C1) ¬C1

oneOf(x1, . . . , xn) {x1} ⊔ . . . ⊔ {xn}

OWL : x ∈ C,Restriction on P DL Syntax
someValuesFrom(C ′) ∃P.C ′

allValuesFrom(C ′) ∀P.C ′

hasValue(y) ∃P.{y}
maxCardinality(n) ≤ n.P
minCardinality(n) ≥ n.P
cardinality(n) n.P

OWL Class Axioms for C DL Syntax
rdfs:subClassOf(C1) C ⊑ C1

equivalentClass(C1) C ≡ C1

disjointWith(C1) C ⊑ ¬C1

OWL Individual Axioms DL Syntax
x1 sameAs x2 {x1} ≡ {x2}
x1 differentFrom x2 {x1} ⊑ ¬{x2}
AllDifferent(x1, . . . , xn)

∧

i6=j{xi} ⊑ ¬{xj}

OWL Properties DL Syntax
P P

OWL Property Axioms for P DL Syntax
rdfs:range(C) ⊤ ⊑ ∀P.C
rdfs:domain(C) C ⊒ ∃P.⊤
subPropertyOf(P2) P ⊑ P2

equivalentProperty(P2) P ≡ P2

inverseOf(P2) P ≡ P−
2

TransitiveProperty P+ ≡ P
FunctionalProperty ⊤ ⊑ ≤1P.⊤
InverseFunctionalProperty ⊤ ⊑ ≤1P−.⊤

Table 2.1: Translation from OWL to DL.

2.4. F-LOGIC 23

• The alphabet consists of a set F of object constructors, playing the role
of function symbols, a set V of variables, and several auxiliary symbols.
Object constructors are denoted by lowercase letters and variables by up-
percase ones.

• id-terms are composed from object constructors and variables. They are
interpreted by elements of the universe.

In the sequel, let O, O1, . . . , On, C, D, M , and V denote id-terms.

• An is-a atom is an expression of the form O : C (object O is a member of
class C), or C :: D (class C is a subclass of class D).

• The following are object atoms:

– O[M→V]: applying the scalar method M to O – as an object – results
in V ; in logical terms, scalar methods (without parameters) are unary
functions over the domain of objects (also called functional methods).

– O[M•→V]: O – as a class – provides the inheritable scalar method M .
For a member o : O, inheritance results in o[M→V]; for a subclass c :: O,
inheritance results in c[M•→V].

– Analogously O[M@(O1, . . . , On)→V] and O[M@(O1, . . . , On)•→V] with
n ∈ IN for parameterised methods.

• Formulas are built from atoms using first-order logic connectives.

• An F-Logic rule is a logic rule of the form head ← body over F-Logic’s
atoms.

• An F-Logic program is a set of rules. 2

Note that F-Logic does not distinguish between classes, methods, and objects
which uniformly are denoted by id-terms; also variables can occur at arbitrary
positions of an atom.

The semantics of F-Logic extends the semantics of first-order predicate logic.
Formulas are interpreted over a semantic structure. The discussion is restricted
to Herbrand-interpretations where the universe consists of ground id-terms. An
H-structure is a set of ground F-Logic atoms describing an object world, thus
it has to satisfy several closure axioms related to general object-oriented prop-
erties:

Definition 2.7 (Closure Axioms)
A (possibly infinite) set H of ground atoms is an H-structure if the following
conditions hold for arbitrary ground id-terms u, u0, . . . , un, and um occurring
in H:

• u :: u ∈H (subclass reflexivity),

• if u1 :: u2 ∈H and u2 :: u3 ∈H then u1 :: u3 ∈H (subclass transitivity),

• if u1 :: u2 ∈H and u2 :: u1 ∈H then u1 = u2 ∈H (subclass acyclicity),

• if u1 : u2 ∈ H and u2 :: u3 ∈ H then u1 : u3 ∈ H (instance-subclass
dependency),

24 CHAPTER 2. FORMAL PRELIMINARIES

∗ there are no ground id-terms u and u′ (u 6= u′) such that u0[um;u] ∈H

and u0[um;u′] ∈ H, where ; stands for → or •→ (uniqueness of scalar
methods; recall that from the logical point of view, they define functions).

For a set M of ground atoms, Cℓ(M) denotes the closure of M wrt. the above
axioms, Cℓ(M) = ⊥ if the constraint (∗) is violated in M .
ThFL(F) denotes the F-Logic theory of a set F of formulas which means the
closure of F wrt. a complete set of axioms of first-order logic and the axioms

X :: X
X1 :: X2 , X2 :: X3

X1 :: X3

X1 :: X2 , X2 :: X1

X1 = X2

X1 : X2 , X2 :: X3

X1 : X3

O[M;V] , O[M;V ′] , V 6= V ′

false

(again, ; stands for → or •→.) 2

For an H-structure, the truth of atoms and formulas is given in the usual way
[KLW95]. Positive F-Logic programmes are evaluated bottom-up by a TP -like
operator including Cℓ, providing a minimal model semantics:

Definition 2.8 (Deductive Fixpoint)
For an F-Logic programme P and an H-structure H,

TP (H) := H ∪ {h | (h← b1, . . . , bn) is a ground instance of some rule of P
and bi ∈H for all i = 1, . . . , n} ,

T 0
P (H) := Cℓ(H) ,

T i+1
P (H) := Cℓ(TP (T i

P (H))) ,

Tω
P (H) :=

{
limi→∞ T i

P (H) if the sequence T 0
P (H), T 1

P (H), . . . converges,
⊥ otherwise.

Note that Cℓ(H) = ⊥ can also lead to the result ⊥. 2

The above TP -operator does not deal with inheritance. In [KLW95], inherit-
ance-canonic models are defined, based on inheritance triggers which extend
the above fixpoint semantics with some procedural flavour. Note that although
default inheritance is a standard feature of F-Logic that is provided by the
Florid implementation it is not used directly in the process of hybrid reasoning
(see Section 9.4.3) in this work. Rather the default inheritance rules given in
F-Logic are interpreted “outside” of Florid.

2.5 Default Inheritance

Semantics of Default Logic

A default is given in the following way, following the definition of Reiter [Rei80,
Poo94]:

d =
α : β1, . . . , βn

w

where d consists of a precondition p(d) = α, a justification J(d) = β = β1, . . . , βn

and a consequence c(d) = w, all given as first-order formulas. If α is fulfilled and

2.5. DEFAULT INHERITANCE 25

all β can be assumed consistently, w can be concluded. When the justifications
are consistent, the default is equivalent to a logic rule w ← α.

A default theory E is typically given as a pair 〈D,F 〉, where D is a set of
defaults and F a set of formulas (background theory or world description). If
a default rule can be applied safely to a theory, it’s consequences are added to
the theory.

Example 2.1
Two defaults define that birds fly and have feathers:

d1 =

{
bird(X) : flies(X)

flies(X)

}

, d2 =

{
bird(X) : hasFeathers(X)

hasFeathers(X)

}

Let D = {d1, d2} and F = {bird(penguin),¬flies(penguin), bird(raven)}.
From the first rule and bird(penguin) follows that the prerequisite is true, but
the justification is inconsistent with what is known. Therefore the consequence
cannot be assumed. On the other hand, flies(raven) can be concluded, as there
is no contradictory justification to it. Both ravens and penguins have feathers.
Now the consequences from the second rule {flies(raven), hasFeathers(raven),
hasFeathers(penguin)} are added to the background theory F . 2

If no other default rule can be applied to the theory, it is called an extension
of the default theory.

The following examples are intended to illustrate the semantical difficulties
that are possible with the use of defaults and inheritance:

Example 2.2 (Nixon Diamond)
It is known that Nixon is a republican and a quaker. A typical republican’s policy
is being a hawk, the typical policy of a quaker is being a pacifist. Now, there is
a direct conflict with Nixons policy.

d1 =

{
quaker(X) : pacifist(X)

pacifist(X)

}

, d2 =

{
republican(X) : hawk(X)

hawk(X)

}

F = {quaker(nixon), republican(nixon)}

The following lines show the same example in F-Logic syntax:

P = {quaker[policy•→pacifist], republican[policy•→hawk],
r nixon : quaker, r nixon : republican}. 2

The first default’s justification is that quakers are pacifists, whereas the justi-
fication of the second default is that republicans are hawks. As both defaults
can be applied there are two possible extensions to the default theory: one that
contains the conclusion pacifist(nixon), the other the conclusion hawk(nixon).

Considering that the rules might be applied in different order, a default the-
ory might have several different extensions or none at all. Depending on the
semantics there is a distinction between credulous (brave) and sceptical (cau-
tious) reasoning. The latter means that a formula δ is a consequence of the
default theory iff it is in all extensions, whereas the first means that it is a
consequence iff it is in any of the extensions.

If defaults and rules are combined, the situation is even more complicated:

26 CHAPTER 2. FORMAL PRELIMINARIES

Example 2.3 (Nixon Family)

A single rule is added to the Nixon-Diamond example:

W[policy→P]←W[husband→O] ∧ O[policy→P]

and the atoms mrs nixon[husband→r nixon] and mrs nixon : quaker . 2

Now, there are the following possibilities:

• r nixon inherits r nixon[policy→hawk] and from this, classical deduction
derives mrs nixon[policy→hawk]. In this case, mrs nixon[policy→pacifist]
must not be inherited – thus, she is an atypical quaker.

• r nixon inherits r nixon[policy→pacifist] – in which case classical deduction
derives mrs nixon[policy→pacifist] which is the same value as she would
(have) inherit(ed) from being a quaker.

• mrs nixon[policy→pacifist] is assigned first. Although there is no direct
conflict when inheriting r nixon[policy•→hawk] the logical consequences re-
quire mrs nixon[policy•→hawk] which is inconsistent with the already in-
herited facts. A correct semantics should not inherit in this situation and
leave the policy property for r nixon undefined.

In Default Logic a default only applies if its justification is consistent with
the resulting structure whereas in inheritance nets such indirect conflicts are
taken care of, called mixed conflicsts [Hor].

Default Inheritance in F-Logic

The implementation of default inheritance in the hybrid reasoning engine in
Swan (see Section 9.4) is, with regard to its semantics, quite similar to the one as
described in [MK01] for Florid. Whereas the implementation of Florid uses
inheritance triggers, this work implements the cautious inflationary extensions
as proposed in [MK01].

In order to illustrate the combination of inheritance and defaults the Tweety
example is given (here in F-Logic syntax):

Example 2.4
P = {bird[fly•→true], bird[hasFeathers•→true], penguin[fly•→false],

penguin :: bird, tweety : penguin} .
With the above definition, Cℓ(P) = P ∪ {tweety : bird}. Here, tweety should
inherit tweety[fly→false] from penguin, not tweety[fly→true] from bird since the
potential inheritance of tweety[fly→true] from bird is preempted by the interme-
diate class penguin[fly•→false].
On the other hand, the property [hasFeathers•→true] should be inherited from bird
to penguin[hasFeathers•→true] and to tweety[hasFeathers→true]. 2

This example motivates one of the strategies which are applied in the sequel:
properties are inherited stepwise downwards the class hierarchy.

The result of this section is that application of inheritance has to deal with
two kinds of facts:

2.5. DEFAULT INHERITANCE 27

1. explicit: checking the superclass condition that inheritance is not pre-
empted, and the requirement that the method to be inherited is not yet
defined,

2. implicit: there can be facts which would be inconsistent with the inherited
property, although they are not rejected by (1).

Inheritance in Default Logic

In an inheritance framework, the superclass condition belongs to (1); whereas
the checks that inheritance is not preempted and that the inherited value must
be consistent with the knowledge (wrt. the logical rules of the program) fall
under (2).

For characterizing inheritance, only a specialised form of defaults is needed,
called semi-normal defaults. Semi-normal defaults are of the form α(x̄):β(x̄)/w(x̄)
where the precondition α(x̄) is a conjunction of atoms, the consequence w(x̄)
is also an atomic formula, and ∀x̄ : β(x̄) → w(x̄) holds. Translating the path-
based concept of inheritance networks, inheritance in F-Logic syntax can be
specified by defaults of the form

D′
inh :=

O : C , C[M•→V] , φpath(O − C1 − . . .− Cn − C) :
φnot preempted(O − C1 − . . .− Cn − C,M•→V) , O[M→V]

O[M→V]

(analogous for C ′ :: C)
where φpath is a meta-predicate which states that O − C1 − . . . − Cn − C is a
path in the class hierarchy, and φnot preempted(O − C1 − . . . − Cn − C,M•→V)
is a meta-predicate which states that inheritance of M•→V along the path O −
C1 − . . . − Cn − C is not preempted; i.e. that c′[M•→V] is consistent for all
intermediate classes c′ on this path. Note, that for an H-structure H, o[m→v]
can only be assumed consistently if there is no v′ 6= v such that o[m→v] ∈ H.
To avoid decoupling, inheritance along a path requires the inheritable property
to be present in all intermediate classes:

Dinh =
O : C , C[M•→V] :
∀C ′((O : C ′ ∧ C ′ :: C)→ C ′[M•→V]) , O[M→V]

O[M→V]
.

(analogous for C ′ :: C.)

Due to the fact that variables are also allowed at class and method positions,
every instance of inheritance of an inheritable non-parameterised scalar method
(which are denoted by •→) is an instance of the above default schema.

Extensions

The semantics of a default theory is defined in terms of extensions. In the
following, for a set S of formulas, let Th(S) denote the theory of S.2

2wrt. the respective framework, e.g. , propositional, first-order, F-Logic or DL.

28 CHAPTER 2. FORMAL PRELIMINARIES

Definition 2.9 (Extension; based on [Poo94])

Let ∆ = (D,F) be a default theory. For sets S, T of formulas, let

GD(S, T,D) := {d | d is an instance of a default in D,
Th(T) |= p(d) , and
Th(S ∪ {β}) is consistent for every β ∈ J(d)}

(GD stands for generating defaults). Then, for all sequences S0 = F, S1, S2, . . . Sη

of sets of formulas s.t. S = (
⋃∞

i=0 Si) and

Si+1 = Si ∪ Ci where Ci = c(GD(S, Si,D)) ,

Th(S) is an extension of ∆. Since S is needed later on, it is called an extension
base of ∆. 2

Definition 2.10

Let D be a set of defaults and S a set of formulas. Then,

• GD(S,D) := GD(S, S,D) is the set of applicable defaults in S,

• GD+(S,D) := {d ∈ GD(S,D) | c(d) /∈ Th(S)} is the set of applicable
defaults which add knowledge not (yet) contained in S. 2

Remark 2.1

Note that in Definition 2.9, Si = F ∪
⋃

j=0,...,i−1 Cj and S = F ∪
⋃∞

i=0 Ci =

F∪c(GD(S,D)) and GD+(S,D) = ∅, i.e., for all defaults d which are applicable
in S, the consequence of d is in S. 2

In [Mak94], this is termed a quasi-inductive definition: in the step i→ i+1, all
βj are required to be consistent with Th(S) = Th(

⋃∞
i=0 Si), thus, assumptions

about future stages are made (note that in contrast, the evaluation of p(d)
does not use S). S must be guessed to prove that it is an extension, then it
can be checked if S is the result of the fixpoint process. Note that, depending
on which assumptions are made, there can be several different extensions (cf.
Example 2.2).

Forward Chaining Evaluation

Motivated by the fixpoint semantics for positive logic programmes, the evalua-
tion of logic programmes with inheritance should also be based on a forward-
chaining approach, i.e., without having to guess S first. From Definition 2.9, a
forward-chaining, inflationary strategy can be defined by replacing “Th(S∪{β})
is consistent” with “Th(Si∪{β}) is consistent”, i.e., evaluating defaults against
the current belief set. In contrast to Definition 2.9, in every step the applica-
tion of exactly one default is allowed. (May and Kandzia showed in [MK01]
that this makes no difference as long as only positive programmes and defaults
with positive preconditions are considered). The next section contains a review
of the results from [MK01] which will then be applied applied to DL knowledge.

2.5. DEFAULT INHERITANCE 29

Definition 2.11 (Inflationary extension)

Let ∆ = (D,F) be a default theory. Let AD be the set of applied defaults,
AD0 = ∅ and S0 = F, S1, S2, . . . , Sη be a sequence of sets of formulas such that

di ∈ GD+(Si,D) , ADi+1 = ADi ∪ {di} , Si+1 = Si ∪ {c(di)} ,

and GD+(Sη,D) = ∅ (for the definition of GD+ see Def. 2.10). Then, with
S = (

⋃

i=0,...,η Si), Th(S) is called an inflationary extension of ∆; S is called
an inflationary extension base of ∆. 2

Remark 2.2
Note that again, Si = F ∪

⋃

j=0,...,i−1{c(dj)} and S = F ∪
⋃

i=0,...,η{c(di)} and

GD+(S,D) = ∅. Nevertheless, it will be shown that in general there can be dj

such that dj /∈ GD(S,D). 2

This approach is, e.g. , investigated in [MST93, Section 3.7, Def. 3.61]. As shown
there, the above method is complete, but not sound: it generates theories which
are no extensions. This problem can be solved in two steps.

Proposition 2.1 (Extensions vs. Inflationary Extensions)

Let ∆ = (D,F) be a Default theory.

1. Every extension S of ∆ is also an inflationary extension of ∆, and

2. Let S be an inflationary extension computed by the algorithm given in
Definition 2.11. If for every β ∈ J(ADη), β is consistent with S, then S
is an extension of ∆. 2

Proof 1. cf. [MST93, Cor. 3.68 and 3.71, Th. 3.73].

2. cf. [MST93, Th. 3.65]. 2

The strategy is inflationary in the sense that a default which has been once
applied is not undone (which would require to undo also all its logical conse-
quences) if in a later step one of its justifications turns out to be wrong which
is exactly the tested criterion in (2) of the above proposition.

Motivation. There are two alternatives how to deal with this problem: (i)
forbid the application of defaults whose justifications will be falsified later, or
(ii) forbid the application of a default whose logical consequences would falsify
the justifications of another default which has been applied earlier.

The notion of extensions includes (i) whereas (ii) is much easier to imple-
ment. (i) leads to theories where no further default is applicable whereas (ii)
can lead to structures where some defaults are still applicable. On the other
hand (i) does not guarantee that such a structure exists, whereas a structure
satisfying (ii) always exists.

It will be shown that (ii) is weaker than (i), but the difference can be con-
trolled in case of inheritance.

30 CHAPTER 2. FORMAL PRELIMINARIES

Example 2.5

Consider a default theory ({d1, d2}, F) such that GD(F, {d1, d2}) = {d1, d2},
GD(F ∪ c(d1)) = d2, GD(F ∪ c(d2)) = ∅, and c(d2)→ ¬J(d1).
Here, both T1 = Th(F ∪ c(d2)) and T2 = Th(F ∪ c(d1) ∪ c(d2)) are inflationary
extensions. T1 is the only extension. T2 is not an extension since T2 |= ¬J(d1),
thus, the justification of d1 is falsified by application of d2.
T3 = Th(F ∪c(d1)) is not an inflationary extension (and also not an extension)
since GD+(T3,D) = d2.
The strategy (ii) above would result in T1 and T3 as acceptable structures. 2

Cautious inflationary extensions are defined similar to Definition 2.11, following
strategy (ii), i.e., avoiding the falsification of previous justifications:

Definition 2.12 (Cautious inflationary extension)

Let ∆ = (D,F) be a default theory. For a set S of formulas and a set AD of
ground instances of defaults, let

GD+
caut(S,D,AD) := {d | d is an instance of a default in D, Th(S) |= p(d) ,

c(d) /∈ Th(S), and Th(S ∪ c(d) ∪ β) is consistent
for every β ∈ J(AD ∪ {d})} .

Let AD0 = ∅ and S0 = F, S1, S2, . . . , Sη be a sequence of sets of formulas such
that

di ∈ GD+
caut(Si,D,ADi) , Si+1 = Si ∪ {c(di)} , ADi+1 = ADi ∪ {di}

and GD+
caut(Sη,D,ADη) = ∅. Then, with S = (

⋃

i=0,...,η Si), Th(S) is called
a cautious inflationary extension of ∆ and S is called a cautious inflationary
extension base of ∆. 2

Remark 2.3
Note that again, Si = F ∪

⋃

j=0,...,i−1{c(dj)} and S = F ∪
⋃

i=0,...,η{c(di)},

dj ∈ GD+(S,D) for all j = 0, . . . , i − 1, but now GD+(S,D) 6= ∅ is possible,
i.e., there can be defaults d applicable in S such that c(d) /∈ S (then, c(d)
would lead to falsification of a justification of a previously applied default, thus,
d /∈ GD+

caut(S,D,ADη)). 2

Example 2.6
The above notions define strictly different notions of extensions. Consider the
following default theory:

(D, {p}) where D =

{
p : ¬q

r, s
,

p

r, q

}

.

Here, S = {p, r, q} is the only extension, generated by GD({p, r, q}, {p},D) =
{p/r, q}. S is also an inflationary extension and a cautious inflationary exten-
sion.
But, GD({p},D) does not only contain p/r, q since p : ¬q/r, s ∈ GD({p},D).
Applying p : ¬q/r, s in {p} leads to S′ = {p, r, s} which is not an extension

2.5. DEFAULT INHERITANCE 31

since GD+({p, r, s},D) = {p/r, q}. Subsequent application of {p/r, q} results in
{p, r, s, q} which is an inflationary extension, but the justification of the previ-
ously applied default p : ¬q/r, s is invalidated. Thus, S′ is a cautious inflationary
extension – with GD+(S′,D) 6= ∅.

There is no extension where ¬q is consistent, and the default p : ¬q/r, s is
not applied in the construction of any extension. Thus, when the inflationary
strategy chooses to apply the default p : ¬q/r, s ∈ GD+({p},D) it runs into a
garden path – it is not possible then to reach a valid extension. 2

As in the above example, the cautious strategy can run into garden paths, i.e.,
apply defaults such that it is not possible to reach an extension. Garden paths
can only be cured by backtracking.

Proposition 2.2 (Cautious Inflationary vs. Inflationary Extensions)

Let ∆ = (D,F) be a default theory. Then,

• The computations of cautious inflationary extensions are the maximal pre-
fixes of computations of inflationary extensions such that no justification
of a previously applied default is falsified.

• A cautious inflationary extension S of ∆ is an inflationary extension if
GD+(S,D) = ∅.

• If an inflationary extension S satisfies the criterion given in Proposi-
tion 2.1(2), then S is also a cautious inflationary extension. 2

Note that an inflationary extension not necessarily contains a cautious inflation-
ary extension:

Example 2.7 (Cautious Inflationary vs. Inflationary Extensions)

Consider a default theory (D,F) with D = {d1, d2, d3} such that GD(F,D) =
{d1}, GD(F ∪ {c(d1)}) = {d2, d3}, GD(F ∪ {c(d1), c(d2)}) = GD(F ∪ {c(d1),
c(d3)}) = ∅, and F ∪ {c(d1), c(d2)} is consistent with β(d1), whereas F ∪
{c(d1), c(d3)} is inconsistent with β(d1).

Then, Th(F∪{c(d1), c(d2)}) is an extension (and also a cautious inflationary
extension), and Th(F ∪ {c(d1), c(d3)}) is an inflationary extension which does
not satisfy Proposition 2.1(2) and which does not contain a cautious inflationary
extension. 2

Proposition 2.3 (Extensions vs. Cautious Inflationary Extensions)

Given a default theory ∆ = 〈D,F 〉, a cautious inflationary extension S of ∆ is
an extension of ∆ if GD+(S,D) = ∅. 2

Proof By Prop. 2.2, every cautious inflationary extension S such that
GD+(S,D) = ∅ is an inflationary extension. Since every cautious inflationary
extension satisfies the additional criterion stated in Proposition 2.1, it is then
an extension of ∆. 2

32 CHAPTER 2. FORMAL PRELIMINARIES

Defaults in DL Knowledge Bases

A terminological default theory ∆ is a pair 〈D,K〉 where K is a SHOIN (D)
knowledge base consisting of closed formulas and D is a set of semi-normal
defaults3.

As shown in [BH95] terminological default theories can be undecidable. Also
did the authors show that decidability can be retained if defaults are applied
to named individuals only. For this reason defaults are considered only for the
individuals occuring in the assertional part of DL knowledge bases.

ThDL(F) denotes the description logic theory of a set of formulas F , which
means the closure of F wrt. to the set of axioms of the particular description
logic.

Definition 2.13
Given is a semi-normal default theory ∆ = 〈D,K〉. For a DL theory M and a
set AD of ground instances of defaults, let

GD+
caut(M,D) := {d | d is a ground instance of a default in D, p(d) ⊆M,

ThDL(M∪ {β}) is consistent for every β ∈ J(d),
and c(d) /∈M} .

LetM0,M1, . . . ,Mη be a sequence of DL theories such thatM0 = K , AD0 =
∅ and di ∈ GD+

caut(Mi,D),Mi+1 = ThDL(Mi ∪{c(di)}), ADi+1 = ADi ∪{di},
Si = {c(d) | d ∈ ADi} and GD+

caut(Mη,D) = ∅.

IfM :=
⋃η

i=0Mi 6= ⊥, then with S = Sη

M := ThDL(K ∪
⋃

j∈0,...,η

{c(dj)}) = ThDL(K ∪ S)

is called the DL-extension of ∆ to S (analogous for inflationary DL-extensions
and cautious inflationary DL-extensions). 2

Application to Inheritance

For inheritance, only defaults of the form given in Dinh are used. For the
forward-chaining strategy, the class hierarchy in S is not completely known
when computing Si. Instead, the fragment already known in Si−1 must be used
for checking the consistency of the justifications. In Dinh, a justification can be
annulled in later steps only when some path is chosen which is not preempted
in Si, but it turns out to be preempted in later steps. This can be due to one
of the following effects:

(P1): for some class c’, which is already known in Si to be an intermediate class
on the path, c’[m•→v] turns out to be inconsistent. In order to avoid such
effects the inheritance rules are applied in an ordered way: The order of
evaluation of a default d is defined such that d = c[p•→v] is applied before
any other default d′ = c′[p•→v′] with c′ :: c and for any values v and v′.

3recall that for a semi-normal default d, p(d) is a conjunction of atoms and w(d) is an
atomic formula.

2.5. DEFAULT INHERITANCE 33

(P2): in a later step, a new intermediate class-membership o : c’ :: c on this
path is derived for which c’[m•→v] is inconsistent. This effect is called
postemption.

Consider the following example which inserts a postempting intermediate class-
membership after inheritance has taken place:

Example 2.8

P = {cl1[m•→v1], x : cl1, cl2 :: cl1, cl2[m•→v2], x : cl2 ← x[m→v1]} .

The only computation sequence is

Tω
P : {x : cl1, cl2 :: cl1, cl1[m•→v1], cl2[m•→v2]}

Inh.:{x : cl1, cl2 :: cl1, cl1[m•→v1], cl2[m•→v2], x[m→v1]}
Tω

P : {x : cl1, cl2 :: cl1, x : cl2, cl1[m•→v1], cl2[m•→v2], x[m→v1]} ,

which yields an inflationary extension where postemption occurs: inheritance
from cl1 to x is postempted by the intermediate class cl2 although it has been
justified (i.e., the trigger has been active). There is no “justified” model since
inheritance is postempted exactly if it takes place. Note that this is not a logical
inconsistency which would prohibit inheritance. Here, P has no extension; a
similar cyclic inheritance network is given in [Hor, Sec. 2.3.1] as an example
for a network which does not have a (credulous) extension. 2

In contrast to default inheritance in F-Logic this situation in (P2) is not
relevant for DL knowledge bases. Here the class hierarchy is static, therefore
no new classes will be generated during default inheritance. It is, however,
conceivable that an F-Logic rule generates such classes during the hybrid rea-
soning process after the generation of a default. A default which has already
been applied could become invalidated in such a situation. If default rules and
deduction rules are likely to interfere because they make use of concept (class)
terms which are related hierarchically among each other the rule sets have to
be designed carefully.

The procedure for handling (P1) is different from the proposal in [MK01]
where (P1) is avoided by fixing the inheritable property along the inheriting
path. Fixing means that the property is passed on to each intermediate class
down the class hierarchy, and an inheriting object only inherits from its direct
superclass:

Definition 2.14

D+
inh :=

O : C , C[M•→V] : ¬∃C ′(O : C ′ ∧ C ′ :: C) , O[M→V]
O[M→V]

,
2

The strategy of ordering of defaults comes to the same effect as long as
only named individuals are considered for default inheritance. This is not a
disadvantage, as default inheritance has to be limited to named individuals
anyway. This was shown in [BH95] for default theories with underlying DL
knowledge bases.

Rule ordering assures as well as path fixing that an instance inherits from
its most specific superclass.

34 CHAPTER 2. FORMAL PRELIMINARIES

Example 2.9
Consider again Example 2.4. There are two defaults, penguin[fly•→false] and
bird[fly•→true]. Both defaults share the same property. Rule ordering ensures
that penguin[flies•→false] becomes evaluated before bird[fly•→true] as penguin is a
subclass of bird. Therefore tweety (and all other penguins) inherits fly•→false,
whereas other birds than penguins will still inherit fly•→true in the next step. 2

Non-Determinism in Default Inheritance. There can be several different
cautious inflationary extensions to a default theory, depending on the order in
which the default inheritance rules are chosen for evaluation. Cautious inflation-
ary extensions are therefore not deterministic, much the same as with normal
defaults as has been shown in Example 2.2 with the Nixon-Diamon. See also
Example 9.12 for another aspect of this limitation, which also motivates to use
defaults in hybrid reasoning in the light of non-deterministic behaviour.

After having provided the formal introduction to this work, a comprehensive
introduction to the basic concepts and terminologies of knowledge classification,
knowledge bases, and the Semantic Web is following in the next chapter.

Chapter 3

Towards the Semantic Web

3.1 What is an Ontology?

Most scientific undertakings have one thing in common: they try to describe
the world and find explanations for the observations. The term ontology (the
science of what is) is relatively new and is first mentioned in the work Ogdoas
Scholastica by Jacob Lorhard (Lorhardus) from 1606 and in the Lexicon philo-
sophicum by Rudolf Göckel from 1613. But the practice of finding explanations
for the world that we live in is much older, of course, and it was Aristotle,
who gave the first scientific categorisation of the world that we know of. His
Categories (or “Categoriae”) enumerates all the possible kinds of things which
can be the subject or the predicate of a proposition. He gave a very general
categorisation of the world, dedicated very strongly to the idea of describing
what there is. But it is a philosophical work, and it is doubtful whether it has
any relevance to anybody outside the field of philosophy. Much later, in the late
17th and the early 18th century, we find efforts of a similar kind in the work of
e.g. Gottfried Wilhelm Leibniz and Carl von Linné (Carolus Linnaeus). While
the work of Leibniz, one of the last generalists, can be seen somehow in the
tradition of Aristotle, Linnés work is a much more modern scientific work as far
as categorisations are concerned. He did not try to describe the world in whole
but just one particular section (here: botany and zoology). He used scientific
classification based on attributes derived from morphology (e.g. characteristics
of blossoms, leaf structures) instead of arbitrarily chosen domains (e.g. habitat
of a life form).

But all these enterprises have one thing in common: their work reflects the
urge of human thinking to find categories for what can be observed as well as
explanations for why things are the way they are. Therefor the primary task of
ontology is to bridge the gap between what exists and the languages, both natural
and artificial, for talking and reasoning about what exists [Sow00].

Narrowing down the problem to one fundamental question “What is there?”
allows the conclusion “To be is to be the value of a quantified variable.” as
it was given by W.V.Quine. But logic has no vocabulary for describing the
things that exist. Here ontology comes into play: it is the study of existence,
for example it gives the names and their relationships in biological taxonomies,
it supplies the predicates of predicate calculus, it is even what people are doing

35

36 CHAPTER 3. TOWARDS THE SEMANTIC WEB

when giving tags in social bookmarking systems. What normally is known as an
ontology can [thus] range from the simple notion of a taxonomy to a thesaurus to
a conceptual model (with more complex knowledge), to a logical theory (with very
rich, complex, consistent, meaningful knowledge). They differ in the strength of
their semantics [DOS03].

It was in 1980 that the usage of the term ontology was introduced into com-
putational sciences by John McCarthy in the discipline of artificial intelligence.
He argued the necessity of a list of things from common knowledge, to add cat-
egories into our ontology (the things that exist) [McC80] in order to be able to
reason about them. The term has been used intensively since then, e.g. in the
work of Pat Hayes [Hay79] and John Sowa [Sow], but the meaning has shifted
significantly. The most common definition of ontology nowadays is that of a
specification of a conceptualisation (of knowledge about a domain) [Gru93]. Al-
though this definition by itself is not very likely to reduce the confusion about
what an ontology really is, it is clearly a definition that aims at practical use.
B. Smith pointed out [Smi] that philosophical ontology does not seek predication
or explanation, but rather taxonomy. It is a descriptive enterprise, it is (very
largely) qualitative whereas science is (very largely) quantitative and starts with
measurement and prediction. In computational sciences the focus is largely on
practical aspects: building a shared vocabulary that describes a domain, so
that humans and, even more important, machines can be sure that, when talk-
ing about things, they talk about the same things. To put it more technically,
an ontology can be built by giving a formal explicit description of concepts
(classes) that have properties (slots, roles) describing various attributes of the
concept. The concepts give the structure of an ontology whereas the things of
the world are given as facts. These facts belong to classes, they have properties
and they have relationships amongst each other.

For instance, a biological ontology for the classification of animals might
describe groups of species as concepts (e.g. mamals), specify attributes which
all members of these groups will exhibit (fur, vivipary, milk glands) and give
instances of these concepts (bear, sloth, bat). Conceptual design tries to identify
and reflect structures of a domain. Sometimes, however, there are irregularities
that also have to be represented. For example, whales are mamals but are not
covered with fur. Plathypus belongs to mamals but lays eggs. See Section 2.5
for an introduction to default inheritance which deals with this matter.

Another modelling challenge is about how to describe the dynamic aspects
of a domain. The world is changing, therefore the data that describe the world
will most likely become subject to change as well. Relationships and properties
of instances might change, concepts be refined or deleted.

One important thing is the ability to reason about change. Such reasoning
tasks could be [AF94]

- prediction (what will (or is most likely to) happen),

- planning (how to achieve a desired goal),

- explanation (find some explanation for a set of data).

To fulfill these tasks, it is necessary to analyse how changes occur, what formal-
isations exist in order to express the dynamic aspects of knowledge bases (and
the world) and what mechanisms can be used to be able to reason about them.

3.1. WHAT IS AN ONTOLOGY? 37

Examples of Ontologies in Use

Nowadays, there are many ontologies in use. One of the oldest that still has
major significance in science, has already been mentioned: it is Linné’s taxon-
omy of botany, Species Plantarum, published in 1753. Here he first introduced
a binary nomenclature for categorising species. Another example is the periodic
table of the chemical elements, devised independently in the 1870s by Dimitri
Mendeleev and Lothar Meyer. The periodic table lists all known chemical ele-
ments in an ordered way. The similarity to Linnae’s taxonom is obvious, using
species as atoms of biological classification.

The success of these ontologies is largely due to the fact that the domains
that are being described are relatively small (not in terms of the number of
affected individuals but of the concepts). Furthermore, there are strict formal
categories that help to build the ontology.

It is relatively easy to perceive the idea that atoms should be ordered ac-
cording to the mass of the nucleus (or the number of protons to be more pre-
cise). But what about the ordering and relationships of animals? A modern
taxonomy tries to identify features that reflect the evolutionary relationship of
species. This classification ranks the degree of similarity between whales and
rodents much higher compared to the similarity between whales and sharks.
Although in the latter comparison both groups of species live without exception
in a similar habitat, it makes much more sense to put rodents and whales in a
closer relationship. There is a lot of morphological evidence, which shows that
whales and rodents share a common ancestor which is much more recent than
one that could be found for whales and sharks. Hence, there can be different on-
tologies about the same fragment of the world, depending on the intentions and
knowledge of the creator. For example, it is also possible to conceive ontologies
which categorise animals by their habitat (saltwater-living, freshwater-living,
land-living, airborne, . . .) or maybe even by their taste.

But, with increasing size and complexity of a domain it is likely that arbitrary
choices will be made during conceptual design. A good example to support this
argument is a common classification scheme that is used in libraries known
as the Dewey Decimal System. It was founded by Melvil Dewey in the 1870s
and remains quite popular to this day. It is an ontology much in the classical
tradition of Aristotle: it tries to find categories for all which is there (or in
other words everything we have a book about in a library). But the distinctions
that were made for classification are quite arbitrary, the top level categories
concerning religion are one good example:

Example 3.1 (Library classification schema for religion)
210 Natural theology

220 Bible

230 Christian theology

240 Christian moral & devotional theology

250 Christian orders & local church

260 Christian social theology

270 Christian church history

280 Christian sects & denominations

290 Other religions 2

38 CHAPTER 3. TOWARDS THE SEMANTIC WEB

It can hardly be argued that this classification is biased with regard to
religions of the world or the term religion in general. Rather, it reflects what
the founder of the ontology thought was important to know about religion and,
moreover, what he himself actually had knowledge about (books) to classify.
Other, more modern ontologies like cyc, wordnet or dmoz also try to describe
the world as a whole. But the more an ontology tries to describe of the world, the
harder it is to agree on categories. An attempted solution is bringing together
domain experts who know much about a certain field of knowledge together
with experts in designing knowledge representations. It is hard work, and there
is no guarantee that the outcome will be accepted.

It is interesting to observe that ontologies have recently evolved that are
based solely on user contributions and are quite successful. In social bookmark-
ing systems like del.icio.us as well as in recommender systems like last.fm or
people who ordered this book also showed interest in this by amazon, the cate-
gories are not fixed. They are given by tagging: users provide categories that
they think are appropriate. The more users contribute, the more precise and
meaningful the ontology will become. This is interesting as the ontologies are
not developed by a small number of experts but by a large number of untrained
users, who most likely will not have any knowledge of ontology development.

But there are also some successful ontologies that are being developed in the
traditional fashion by experts.

• http://www.geneontology.org/ Geneontology

• DSM-IV, the 4th version of the psychiatrists’ Diagnostic and Statistical
Manual, is a classic example of a classification scheme that works because
of these characteristics. In theory DSM IV allows psychiatrists all over
the United States to make the same judgment about a mental illness when
presented with the same list of symptoms. Another widely used standard
for the classification of diseases is ICD-1O which is issued by the World
Health Organisation.

Ontologies and Computational Sciences

Ontologies in computational sciences have been emerging since the 1980s. They
found application in different disciplines such as AI, Software Engineering (do-
main modelling, especially UML) and Databases (conceptual modelling). Al-
though they are used quite frequently most users would probably not know
they are using an ontology. That is because the term ontology is relatively new
and uncommon. In each of these areas developers are faced with the problem
of building an artifact that represents some portion of the world in a fashion
that can be processed by a machine [Wel03]. Conceptual modelling has therefor
become a discipline in itself. But not only the question of how to model the
concepts of a domain is of importance. Moreover, what are the prerequisites for
the use of such conceptualisations? The advent of the World Wide Web adds a
new dimension to that problem. Data is now accessible in a completely new way
from that of only two decades ago. And there are data for every purpose. Natu-
ral sciences are a very good example. Molecular biology unveils vast amounts of
data every day, many of them are added to gene or protein databases that can
be used by scientists all over the world. The problem is no longer how to get the

3.2. KNOWLEDGE IN THE WEB 39

data, but how to use it, how to find the relevant information. Because of the
sheer number of data it is not possible to filter by hand, to let scientists search,
select, and collect by themselves. It has to be a process done by machines.
And it is a process that can be done by machines. But there has to be more
than knowledge, there is a need for meta-knowledge. Meta-knowledge provides
for the structure and the vocabulary that is needed to describe knowledge and
define the relationships of the things of the world. That meta-knowledge also
has to be provided by experts in their fields, but the technical preliminaries will
be given by computational sciences.

The Semantic Web is expected to provide an infrastructure where both know-
ledge and meta-knowledge can be specified, stored, and used.

3.2 Knowledge in the Web

The idea of the Semantic Web was brought into play by Tim Berners-Lee. The
World Wide Web provided mankind with the most remarkable new technology
that is probably comparable in importance only to the invention of printing.
Knowledge became widely distributed and accessible. The availability of such
enormous amounts of data make it desirable to enable machines to process that
knowledge, to combine, integrate and reason about data. To that end it is
necessary to have a certain understanding of what the data is about, to have
a semantic level. Until now, this level of semantic is available only in a small
fragment of the Web: in recommender systems, social bookmarking, thesauri,
yellow pages. But there is no general annotation of knowledge in the Web, no
classification of content.

Figure 3.1: René Magritte: “Ceci n’est pas une pipe” 1

The situation is quite similar to something that we all have experienced many

1 c© VG Bild-Kunst Bonn, 2009, used with kind permission.

40 CHAPTER 3. TOWARDS THE SEMANTIC WEB

times in our lifes. Without previous knowledge we are not able to get the
meaning out of the things that surround us. The experience of art is a good
example: when we first see the picture Ceci n’est pas une pipe (Figure 3.1) by
René Magritte it is not obvious what’s the artists intention. Reflecting might
help to find out, but only if we are aware of the play on words that it contains.
If we are already provided with a background on surrealism we might get the
intention of the artist who tries to reflect about reality.

Whenever we are confronted with something that we know nothing about
we have to find categories that we can use for interpretation. Either we adopt
existing knowledge to the situation or we integrate new knowledge that helps us
to understand. Learning is very much about building new categories, relating
new knowledge to existing knowledge. With this analogy in mind it is probably
easier to understand what computers cannot do but what we want them to be
able to.

The vision is to have machine learning, knowledge representation (that en-
ables machines to reason), and distributed, annotated knowledge. Many of the
ingredients are already there: the World Wide Web and the different protocols
and markup languages for data interchange resulting from decades of research
in artificial intelligence, databases, conceptual modelling, even computer lin-
guistics, so many fields of computational sciences seemed suitable to make their
contribution. It is of course not as easy as just putting everything into a pot
and stirring it up. But the overall concept is this: data will be (as it already is
in the World Wide Web) distributed over the world at many physical locations.
Giving access to the data is a matter with which the World Wide Web already
deals, moreover, data can be addressed and uniquely identified (see Section
3.4). Ontologies are now able to define the metadata (the concepts and their
relationships) (see Section 3.6). This is the semantic part in the Semantic Web,
added by conceptualisation and annotation. The Semantic Web, however, is not
static. Dynamic aspects of changes in knowledge bases have been dealt with al-
ready in database research (e.g. in active database research). But the different
aspects of the Semantic Web add up to new problems, because knowledge is
now distributed, probably from untrusted or unknown sources, and sometimes
inconsistently annotated. There are lots of questions that have to be dealt with,
some of them here in this work.

Before going into the detail of the problems at hand, a brief introduction to
the development of knowledge management is provided.

3.3 Managing Knowledge

Databases

Knowledge managment has many different aspects, the importance of concep-
tualisation has already been discussed. One prerequisite for knowledge man-
agement is therefore the ability to store data in a structured way. The usual
way in database design is to start with conceptual modelling, which normally
means developing an Entity-Relationship diagram (ER diagram). The result is
a conceptualisation of what kind of things there are (concepts of the domain

3.3. MANAGING KNOWLEDGE 41

of interest) and the relationships, dependencies and constraints that apply to
them. This is an ontology. If the conceptual model is well defined, it is easy to
proceed and transform the concept definitions into a database model.

One of the most successful database models is the relational model by Codd
[Cod70]. It is based on set theory and defined in terms of predicate logic. Like
in the ER model, the design of a relational database requires identification of
entities of the world as well as their relationships among each other. That
similarity makes it easy to transform an ER diagram into a set of relational
tables. Entities and relationships may also have attributes. A relational schema
is, by definition, a set of attributes, a relational signature the set of relational
schemas. If we add some facts (=data) to the schemas, we have a relational
structure: the state of a database. The semantics of the database is the current
database state.

The advantages of the relational model are its simplicity and the well-known
theoretical background from set theory. However, one disadvantage is the lack
of expressiveness, but normally relational databases can be extended through
procedural languages.

Besides storage of data a database has to give access to the stored data in
a standardised way. For that purpose there exists SQL, the structured query
language. SQL allows for the definition of queries to a relational database, also
data manipulations can be expressed. Thanks to this uniform access mechanism
it is possible to use the same queries independent from the database implemen-
tation.

From Databases to Knowledge Bases

Generally the term knowledge base refers to a collection of knowledge. This
can be a compilation of articles or manuals, a cardbox, a library, but also a
computer programme. A knowledge base has well-ordered content and offers
sophisticated information retrieval. In the following knowledge bases are dis-
cussed in consideration of their relevance in computational sciences.

A knowledge base structures the knowledge of the domain of interest by
means of an ontology. Additionally it uses inference mechanisms which allow
for the derivation of additional knowledge. These derivations can be achieved
by deduction rules or axioms. This is an aspect which is missing from typical
databases.

Example 3.2
A knowledge base contains the information hasChild(Susan, Peter). This reads
as Susan is related to Peter by a hasChild relationship. It can be infered that
Susan is a parent by the following rule:

hasChild(X,Y)→ parent(X) ∧ child(Y)

The rule reads as: if X and Y are related by a hasChild relationship then X is
a parent and Y is a child. 2

In databases there is a strict separation of data and metadata. This is
different with knowledge bases. Information can be given in form of new facts
but also as new concept definitions or derivation rules. Whereas the structure
of a database is static the structure of a knowledge base can change easily.

42 CHAPTER 3. TOWARDS THE SEMANTIC WEB

In order to encode the schema along with the data, a more sophisticated
data model is required. If the data model allows arbitrary information to be
encoded, then it can also be extended by axiomatic formulas or rules. This is
the usual situation in knowledge bases.

Another important difference between databases and knowledge bases is re-
flected in the attitude towards the knowledge that is available about the world.
In databases the Closed World Assumption (CWA) is applied. The database
point of view is that everything that can be known is already known. Everything
that cannot be answered, is false. Altough this could be regarded inappropriate
it is a reasonable approach as long as this closed world contains all necessary
information.

In knowledge bases, the Open World Assumption (OWA) is applied, which
means that information is (always) incomplete. If something is not known (yet),
it might exist in some part of the world, so it is not necessarily false.

Hereby, however, a knowledge base reflects a situation that is very much like
the world that we live in: often it seems inappropriate to assume that the lack
of information is equivalent to negative information. If nothing is known about
Susan it would be a rather premature decision to say whether she is a parent
or not. Rather, we assume that some additional knowledge might be available
somewhere. This conception has many advantages, but there are situations,
where it is eligible to treat an open world as a closed world and a decision has
to be made upon the facts that are known. This can be done by an epistemic
queries which is an interpretation such that everything that is not known has
to be false.

Another difference between databases and knowledge bases adds to this. In
databases, constraints are limitations. In knowledge bases, however, they are
(type-) definitions. Together with the assumption that information might exist
somewhere and is only not known by now, there might be unexpected effects or
even (to a human) ridiculous conclusions.

Example 3.3
The ontology of our knowledge base states that every person has a father, hasFa-
ther is a functional property (there can be only one father). If hasFather(Peter,
John) and hasFather(Peter,Jack) are added there is no contradiction although
there should be only one father to a person. This can be explained by the fact
that the knowledge base assumes that Jack and John are the same person2. The
functional property is not used as a constraint but rather as an assertion. As
both Jack and John are the father of Peter plus the fact that there can be only
one father they have to be the same in order not to cause an inconsistency. 2

So far, knowledge bases were presented but no formalism for knowledge
representation has been introduced yet. In the Semantic Web, RDF is expected
to become a standard in this respect.

3.4 RDF: A Data Model for the Semantic Web

The Resource Description F ramework (RDF) [RDF00a]) is a very popular data
model in knowledge representation. It is a simple, logical model that is used to

2This is only true as long as there is no unique name assumption.

3.4. RDF: A DATA MODEL FOR THE SEMANTIC WEB 43

represent things (either real or imaginary) as resources. Resources are connected
by properties that again are resources. RDF has become a W3C recommenda-
tion in 2004. The data model of RDF is a directed graph structure, where every
single node is a resource that is connected to other resources. The connecting
edges are labelled and correspond to the properties of a resource. Every ex-
pression is encoded in (sets of) triples of the form subject predicate object. Such
triples are called statements. Subject and object are nodes in the graph struc-
ture. It is easy to see that both data and metadata can be encoded using the
triple structure: :Peter :hasMother :Susan is a simple statement about the rela-
tionship between two instances, from the point of view of the graph structure
also the schema information :hasMother rdf:type rdf:Property are simply edges in
a graph which are labeled with the resource identifier of the property.

:Peter
:hasMother

:Susan

:hasMother
rdf:type

rdf:Property

Figure 3.2: Graph Structure of (:Peter :hasMother :Susan)

One basic design element in RDF are uniform resource identifiers, abbre-
viated and more commonly known as URIs. The nodes and the labels of the
edges can be identified by URIs, with the exception that the object of a state-
ment can also be a literal. URIs are like addresses and in fact they are used
as such in the Web: URLs (uniform resource locators) are a special kind of
URIs, the notion locator indicates that URLs are meant to point to existing
locations, reachable using the HTTP protocol. URIs are more general: for in-
stance, the URI http://family.org#hasMother consists of a protocol specification
(http://) followed by the hierarchical part (family.org) and finally the fragment
(#hasMother). This is not a URL because it does not point to a valid address in
the Web. In ontology design, the fragment usually identifies the local name of a
resource (a concept, a property, or an individual name) whereas the rest of the
URI is given as a namespace prefix. Nevertheless this is just a way to improve
readability for human readers, the name of the resource is the full URI. This is
also reflected in the unusual diction using colons in the example above, where
the default namespace (:) and the RDF namespace (rdf:) have been used (but
no definitions for the namespaces have been given). Although URIs need not
point to an existing location, they often do. Consider the following example,
where the resource identifiers are given in full length:

Example 3.4

(h t t p :// example . org#Peter
h t t p :// f am i l y . org#hasMother
h t t p :// example . org#Susan)

(h t t p :// f am i l y . org#Susan
h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#type
h t t p :// f am i l y . org#Mother)

44 CHAPTER 3. TOWARDS THE SEMANTIC WEB

The example uses the built-in predicate type from the RDF namespace
http://www.w3.org/1999/02/22-rdf-syntax-ns#. This URI points to a real doc-
ument on the web where the resource is defined:

<rd f : Property
rd f : about=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type”>

<r d f s : i sDef inedBy
rd f : r e s ou r c e=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#”/>

<r d f s : l abe l >type</rd f s : l abe l >
<r d f s : comment>The sub j e c t i s an in s tance o f a c l a s s .</ rd f s : comment>
<r d f s : range

rd f : r e s ou r c e=”http ://www.w3 . org /2000/01/ rdf−schema#Class”/>
<r d f s : domain

rd f : r e s ou r c e=”http ://www.w3 . org /2000/01/ rdf−schema#Resource”/>
</rd f : Property>

The other URIs in Example 3.4 do not point to an existing document. As
long as an URI is valid (wellformed) and unique, it is possible to use this resource
in any ontology and all information about the same resource adds up to a whole
if those ontologies are brought together. It is important to bring to mind that
ontological data is not necessarily local, it can be distributed over many different
locations.

RDF provides the user with a set of built-in predicates like rdf:type. This
predicate states that the subject of a statement is a member of the class which
is specified by the object of the statement. Furthermore there are constructs for
collections like bags, sequences, and lists.

There are different ways in which RDF graphs can be serialised for output,
storage and communication. For example, RDF can be serialised in XML which
is especially useful for the interchange of data. More suitable in terms of read-
ability is N3. The Example 3.4 is given as serialisations to N3 and RDF/XML:

Example 3.5 (Extending Example 3.4 using namespace prefixes)
@pre f i x r d f : <h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x : <h t t p :// example . org#>.
: Peter f am i l y : hasMother : Susan .
: Susan r d f : t ype f am i l y : Mother .

Example 3.6 (The same RDF data, serialised as RDF/XML)
<?xml v e r s i on =”1.0” encoding=”ISO−8859−1”?>

<r d f :RDF
xmlns=”h t t p :// example . org#”
xmlns : r d f=”h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#”
xmlns : f am i l y=”h t t p :// f am i l y . org#” >

<r d f : De s c r i p t i on r d f : about=”h t t p :// example . org#Peter”>
<f am i l y : hasMother

r d f : r e source=”h t t p :// example . org#Susan”/>

</r d f : Descr ip t i on >

<r d f : De s c r i p t i on r d f : about=”h t t p :// example . org#Susan”>

<r d f : t ype r d f : r e source=”h t t p :// f am i l y . org#Mother”/>

</r d f : Descr ip t i on >

</r d f :RDF>

In Example 3.5, there are two statements, but one seems to be contained
in the first. If :Peter has a mother :Susan, :Susan is of course a mother. This
derivation can be made easily by common sense knowledge, but it is not possible
to draw that conclusion logically from these RDF statements alone. For that

3.4. RDF: A DATA MODEL FOR THE SEMANTIC WEB 45

purpose, there exists a schema layer on top of RDF, named RDF Schema (or
RDFS) [RDF00b] which adds further concepts for the description of knowledge,
or, in other words, for the modelling of meta-data.

Example 3.7
RDFS specifies additional axioms that can be used to define assertions. (N3
notation allows to use semicolons to separate property-value pairs on the same
subject).
@pre f i x r d f : <h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#>.
@pre f i x r d f s : <h t t p ://www. w3 . org /2000/01/ rd f−schema#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
f am i l y : hasMother r d f : t ype r d f : Proper ty ;

r d f s : range f am i l y : Mother ;
r d f s : domain f ami l y : Ch i l d .

Now it is defined that every object of a hasMother relationship is of type
family:Mother. The domain axiom from the RDFS namespace makes it possible
to give an assertion with regard to the subject of a relationship: if any resource
has a family:hasMother relationship, it is known to be a family:Child. Note that
in contrast to databases these restrictions are assertions: they add knowledge
to a resource instead of putting constraints on relationships. If, for example,
the statement (:Susan family:hasMother :Peter) is added to the facts of the ex-
ample this is no contradiction. Neither is there an irreflexive definition for the
family:hasMother relationship, nor exists any information which leads to a con-
tradiction when :Peter becomes a mother (although, in fact :Peter will never be
a mother).

Example 3.7 implicitly defines the resources family:Child and family:Mother to
be classes (concepts). This deduction can be made because both the rdfs:domain
property and the rdfs:range property relate properties to classes.

Example 3.8 (Mothers and Children are Persons)
@pre f i x r d f s : <h t t p ://www. w3 . org /2000/01/ rd f−schema#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
f am i l y : Mother r d f s : subClassOf f am i l y : Person .
f am i l y : Ch i l d r d f s : subClassOf f am i l y : Person .

Hereby instances of family:Mother or family:Child become also instances of fam-
ily:Person.

RDF data can easily be put together, it is simply a merging of graph struc-
tures that connect at identical nodes. They can be split, separated, distributed,
and supplemented in any fashion. Therefore, it makes no difference, if the facts
are given in separated files (as above in Examples 3.5, 3.7 and 3.8) or in one
file like in the following example. In the course of this work many of the ex-
amples will not display the whole contents of a knowledge base but just add
some additional details to existing facts (previous examples). In such cases the
dependencies will be mentioned.

Example 3.9 (Examples 3.5, 3.7 and 3.8 in one file)
@pre f i x r d f : <h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#>.
@pre f i x r d f s : <h t t p ://www. w3 . org /2000/01/ rd f−schema#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x : <h t t p :// example . org#>.

46 CHAPTER 3. TOWARDS THE SEMANTIC WEB

: Peter f am i l y : hasMother : Susan .
: Susan r d f : t ype f am i l y : Mother .
f am i l y : hasMother r d f : t ype r d f : Proper ty ;

r d f s : range f am i l y : Mother ;
r d f s : domain f ami l y : Ch i l d .

f am i l y : Mother r d f s : subClassOf f am i l y : Person .
f am i l y : Ch i l d r d f s : subClassOf f am i l y : Person .

Note that the explicit rdf:type information for :Susan is redundant as it can be
derived from (:Susan rdf:range family:Mother). 2

TBox

ABox

family:Child

rdfs:subClassOf

family:Mother

rdfs:subClassOf

family:hasMother

rd
f:
ty

p
e

rd
fs

:d
o
m

a
in

rd
fs

:r
a
n
g
e

rdf:Property

family:Person

:Peter

family:hasMother

:Susan

rdf:type

rdf:typerdf:type

Figure 3.3: Graph Structure of an RDF/RDFS Knowledge Base

The data from Example 3.9 is presented as a graph in Figure 3.3. The upper
part of the diagram shows the terminological knowledge, which is here called a
TBox in analogy to Description Logic knowledge bases (see Section 2.2 for a for-
mal introduction to Description Logics). The TBox is comparable to the schema
information in a relational database. The lower part contains assertional know-
ledge (ABox) where all information about instantiations of concepts belong.
The notion of an ABox is again a reference to Description Logics. Note that
this separation of TBox and ABox is only theoretical. In most knowledge bases
all information is contained in the same graph. The gray edges in the example
above represent explicit, the red edges implicit knowledge. Implicit knowledge
can be derived by a reasoning engine. It is not contained as real statements but
it can be obtained by queries to the reasoning engine. The subject of queries to
Semantic Web data is now investigated.

3.5. QUERYING SEMANTIC WEB DATA: SPARQL 47

3.5 Querying Semantic Web Data: SPARQL

A query language for the Semantic Web has to be a query language for RDF data
because this is the most prominent data format in the Semantic Web. There
have been several proposals for Semantic Web query languages (see [FLB+06]
for a comparison).

The most widely known and applied is SPARQL [SPQ06]. It is strictly a
query language, which makes it much less powerful a language compared to SQL,
which is, besides querying, also a data definition and manipulation language.
Syntactically SPARQL and SQL are quite similar.

Essentially, the query is a conjunction of graph patterns (given with the
where clause(s)) which define a subgraph. From that subgraph the answer is
extracted according to the answer variables that are given in the select-clause.
Furthermore, it is possible to specify in a from-clause what sources will add to
the graph on which the query will be evaluated.

Example 3.10
SELECT ?person ? c l a s s
FROM < f i l e : pe t e rhasmother . n3>

FROM < f i l e : hasmotherdomain . n3>

FROM < f i l e : p e r s on s u b c l a s s e s . n3>

WHERE {{ ? person
<h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#type>

? c l a s s .
? person
<h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#type>

<h t t p :// f am i l y . org#Person> .
}}

This example reads data from three files (containing the facts from examples
3.5, 3.7 and 3.8) and returns tuples containing the names of all resources that
are found to be instances of the class http://family.org#Person along with the
names of all classes that they are instances of. 2

The answer to the query, using a reasoning engine, is:

| person | c l a s s |
==
<http :// example . org#Susan>	<http :// fami ly . org#Person>
<http :// example . org#Susan>	<http :// fami ly . org#Mother>
<http :// example . org#Peter>	<http :// fami ly . org#Person>
<http :// example . org#Peter>	<http :// fami ly . org#Child>

There are some further features in SPARQL for more sophisticated result
set operations. Using UNION inside the where clause builds a set union of
the subgraphs as specified by the given triple patterns. Another combination
of result patterns can be given using the OPTIONAL-keyword which allows to
add further graph patterns. This is no conjunctive but an optional combination
(corresponding to the left outer join in SQL).

48 CHAPTER 3. TOWARDS THE SEMANTIC WEB

Example 3.11
SELECT ?person ?mother
FROM < f i l e : pe t e rhasmother . n3>

FROM < f i l e : hasmotherdomain . n3>

FROM < f i l e : p e r s on s u b c l a s s e s . n3>

WHERE { ? person
<h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#type>

<h t t p :// f am i l y . org#Person> .
OPTIONAL{? person <h t t p :// f am i l y . org#hasMother>

?mother .}}

The answer to that query shows that the variable mother does not need to be
bound to a value in order to make the tuple appear in the result set:

| person | mother |
===
| <http :// example . org#Susan> | |
| <http :// example . org#Peter> | <http :// example . org#Susan> |

Another feature can be used with the FILTER keyword which allows to
define conditional expressions inside the where-clause. The combination of FIL-
TER and OPTIONAL enable negation in SPARQL queries which is not available
otherwise. It is a form of negation-as-failure.

Example 3.12
SELECT ?person ?mother
FROM < f i l e : pe t e rhasmother . n3>

FROM < f i l e : hasmotherdomain . n3>

FROM < f i l e : p e r s on s u b c l a s s e s . n3>

WHERE { ? person
<h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#type>

<h t t p :// f am i l y . org#Person> .
OPTIONAL{? person <h t t p :// f am i l y . org#hasMother>

?mother .}
FILTER(! bound (? mother))}

This query selects all family:Person instances and filters those that have no
family:hasMother relationship. Hence, only :Susan will be returned in the result
set. 2

SPARQL offers an intuitive way of querying RDF knowledge bases (or, more
generally speaking, the Semantic Web). Though the query language design is
intended to be similar to SQL, it is not as expressive. For example, it does not
offer nested queries. It is possible to generate new RDF from the query using the
CONSTRUCT keyword but these facts cannot be fed back into another query.
Also, negation is only available in the form of the above mentioned workaround
but not as a semantically clear language feature. But then SPARQL is still
under development, both in theory and implementation, so some features might
be available sooner or later.

It has already been shown that knowledge can either be given by explicit
statements about what exists or by implicit definitions of what can be derived
(see Example 3.9). In the Semantic Web, the most interesting language candi-
date for the specification of implicit knowledge is OWL, which is described in
the following.

3.6. OWL AND FRIENDS 49

3.6 OWL and Friends: Reasoning in the Seman-

tic Web

A short introduction to reasoning has already been given. Basically, it is the
combination of data, metadata and a reasoning engine. To illustrate this, con-
sider again the query from Example 3.10. Without inference support the query
will yield no result. That is because there is no statement saying explicitly
that :Peter is an instance of the class family:Child and there is no statement
that allows to know that a family:Child is a family:Person. The information is
given implicitly, therefore an inference engine is needed to make the additional
deductions. With the appropriate inference mechanisms the results can easily
be given as:

| person |
==============================
| <http :// example . org#Susan> |
| <http :// example . org#Peter> |

The language features of RDF together with RDFS allow for definitions of
basic type information and constraints, but further aspects of metadata mod-
elling like cardinality restrictions and datatype reasoning, enhanced object prop-
erties like reflexivity, symmetry, transitivity, or functionality are desirable. In
the late 90s of the last century two independent projects emerged in order to
develop the first ontology description language for the Semantic Web. One was
named DAML (Darpa Agent Markup Language), funded by the DARPA, while
OIL (Ontology Inference Layer) was funded by the European Union under the
On-To-Knowledge project.

OIL

OIL was based on Description Logics (DL) and the frames paradigm (see again
Section 2.2 for a formal introduction to F-Logic). Frames help both designers
and users of ontologies to read an ontology by grouping information by classes.
Description Logics have complex class construction mechanisms. Furthermore,
questions of decidability of the language components have been thoroughly in-
vestigated. It is possible to add distinct features, such as transitive roles or
inverse roles while still having a decidable fragment. Also, the limits of decid-
ability are well-known, e.g. with the usage of nominals the description logic the-
ory is still decidable but reasoning is of worst-case non-deterministic exponential
time (NExpTime). Another argument in favour of DL was that algorithms for
reasoning were already at hand. Developers of OIL provided the users with a
reasoner implementation, the FaCT reasoner [Hor98]. FaCT development is still
ongoing work (now called FaCT++), but to date with focus on OWL reasoning.
Although OIL had both XML and RDF syntaxes, the semantics of RDF has
been neglected.

DAML-ONT

DAML was, much like OIL, an intermediate state in the development of an
ontology description language. DAML-ONT was designed to extend RDF with

50 CHAPTER 3. TOWARDS THE SEMANTIC WEB

language constructors from object-oriented and frame-based knowledge repre-
sentation systems [HPSvH04], or, in the words of the developers, it is simply a
vocabulary of properties and classes added to RDF and RDF Schema [MF02].
The main focus was therefore on web data integration which is the use of XML-
serialisation for RDF and extensions to RDF Schema by more expressive de-
scriptors. Though the language was more expressive, there was much criticism
about the ambiguity and the lack of formal specification [MF02].

DAML+OIL

It became clear that the capabilities and goals of DAML-ONT and OIL were
very similar. Therefore, already in 2000, joint work begun on DAML+OIL.
Efforts from OIL added to the formal background. Research on Description
Logic has shown that the fragment SHIQ is expressive enough (e.g. including
the much desired role transitivity) whilst still being tractable. The basis is the
ALCR+ Description Logic, which already has transitive roles and is also named
S. Adding a property hierarchy (H), inverse roles (I) and generalised cardinality
restrictions (Q) gives the SHIQ Description Logic. While the foundation on
description logics can be seen as a contribution by OIL, the integration with
RDF and therefore towards a Semantic Web based on RDF and RDFS, was
backed by work on DAML-ONT.

OWL

Eventually a new language was designed: the Web Ontology Language (OWL)
[OWL04]. Semantically, a fine-tuned design was chosen: in order to retain de-
cidability, OWL is offered in three different versions with increasing expressivity:
OWL Lite, OWL DL and OWL Full. The semantics of OWL Lite and OWL
DL is based on Description Logics (DL). At the time when OWL was intro-
duced, there was ten years of research on Description Logic, which mapped out
in considerable detail the complexity-tractability landscape for a wide range of
constructors and axioms and their various combinations [HPSvH04]. In Sec-
tion 2.2 a (formal) introduction to DLs can be found. Although OWL Lite and
OWL DL ontologies make use of the RDF Schema vocabulary they are not fully
compatible (semantically) with RDF Schema. The relationship between OWL
and DLs is described in Section 2.3. OWL Full is designed to support the full
expressiveness of RDF Schema. This variant of OWL, however, is not decidable.

In DLs, there is a distinction between the so-called ABox (assertional) and
TBox (terminological). The ABox contains facts (individuals) whereas the TBox
contains the definitions of concepts and relationships as well as the vocabulary
of the language itself. Analysing a typical OWL ontology, there is no such dis-
tinction. The vocabulary needs not be given (it is known to the knowledge base
or the reasoner), and concept definitions and individuals are mixed. Neverthe-
less, the programmes used for OWL reasoning are in fact DL reasoners (e.g.
FaCT++ [FaC], Pellet [Pel]) and do use such a distinction internally.

OWL Lite

OWL Lite is the most simple OWL dialect. The feature set of OWL Lite is
equivalent to the Description Logic SHIF(D). Reasoning is possible in worst-

3.6. OWL AND FRIENDS 51

case deterministic exponential time (ExpTime). Most of the available OWL
reasoning engines cover OWL Lite. Neither reification is possible nor is it al-
lowed for instances to also be classes (both of which are possible in RDF). These
limitations guarantee decidability. The following features are offered by OWL
Lite:

• restrictions on classes that are in fact assertions of class membership in
case that an individual is assigned a certain (restricted) property (see
Section 3.3).

• In the Semantic Web, two resources are not assumed to be different unless
otherwise stated (no unique name assumption).

• It is possible to declare equality or inequality of resources (individuals).

• Inverse properties.

• Transitivity of properties can be defined with owl:TransitiveProperty.

• Symmetric relationships can be defined with owl:SymmetricProperty.

• Constraints on the range of properties to specific classes can be given
with owl:allValuesFrom and owl:someValuesFrom. The following example
illustrates these constraints: if a member of the class family:ParentWith-
DaughtersOnly has a family:hasChild relationship then the object of this re-
lationship is a family:girl. Likewise the definition of the class family:Parent-
WithAtLeastOneDaughter: at least one family:hasChild relationship has to
be related to a family:girl. Hence :Lisa has to be a family:Girl.
f ami ly : ParentWithDaughtersOnly owl : equ iva l en tC la s s
[a owl : R e s t r i c t i o n ;

owl : onProperty fami ly : hasChi ld ;
owl : al lValuesFrom fami ly : G i r l

] .
f ami ly : ParentWithAtLeastOneDaughter owl : equ iva l en tC l a s s
[a owl : R e s t r i c t i o n ;

owl : onProperty fami ly : hasChi ld ;
owl : someValuesFrom fami ly : G i r l

] .
f ami ly : G i r l a owl : Class .
: Peter fami ly : hasChi ld : L i sa ;
a fami ly : ParentWithDaughtersOnly .

• Furthermore, it is possible to define cardinality restrictions on properties
with owl:minCardinality or owl:maxCardinality, but in OWL Lite only to the
value 1. Note that owl:maxCardinality 1 is equivalent to a owl:Functional-
Property.

• Simple XML Schema datatypes can be used [OWL]. These datatypes com-
prises of xsd:string,xsd:boolean,xsd:decimal,xsd:float,xsd:double plus some
further datatypes derived hereof. Moreover there are time-related datatypes.

• Properties can be defined to be either an owl:ObjectProperty or a
owl:DatatypeProperty.

Not having the unique name assumption has significant consequences on the
design of knowledge bases or in query design. Consider the following example:

52 CHAPTER 3. TOWARDS THE SEMANTIC WEB

Example 3.13 (Does Peter have another mother?)
@pre f i x owl : <h t t p ://www.w3 . org /2002/07/ owl#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x : <h t t p :// example . org#>.
f am i l y : hasMother a owl : Func t i ona lProper t y .
: Peter f am i l y : hasMother : Katr in .

If the knowledge base from example 3.5 is used together with the above
mentioned example, the knowledge base is still consistent, although the fam-
ily:hasMother relationship is defined as functional (only one family:hasMother
relation is possible). The open world assumption allows us to deduce that :Ka-
trin and :Susan have to be the same as long as no other knowledge disproves this
conclusion explicitly. owl:FunctionalProperty is a subclass of rdf:Property.

With the additional knowledge from the next example it is known that :Su-
san and :Katrin are different, therefore the restriction on the property fam-
ily:hasMother is violated and the knowledge base becomes inconsistent. The
owl:sameAs axiom can be used to express the equality of classes.

Example 3.14 (Invalidate the son of two mothers)
@pre f i x owl : <h t t p ://www.w3 . org /2002/07/ owl#>.
@pre f i x : <h t t p :// example . org#>.
: Susan owl : d i f f e r en tFrom : Katr in .

The use of inverse properties is straightforward as illustrated by the next
example: The family:hasParent relationship is inverse to the family:hasChild rela-
tionship. The family:hasMother property is an rdfs:subProperty of family:hasParent.
Therefore, every resource A that has a family:hasMother relationship to resource
B also has a family:hasParent relationship to B. If resource A is related by fam-
ily:hasParent to resource B then is implied that B is related by family:hasChild
to A. Note that B family:hasChild A does not imply A family:hasMother B as it
is not yet known whether B is a family:Mother or a family:Father.

Example 3.15 (Inverse Properties)
@pre f i x r d f s : <h t t p ://www.w3 . org /2000/01/ rd f−schema#>.
@pre f i x owl : <h t t p ://www.w3 . org /2002/07/ owl#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x : <h t t p :// example . org#>.
f am i l y : hasCh i l d a owl : Ob j ec tProper t y ;

owl : i n ve r s eO f f am i l y : hasParent .
f am i l y : hasMother r d f s : subProper tyOf

f am i l y : hasParent .

Moreover, properties can be defined to be transitive. If A p B is true and
also B p C is true it can be derived that also A p C is true. An intuitive example
is given by the definition of the hasAncestor property:

Example 3.16 (Transitive Properties)
@pre f i x owl : <h t t p ://www.w3 . org /2002/07/ owl#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x r d f s : <h t t p ://www.w3 . org /2000/01/ rd f−schema#>.
@pre f i x :< h t t p :// example . org#>.
f am i l y : hasAnces tor

a owl : Ob j ec tProper t y ;
a owl : T ran s i t i v ePrope r t y ;
r d f s : domain f ami l y : Person ;

3.6. OWL AND FRIENDS 53

r d f s : range f am i l y : Person .
f am i l y : hasMother r d f s : subProper tyOf f am i l y : hasAnces tor .
: Susan f ami l y : hasMother : Katr in .

The following query shows that also :Peter is an ancestor of :Katrin, although
it was not stated explicitly.

Example 3.17 (Query for transitive relationships)
SELECT ?person ? ance s t o r
FROM < f i l e : pe t e rhasmother . n3>

FROM < f i l e : f a m i l y t r a n s i t i v e r e l a t i o n s h i p s . n3>

WHERE { ? person <h t t p :// f am i l y . org#hasAncestor>

? ance s t o r . }

This query allows to find the following results:

| person | ance s to r |
==
<http :// example . org#Susan>	<http :// example . org#Katrin>
<http :// example . org#Peter>	<http :// example . org#Katrin>
<http :// example . org#Peter>	<http :// example . org#Susan>

Symmetric relationships can also be explained easily. If A p B is true then
A q B is also true if p and q are symmetrical.

Example 3.18 (Symmetric relationships)
@pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x : <h t t p :// example . org#>.
f am i l y : h a sRe l a t i v e a owl : SymmetricProperty .
: Susan f ami l y : h a sRe l a t i v e : Peter .

OWL DL

OWL DL offers some additional features, which are:

• Arbitrary cardinality restrictions

• owl:disjointWith allows to express that two classes have no instances in
common. owl:unionOf, owl:intersectionOf and owl:complementOf ex-
press set operations on the sets of instances of given classes.

• Nominals: A class can be defined by an enumeration of its individuals
(owl:oneOf) or it can be defined based on the existence of particular prop-
erty values.

The use of nominals as well as the set operators can limit the decidability of
an ontology. The Description Logic fragment that is equivalent to OWL DL
is SHOIN (D), which is decidable but reasoning is in NExpTime. There is
another fragment SHOIQ(D), where again generalised cardinality restrictions
(Q) are allowed. Although reasoning is in NExpTime, recent findings [HS07]
could show that reasoning with the given algorithms is only in the worst case
in NExpTime but for common use cases it is in ExpTime.

54 CHAPTER 3. TOWARDS THE SEMANTIC WEB

OWL Full

OWL DL and OWL Lite are extensions of a restricted use of RDF and RDFS,
because, unlike RDF and RDFS, they do not allow classes to be used as indi-
viduals, and the language constructors cannot be applied to the language itself
[HPSvH04]. OWL Full is the union of RDF/RDFS and OWL DL, implement-
ing all remaining features of RDFS that are not already part of OWL DL. The
additional traits are

• Reification: adding statements about statements.

• Classes can now be both a class and an instance at the same time.

• In OWL DL, properties have to be either object or datatype proper-
ties. Datatype properties relate instances of classes to RDF literals or
XML Schema datatypes; datatype properties cannot be inverse functional.
These limitations do not hold any longer in OWL Full.

So far there are no reasoning engines that implement full OWL Full. The
reason is that OWL Full is undecidable. For example it is possible to express
paradoxical situations like Russel’s paradox (the set of all sets that do not
contain themselves as members) in OWL Full.

OWL Terminology

Often the notion of a model is connected with OWL ontologies. This is not just
an RDF graph extended with further edges, it is a theory which consists of an
RDF graph and a set of formulas (OWL axioms). Queries to that model retrieve
atomic facts from the theory. A model has an intensional and an extensional
part although this separation is typically invisible to the user. An OWL model
has an operational representation by a set of statements that are all ground
facts.

It has been described how OWL can be used in knowledge representation.
All derivations are based on the interpretation of axioms that are used in the
ontology. Rule-based derivations, however, are not possible. This deficit can be
compensated by a combination of different reasoning formalisms.

3.7 Hybrid Reasoning

Right from the beginning, when the idea of the Semantic Web was formed, it
was clear that there is the need, in addition to an ontology description language,
for another “layer” of inference (referring here to the allegory of the Semantic
Web Tower as visioned by Tim Berners-Lee [BLHL01]). This additional layer
should provide access to formalisms of deduction that are common in logic
programming.

Limitations of OWL

OWL has considerable expressive power as an ontology description language.
But, in order to retain the decidability of key inference problems, there are

3.7. HYBRID REASONING 55

limits to this expressiveness. While OWL offers a large set of class constructors,
there are only a few language features that allow to relate properties. For
example, it is not possible to express the uncle relationship as the composition
of the parent and brother relationships.

Furthermore there is the open world assumption which might cause unde-
sired effects in query answering. This is not so much a limitation but in fact
a consequence of classical logic in general. And, with respect to the represen-
tation of highly distributed knowledge in an environment like the World Wide
Web this paradigm is very well suited. Available information is (potentially)
always incomplete, therefore it would be incorrect to assume that the lack of
information is equivalent to negative information. For the retrieval of informa-
tion, however, it might desirable to draw conclusions on the basis of what is
known de facto.

Consider, for example, the following facts describing the resource mon:France
by its mon:capital-relationships to the resources mon:Paris and mon:Berlin.

Example 3.19 (Limitations by OWA and UNA)
@pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>.
@pre f i x mon : <h t t p ://www. semwebtech . de/mondial /10/meta#> .
mon : France mon : c a p i t a l mon : Par i s .
mon : France mon : c a p i t a l mon : Ber l i n .
mon : c a p i t a l a owl : Func t i ona lProper t y .

Without violating the functional property restriction of the mon:capital prop-
erty, OWL reasoning allows to conclude that both mon:Paris and mon:Berlin are
the mon:capital of mon:France because it is consistent to assume that these re-
sources might be the same. In other words, there could be some additional
knowledge somewhere expressing (mon:Paris owl:sameAs man:Berlin).

This limitation can be overcome easily in such a simple example. With the
addition of the statement (mon:Paris owl:differentFrom mon:Berlin), the two re-
sources are now known to be disjoint. However, in a more complex situation it is
much more complicated and sometimes simply not possible to define the dissim-
ilarity for every pair of individuals. In general, knowledge base design in OWL
faces some specific challenges (for a more detailed analysis of the limitations in
knowledge base design in OWL, see also [HPSvH04]).

Another constriction concerns a technical aspect of OWL reasoning engines,
which has considerable consequences on reasoning with OWL ontologies. OWL
reasoners are usually based on the tableau algorithm. While these reasoners
show good performance in complex TBox reasoning (concept reasoning) they
are weak in ABox reasoning (instance reasoning) as soon as large numbers of
instance data are involved [MS06],[HLTB04]. Hence it is disputable whether the
use of OWL reasoners together with real-world ontologies that often contain
large numbers of individuals and only a limited set of concept definitions is
advisable.

Combining Rules and Ontologies

Hybrid reasoning for the Semantic Web is commonly considered to be a com-
bination of DL reasoning (open world) with logic programming (closed world)
(see again Section 3.3). Logic programming adds features that cannot be ex-
pressed in FOL (which DL is a subset of), e.g. negation as failure or procedural

56 CHAPTER 3. TOWARDS THE SEMANTIC WEB

attachments (the association of action-performing procedural invocations with
the drawing of conclusions about particular predicates).

Depending on the degree of integration, combinations of rules and ontologies
can be characterised as being either hybrid or homogeneous [ADG+05]. The
homogeneous approach combines both parts to a single logic language. The
ontology part is tightly integrated by a rule-based mapping that coexists with
rule predicates (e.g. DL+log [Ros06]). Here, OWL reasoning is simulated by
the rule engine. Although the homogeneous variant offers a seamless semantic
integration of rules and ontologies, it suffers from problems concerning either
limited expressiveness or undecidability, because of the interaction between rules
and ontologies [EIST06]. In hybrid reasoning, different formalisms coexist: rules
and ontologies are kept separate though rules typically make use of the same
predicates that are also used in the ontology. Different reasoning engines can
be combined in a modular way, one for ontology reasoning (e.g. Pellet as a
DL reasoner) and one for rule evaluation (e.g. a Prolog engine in [DHM07] or
a Datalog engine in [DLNS98]).

For an overview on different combinations of rule systems and ontologies, see
the discussion in Section 12.5. Chapter 9 describes hybrid reasoning in Swan

and presents an implementation in which F-Logic reasoning is combined with
DL reasoning.

Rule formalisms are used in many different contexts. For instance, in active
databases behaviour is specified by rules. These rules are called ECA rules and
have gained a lot of attention in the Semantic Web research community.

3.8 ECA Rules: Formalising Behaviour

Data that is subject to change has different needs in terms of care than static
data. Dynamic aspects in data storage have been dealt with for a long time in
active database research. The most basic form of active behaviour is common
to most of the present-day databases: triggers. Triggers are simple rules on
the (database) programming language and data structure level. The underlying
paradigm for such behaviour are ECA rules: On the occurence of an Event,
when some Condition is fulfilled, do some Action. In databases, the pattern
for trigger definitions is: ON event IF condition THEN action. With triggers,
the conditions are given in the database query language and will evaluate to
false or true, only in the latter case allowing the trigger to fire and the action
part to be evaluated. The action component is given in a simple, operational
programming language. The event is a request for the execution of a database
operation, e.g. update the number of booked seats of a flight (see Example 4.3).

Triggers can be defined to initiate some action before or after the requested
database operation is executed, and the action can be supplemental or substi-
tutional to the requested operation. Since 1999, triggers are part of the SQL
standard. Real-world trigger definitions in SQL are somewhat more complex
than the abstract definition above, as they allow for complex, finetuned defini-
tion of behaviour that is integrated into the data definition and update language.
The purposes of triggers are manifold: they can be used to maintain database
integrity and exception handling, to implement business rules, or to fulfill main-

3.8. ECA RULES 57

tenance and monitoring tasks within the database itself instead of programmes
outside the database.

Trigger implementations differ depending on the database systems in use.
Some make it possible to use embedded procedural languages in the action part
of the trigger. That is a very useful feature, because relational algebra, which
forms the basis of SQL, is not Turing-complete.

The following example is a typical after -trigger, following the SQL standard:

Example 3.20
CREATE TRIGGER f l i g h t a v a i l a b l e c h e c k i n g
AFTER INSERT ON F l i g h t b o o k i n g s

REFERENCING NEW AS N
WHEN (s e l e c t count (∗) as book ed s ea t s from F l i g h t b o o k i n g s

where f lnumber = n . f l i g h t)
UPDATE b o o k i n g s p e r f l i g h t SET book ing s = book ed s ea t s

WHERE f l i gh tNumber = n . f l i g h t

On the event of an insert on the table Flightbookings the condition of the
trigger rule is evaluated (a query that selects the number of booked seats for
that flight). Then another table is updated with the result from the query. This
is a typical situation where a trigger is used for the update of a materialised
view.

The ECA paradigm, which makes it possible to define the behaviour of the
database system, can easily be extended. On the one hand, the action part can
be, as mentioned before, a fragment of an arbitrary procedural language. On
the other hand, the event part can be a composition of many single events com-
bined by an event algebra. There has been a lot of research on event algebras for
ECA rule systems in the (active) database community [CM94, GJS92] during
the ’90s. This branch of research was stimulated again with the advent of the
Semantic Web, when again the usage of the ECA paradigm seemed fitting for
the description of the dynamic aspects of change in knowledge bases [MAB04].
There have been several examinations on how to develop meta-models, encour-
aging the definition of a general semantics for ECA-Rules that covers most of
the popular ECA-rule systems from previous research, e.g. [Hin03, ZU99].

The situation in a (distributed) knowledge base is up to a certain extent
similar to the one in a database. But the distinction of what an action and what
an event is can be different. In the database the point of view is determined
by the perception of the process: the event (something changes) is directly
connected to the update (which causes the change of state). In a database the
action-performing agent and the event-detecting observer are always the same.
In the Semantic Web there are many agents, and events can be about arbitrary
changes performed by any agent. If an event is detected it is not necessary to
know where it originated or which action was causing it. Without consideration
of the agent, we talk about an event (following a common definition given by
e.g. [Kem01]). An event is primarily something linguistic or cognitive in nature
as the world does not really contain events. But how exactly do actions and
events interact? A general representation of actions and events has to be found
in order to support reasoning about the dynamic aspects of application domains.
These questions will be examined in more detail in Chapters 4 and 5.

58 CHAPTER 3. TOWARDS THE SEMANTIC WEB

Chapter 4

MARS: Modular Active

Rules in the Semantic Web

This chapter explains the design principles of Modular Active Rules (Mars)
[BFMS06, BFK+07, BFMS08]. A description of the architecture and the com-
ponents of the service infrastructure is provided.

4.1 Overview

As the name active rules indicates, the Mars rule system offers an infrastructure
which can be used for the modelling of the dynamic aspects of an application
domain. This means that the behaviour of a domain (e.g. a set of services) can
be specified by rules which are executed directly by the rule evaluation system
of Mars. Consider the following example:

Example 4.1 (Travel booking)
The application domain consists of services for travelling. In a flight booking
process a travel agency and an airline company are involved. The plot is: a
customer wants to book for flight LH458, the travel agency orders the booking
at the airline company and the airline has to update its internal database in
order to reflect that change on flight LH458. The intended behaviour can be
modelled by the use of a simple rule: on the occurence of a flight-booking if

there are available seats for that flight then do book-seat. This rule is given to
Mars and in case of a flight-booking the rule evaluation engine will conclude
that book-seat has to be done. 2

The rule formalism that is used in Mars follows the ECA paradigm (see
again Section 3.8). ECA rules consist of an event, a condition and an action
part. Initially, an event from the application domain (e.g. book-flight) activates
the evaluation of the rule. Eventually, if the condition (the query to the airline
for available seats) is satisfied, the action book-seat is executed.

The execution of such a rule relies on a set of service components which will
be described in Section 4.2. The components and their interaction are mostly
invisible to the user. In this respect, the Mars architecture differs greatly
from other architectures like Web Services. The latter demand from the user to

59

60 CHAPTER 4. MARS

address services directly in order to execute programme code of the service. In
Mars, however, it is not necessary to know how the services are implemented,
for example how a flight booking has to be done. Instead, the behaviour of the
domain is modelled abstractly by rules which in turn can be executed directly.
The only preconditions are knowledge about

• how to define rules using the Mars rule formalism and

• what vocabulary has to be used (e.g. flight-booking, book-seat) in order to
achieve the desired behaviour.

Section 4.3 presents the concept of ECA rules and how it is used in Mars.
This includes a description of the notions of actions and events and how they are
conceived in the context of Mars. Domain ontologies provide the vocabulary
which is used for the specification of events, actions, and other notions of the
rules and the application domain. The concept of domain ontologies, however,
is a subject of its own and will be discussed in Chapter 5.

4.2 MARS Components

This section gives a brief description of those components in Mars that are
needed in order to understand the integration of Swan into Mars.

Domain Broker. Much of the communication between the components in the
Mars framework is handled and conveyed by a domain broker. Its main task is
to distribute actions, queries and events to appropriate services. Hereby it serves
as an interface between an application domain and the Mars service infrastruc-
ture. Services are known if they registered at the domain broker beforehand.
Each application node announces its capabilities to the domain broker by giving
a list of those actions that the application node supports. In a similar way other
services register at the domain broker by giving a list of events that they are
interested in. In case that the domain broker receives an event or an action, the
appropriate recipients can be looked up in the registry of actions and events of
the domain broker. Query brokering is more complicated. Here it is necessary
that the domain broker has access to the ontologies of the application nodes.
The concepts that are used in the query are compared to concepts of the avail-
able domain ontologies. Those application nodes that use the same concepts as
those that are contained in the query will receive the query for evaluation.

ECA Rule Engine. This service component is responsible for rule evaluation.
The duties of the rule engine comprise registration, deregistration, and evalua-
tion of ECA rules. In case that a new rule becomes registered, the specification
of the event component is passed on to an event processor. This service will in
turn inform the rule engine as soon as one of the specified events is detected.
The detection of an event causes the next part of the rule to be evaluated: the
condition. The condition part can be any kind of query and will be given to
the query handler. This service takes care of query evaluation. The results are
returned to the rule engine which now processes the consequences of the rule:
the action part which is given to an action engine.

Rule evaluation is mainly a task which consists of mediating the execution of
the rule components and passing on contents from one of the rule components
to the next, e.g. parameters of the event or results from a query in the condition.

4.2. MARS COMPONENTS 61

Event Processing. Event processing involves detection and matching of events.
At first, a client (e.g. the ECA rule engine) registers for an event. This event
specification consists of an event name and attributes that have to be contained
in the event. In the next step the event processor on its own part has to register
at the domain broker. The domain broker keeps the event processor informed
about all events that match the registration. If an event turns up at the event
processor it is matched against all registered event specifications. For each
match a notification is sent back to the client. The notification contains the
extracted parameters of the event in form of variable bindings.

Query Handling. The condition part is evaluated by the query handler. This
service analyses the condition with regard to the query language that is used.
For example, SPARQL queries (see Section 3.5) can be distributed by the do-
main broker and are sent there. Other query languages are implemented by
query services of their own (e.g. XQuery). It is the task of the query handler to
distribute the queries to the appropriate services and return the results in form
of variable bindings to the ECA rule engine.

Action and Process Execution. The action component is the last part in
the chain of rule evaluation. Therefore, the action definition is simply passed on
to the action engine which inserts the variables and sends the resulting action(s)
to the domain broker which is expected to distribute the actions to appropriate
services.

Domain Application Nodes. The domain nodes (also called domain appli-
cation nodes or simply application nodes) operate on real data, which is stored
locally, either conventionally in a database or, like in Swan, in a knowledge
base. This is different from other infrastructural components in Mars where
only rules, registrations or state information have to be kept. Therefore much
of the state of a network is located at the domain nodes1. Domain nodes are the
leaves in the Semantic Web architecture as they offer services in an application
domain (e.g. railway companies, airlines, travel agencies). These services usu-
ally include querying for and manipulation of data. Data manipulation can be
performed by explicit updates but also by execution of abstract actions. These
actions result from ECA rule evaluation.

For example, an airline which serves flights offers the possibility to book
seats for these flights by the action book-a-seat. The internal manipulation of
data is a consequence of that action.

The domain nodes use events to talk about what happened in the knowledge
base, hereby making changes of the local state visible to the rest of the domain.
These events are sent to the domain broker.

Figure 4.1 shows schematically, with reference to Example 4.1, how the dif-
ferent service components in Mars interact. Initially, a domain node (e.g. travel
agency) sends an ECA rule to the ECA engine (1). This rule specifies what has
to be done upon an event named flight-booking. The next step is to ensure that
the ECA engine will receive events of this kind. Hence, it registers at the event
processor for that event (2). This service has in turn to register for events at the
domain broker (3). If a flight-booking event is received by the domain broker

1Chapters 6 - 9 give a description of Swan, which is the architectural concept of such a
domain application node.

62 CHAPTER 4. MARS

A
p
p
li
ca

ti
on

D
om

ai
n

L
an

gu
ag

e
S
er

v
ic

es

A
p
p
li
ca

ti
on

D
om

ai
n

N
o
d
e

e
.g

.
tr
a
v
e
l
a
g
e
n
c
y

A
p
p
li
ca

ti
on

D
om

ai
n

N
o
d
e

e
.g

.
ra

il
co

m
p
a
n
y

A
p
p
li
ca

ti
on

D
om

ai
n

N
o
d
e

e
.g

.
a
ir

li
n
e

A
p
p
li
ca

ti
on

D
om

ai
n

N
o
d
e

e
.g

.
ca

r
re

n
ta

l

Domain Broker
e.g. travel

ECA Engine

Event
Processor

Query
Handler

Action&Process
Execution
Engine

(1)

(2)

(3) (4)

(5) (6)

(7)

(8)

Figure 4.1: Mars Infrastructure. (→Events, →Queries, → Actions, 99K Regis-
trations)

(e.g. sent there by a user) it is handed over to the event processor (4). The event
processer compares the event to the event specification that it has received from
the ECA engine. For every registration that matches the event, a notification
is sent to the ECA engine (5). This triggers the rule that has been registered
in (1). As there is no condition part, the consequence of the rule is processed:
book-a-seat. This action is handed to the action engine (6) which sends it to the
domain broker (7). The domain broker delivers the action to a service which is
known to be able to execute that action (e.g. the airline company) (8).

All these components of the Mars architecture are needed for the evaluation
of ECA rules. These rules are now given a closer examination.

4.3 ECA Rules in MARS

The behaviour of a domain is defined by its ontologies and is implemented by
the use of ECA rules. In active databases (where the ECA paradigm originated)
an event is simply a database update. In Mars, however, an event is anything
that can be observed.

The general structure of an ECA rule in Mars is shown in Figure 4.2. A

4.3. ECA RULES IN MARS 63

Rule Model ECARule

Event
Component

Condition
Component

Action
Component

Query
Component

Test
Component

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model

Language
Name

URI

Syntax

1 0..1
1..*

* 1

�

�

�

�

↓uses ↓uses ↓uses ↓uses

Figure 4.2: ECA Rule Components and Corresponding Languages

typical rule consists of one event component, an optional condition component
and one or many action components. Each component uses for its specification
an appropriate language. The event processor, the query handler and the action
processor each have to identify the languages that are used in their rule com-
ponents. Either these language can be interpreted by the component processor
as a built-in language or a language processor has to be found. Languages and
services can be identified using a Language and Service Registry (LSR).

Before the components of an ECA rule can be analysed in more detail, the
syntactic aspects of rule definition have to be established. The specific markup
that is used in Mars is described in the following.

4.3.1 ECA Rule Markup

Mars widely uses an XML markup language on the rule level, named ECA-ML.
All elements of the markup language are defined in the ontology, which is used
by the ECA rule engine. For example, the rule that was informally described in
Example 4.1 is now given in proper ECA-ML markup:

64 CHAPTER 4. MARS

Example 4.2

<eca:Rule xmlns:eca=“http://www.semwebtech.org/languages/2006/eca-ml#”>

<eca:Event>

<xqm:Event
xmlns:xqm=“http://www.semwebtech.org/languages/2006/xmlql#”>

<travel:flight-booking
xmlns:travel=“http://www.semwebtech.org/domains/2006/travel#”
flight-number=“{$flight-number}”
date=“{$date}”/>

</xqm:Event>

</eca:Event>

<eca:Test>

<eca:Opaque
eca:url=“http://airline.travel.example.com/queries”>

<eca:has-input-variable eca:name=“flight-number”
eca:use=”$flight-number”/>

ASK {
$flight-number :booked-seats ?bs.
$flight-number :person-capacity ?pc.
FILTER (?bs < ?pc).}

</eca:Opaque>

</eca:Test>

<eca:Action>

<xqm:Action
xmlns:xqm=“http://www.semwebtech.org/languages/2006/xmlql#”>

<travel:book-seat
xmlns:travel=“http://www.semwebtech.org/domains/2006/travel#”
flight-number=“$flight-number”
date=“$date”/>

</xqm:Action>

</eca:Action>

</eca:Rule>

2

Note that the condition part may consist of either a query or a test com-
ponent or both of them. While the query is intended to bind query results
to variables for later use in the action component, the test component is used
to check constraints on the bound variables by a boolean query as shown in
Example 4.2.

Mars does not have a fixed set of languages for the specification of the rule
components. Rather, it provides for the possibility to use arbitrary languages
presumed that there are appropriate services available for the handling of these
languages.

For this purpose the rule engine needs to know, which languages are used in
the rule components. This is realised by the use of language identifiers (e.g. XML
namespaces or RDF resources) for the components that relate each component
to a language specification. The language specification gives details about a
language like obligatory or mandatory parameters or services that are available
for the processing of the language. In the example above, the action and the

4.3. ECA RULES IN MARS 65

event are both defined using XQM [DFF+99], which is specified by the resource
identifier http://www.semwebtech.org/languages/2006/xmlql#. The LSR allows
to find services that can be used for the execution of the rule components that
use XQM, e.g. http://www.semwebtech.org/services/2007/aem-xmlql.

The different components of ECA rules have been introduced already. It will
be shown now that these components can be defined either using terminology
from the domain ontology or in form of opaque elements.

4.3.2 Opaque Rule Components

In Example 4.2 the event and the action part are defined in terms of the do-
main ontology: both travel:flight-booking and travel:book-seat are notions that
are given by the domain ontology. The semantics of these components is fixed
and no procedural aspects are needed to be specified in the rule. Opaque com-
ponents, however, are given as programme code of some existing language that
is usually not defined (semantically) in the domain ontology. For example, data-
base updates in the action part or SPARQL queries in the condition component
(as in Example 4.2) are typical. Compare the abstract action component of
Example 4.2 to the following opaque fragment:

Example 4.3 (An opaque action definition)

<eca:Action>

<eca:Opaque eca:url=“http://airline.travel.example.com/sqlupdates”>

<eca:has-negative-variable name=“flight-number” />

UPDATE flighttable SET seats =
((SELECT seats

FROM flighttable
WHERE flight = $flight-number)-1)

WHERE flight = $flight-number;
</eca:Opaque>

</eca:Action>

2

The abstract action travel:book-seat in Example 4.2 is defined only seman-
tically. It is left to the recipient of the action book-seat how to implement the
intention of the action. In the opaque action in Example 4.3 it is stated ex-
plicitly what to do, and where. To this end, the actual update language of the
recipient application node has to be known.

The use of opaque rule components has the disadvantage of a tight coupling
of rules with service components. If a service is not available or changes its
update procedure the opaque content will fail to be processed. Moreover, if
another service with a different update language should be used instead of an
existing implementation, the rule has to be changed.

With abstract event and action definitions that make use of the vocabulary
of the application domain, the integration of services is highly modular. Any
service which uses the vocabulary of the domain ontology can be used for action
execution.

Up to this point, only atomic actions have been considered. The action
part of an ECA rule may, however, also consist of the specification of a complex
action.

66 CHAPTER 4. MARS

4.3.3 Complex Actions

The action component enforces the consequence of an ECA rule. It can be

• an atomic action on the domain level,

• a composite action, expressed in a language for specifying complex actions,

• an opaque action which invokes specific web services,

• an action component raising an event in an application domain (imple-
menting ECE rules, see Section 5.2.1)

Atomic actions have already been used in Example 4.2 (which is an abstract
action in the travel domain) and Example 4.3 (which is an opaque action).
Atomic actions can be executed at a domain node, whereas composite actions
consist of an arbitrary number of actions and have to be decomposed first. Com-
posite actions allow to combine actions in many different ways, e.g. as sequences
or in concurrent execution. Composite actions need an additional formalism in
order to specify the combination of actions that are to be executed. This can
be achieved, for example, by the use of Process Algebras like the Calculus of
Communicating Systems (CCS) [Mil83]. Because of the modularity of the Mars

architecture it is easy to use complex action definitions in rule execution. The
formalism, which is used in the definition of the composite action can be identi-
fied by the XML namespace that is used in the definition. Hereby, it is possible
for the rule engine to pass the action component to an adequate service for
execution. The following example, which makes use of CCS, illustrates how a
sequence of actions can be specified:

Example 4.4 (Action Specification using basic CCS)

<eca:Action xmlns:ccs=“http://www.semwebtech.org/languages/2006/ccs#”>

<ccs:Sequence>

<ccs:AtomicAction>

<travel:book-seat
flight=“{$flight-number}” date=“{$date}”/>

</ccs:AtomicAction>

<ccs:AtomicAction>

<travel:book-train
from=“{$start}” to=“{$airport}” date=“{$date}”/>

</ccs:AtomicAction>

</ccs:Sequence>

</eca:Action>

2

The process engine has to decompose the action component into several separate
atomic actions, here combined sequentially: After a seat for a flight is booked,
a train ticket is bought for a connection to the airport.

Not only the action component can be given as a composition of atomic
actions. Also the event part may consist of a complex event definition.

4.4. MARS ONTOLOGIES 67

4.3.4 Composite Events

The composition of events makes use of formalisms known as event algebras.
They define what (algebraic) combinations of atomic events are allowed. A
well-known event algebra is Snoop [CM94], which offers the combinators and,
or, sequence, any n out of alternatives, periodic, and aperiodic. The usage of
complex events demands, of course, for complex event detection. Like other
event processing services, this service has to register at the domain broker for
every atomic event that occurs in the complex event definition. When the
complex event is detected a notification is sent back to the client which registered
the complex event definition.

Consider the following composite event, which specifies the sequence of two
events, travel:DelayedFlight followed by travel:CancelledFlight (using the join vari-
able id).

Example 4.5

<eca:Rule>

<eca:Event
xmlns:travelns=“http://www.semwebtech.org/domains/2006/travel#”>

<snoopy:Sequence>

<snoopy:Atomic>

<xmq:Event
xmlns:xmq=“http://www.semwebtech.org/languages/2006/xmlql#”>

<travel:DelayedFlight travel:flight=“{$id}”/>

</xmq:Event>

</snoopy:Atomic>

<snoopy:Atomic>

<xmq:Event
xmlns:xmq=“http://www.semwebtech.org/languages/2006/xmlql#”>

<travel:CancelledFlight travel:flight=“{$id}”/>

</xmq:Event>

</snoopy:Atomic>

</snoopy:Sequence>

</eca:Event>

:
</eca:Rule>

2

Because the flight has been at least delayed once, most of the passengers are
expected to be waiting at the airport already. Hence, a rule with this composite
event specification could be used to inform all passengers of the delayed-and-
then-cancelled flight about alternative flights via SMS.

The rules and services that have been presented so far make use of notions
from a fixed vocabulary. These notions are defined in the Mars ontologies.

4.4 MARS Ontologies

The Mars framework uses several ontologies. The Language and Service Reg-
istry is used to describe existing service implementations and their capabilites

68 CHAPTER 4. MARS

whereas the Service Ontology defines the classes of services that are part of
Mars. Furthermore there is the Mars ontology which defines the notions that
are used in rules, language descriptions, and ontologies. The following example
shows parts of the Mars ontology.

Example 4.6 (Basic Mars Ontology)
@pre f i x owl : <h t t p ://www.w3 . org /2002/07/ owl#> .
@pre f i x r d f : <h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#>.
@pre f i x mars : <h t t p ://www. semwebtech . org /mars /2006/mars#> .
@pre f i x r d f s : <h t t p ://www.w3 . org /2000/01/ rd f−schema#> .

mars : Domain a owl : C las s .
mars : DomainNotion a owl : C las s .
mars : C las s a owl : C las s ;

r d f s : subClassOf mars : DomainNotion , owl : C las s .
mars : Proper ty

a owl : C las s ;
r d f s : subClassOf mars : DomainNotion , r d f : Proper ty .

mars : Act ion a owl : C las s ;
r d f s : subClassOf mars : DomainNotion .

mars : Event a owl : C las s ;
r d f s : subClassOf mars : DomainNotion .

mars : has−domain−b roke r
a r d f : Proper ty ;
r d f s : domain mars : Domain ;
r d f s : range mars : DomainBroker .

mars : DomainBroker
a owl : C las s ;
r d f s : subClassOf mars : S e r v i c e .

mars : DomainService
a owl : C las s ;
r d f s : subClassOf mars : S e r v i c e .

mars : uses−domain
a r d f : Proper ty ;
r d f s : domain mars : DomainService ;
r d f s : range mars : Domain ;
owl : i n ve r s eO f mars : has−s e r v i c e .

mars : s uppo r t s
a r d f : Proper ty ;
r d f s : domain mars : DomainService ;
r d f s : range owl : C las s .

In the Mars ontology, static aspects of rules, services and languages are
defined. The dynamic aspects are given in the domain ontologies. Domain
ontologies are examined in the next chapter.

Chapter 5

Domain Ontologies

A Semantic Web application node uses at least one domain. For example, the
airline company uses the travel domain. If this application also has to consider
financial matters then maybe the banking domain will also be used.

While the ontologies of Mars define the concepts that are needed for rule
execution and service integration, the ontologies of an application domain de-
scribe static and dynamic aspects of the domain. Events and actions are static
notions in a domain ontology and give the vocabulary to talk about the domain.
The dynamic aspects of the domain ontology are given in form of rules.

5.1 Events and Actions in Domain Ontologies

The notions of event and action have already been used in the components of
ECA rules. Actions cause changes to the state of an application domain whereas
events are descriptions of what has happened. On the conceptual level events
are not communicated, they are simply visible. In the following these conceptual
aspects of events and actions are described. The formal aspects of events are
investigated in Section 10.1.1.

Consider the travel domain. The concepts in the previous examples made
use of actions and events of that domain, for example the abstract atomic
action travel:book-seat, and the events travel:flight-booking, travel:seat-booked,
travel:DelayedFlight and travel:CancelledFlight. These notions are given in the
travel domain ontology:

Example 5.1 (Travel ontology, using concepts from the Mars ontology)
@pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#> .
@pre f i x r d f : <h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#>.
@pre f i x mars : <h t t p ://www. semwebtech . org /2006/mars#> .
@pre f i x r d f s : <h t t p ://www. w3 . org /2000/01/ rd f−schema#> .
@pre f i x t r a v e l : <h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#>.
t r a v e l : Act ion

a owl : C las s ;
r d f s : subClassOf mars : Act ion ;
mars : be l ongs−to−domain t r a v e l : .

t r a v e l : book−s e a t
a owl : C las s ;
r d f s : subClassOf t r a v e l : Act ion ;
mars : be l ongs−to−domain t r a v e l : .

69

70 CHAPTER 5. DOMAIN ONTOLOGIES

t r a v e l : f l i g h t −book ing
a owl : C las s ;
r d f s : subClassOf t r a v e l : Event ;
mars : be l ongs−to−domain t r a v e l : .

t r a v e l : sea t−booked
a owl : C las s ;
r d f s : subClassOf t r a v e l : Event ;
mars : be l ongs−to−domain t r a v e l : .

t r a v e l : De l a y edF l i g h t
a owl : C las s ;
r d f s : subClassOf t r a v e l : Event ;
mars : be l ongs−to−domain t r a v e l : .

t r a v e l : C an c e l l e dF l i g h t
a owl : C las s ;
r d f s : subClassOf t r a v e l : Event ;
mars : be l ongs−to−domain t r a v e l : .

From the point of view of the agent (that performed an action) an event can
be both a consequence or an interpretation of an action. For example, the action
book-seat and the event seat-booked are the same to the agent that performed
the action (the airline company). Also half-booked (half of the available seats
are booked) is an event that could be raised by the application.

Events allow to propagate changes using a shared vocabulary, which is com-
monly known in the application domain. This is a convenient way to describe
actions that took place. For example, the booking of a flight-ticket is better
desecribed by seat-booked compared to the much more explicit but circumstan-
tial the number of avaible seats for flight x has been reduced by one. Moreover,
if the events are named in terms of an ontology it is possible to talk about these
events. Hence, rules can be related and it becomes possible for other partici-
pants to contribute additional facets to an event. For example, if the meaning
of the concept seat-booked is established the event ticket-sold can be defined as
directly related to that event by the travel agency. Which update led to the
event seat-booked is of no importance to other agents.

Further relationships between events can be found if the domain ontology
defines such relationships. This is done with rule-based definitions.

5.2 Rule-Based Definitions

Rules which raise or derive events allow to define what changes become visible.
It is, in common sense, a special point of view that can be different from that
of the agent (that actually executed an action) and another agent to whom the
event becomes visible. Events may correspond to actions, but at the same time
they can be derived from other events.

Ontologies may contain, besides the static notions of actions and events,
rule-based definitions. These definitions, which can be logical derivation rules,
ECE rules or ACA rules, are explained in the following.

5.2. RULE-BASED DEFINITIONS 71

Local Level
(XML,SQL)
Event

E
C

E
D

er
iv

a
ti

o
n

ECA Triggers
Local Level
(XML,SQL)
Action

Actions = Events

High Level
Event

ECE Derivation

ECA Business Rules

High Level
Action

A
C

A
R

ed
u
ct

io
n

ACA Reduction

ACE Mapping

Figure 5.1: Types of Rules.

5.2.1 Derivation Rules

Derivation rules can be given in different forms. The easiest way with regard to
the integration of rules into the domain ontology is provided with OWL. OWL
axioms can be used to derive subclass relationships, classes can be defined as
intersections, unions or restrictions of other classes. Furthermore, instances of
properties can be derived.

For the integration of other, full first-order formalisms there are different
proposals. The hybrid reasoning extension in Swan (see Chapter 9) is one
example, other approaches are discussed in Section 12.5. While these derivations
are based on concepts of a knowledge base, ECE rules allow for derivations based
on the behavioural notions of an application domain.

5.2.2 ECE Rules

One way in which the relationship of events and actions can be specified has
been shown with ECA rules. ECE rules are a variant of ECA rules which
allow to derive high-level events from other events (see Figure 5.1). In order to
understand the relevance of ECE rules the notions of explicit and derived events
have to be explained:

• Explicit events have a direct relationship to actions. They do not add any
new knowledge (or a different point of view) to the action but directly
correspond to it. They usually are raised where the action occurs. For
example, upon the execution of the database update

update flighttable set seats =
((select seats from flighttable

where flight = ’LH458’ and date=’20081010’)-1)
where flight = ’LH458’ and date=’20081010’;

it would be possible to directly raise an event travel:seat-booked with pa-
rameters flightnumber=’LH458’ and date=’20081010’. The event seat-

72 CHAPTER 5. DOMAIN ONTOLOGIES

booked and the update action are directly connected and, from the point
of view of the database, they are the same.

• Implicit and derived events: An event can be derived from another event
by the use of ECE rules. These rules reflect that there can be many
different points of view on the same event. A travel:flight-booking event
with destination New York can also be seen as a travel:flight-booking-to-
USA event if New York is known to be a city in the United States and if
there is an ECE rule on travel:flight-booking if ($destination cityIn USA)
do raise-event travel:flight-booking-to-USA.

Consider another example of an ECE rule. This rule is defined to react
upon a travel:seat-booked event and checks whether the number of available
seats has reached a certain threshold (e.g. fifty percent), in which case the event
travel:half-booked would be derived from the original event travel:flight-booking
(needing the flight-number flight as an additional parameter).

Example 5.2 (ECE rule definition in the domain ontology)
The derived event travel:half-booked is specified by a definition in the domain
ontology. This time, the airline company is not an SQL database but an XML
database. Thus, the query language that is used is XPath instead of SQL.

<mars:Definition mars:syntax= “xml”>

<mars:defined>

<!-- pattern of the event to be derived -->

<travel:half-booked travel:flight=“$flight” travel:date=“$d”/>

</mars:defined>

<mars:defined-as>

<!-- E/C components how to derive it -->

<eca:Event>

<travel:seat-booked travel:flight=“$flight” travel:date=“$d”/>

</eca:Event>

<eca:Test>

<eca:Opaque eca:language=“xpath”>

<!-- note: XML schema of the (local) database assumed to be known -->

count($flight[@date=“$d”]/booking) =
$flight/id(@aircraft)/@number-of-seats div 2

</eca:Opaque>

</eca:Test>

</mars:defined-as>

</mars:Definition >

2

The handling of ECE rules is quite similar to the handling of ECA rules, opera-
tionally. It is the task of the domain broker to take care of the handling of these
aspects of the domain ontology. For this, ECE rule definitions are translated
by the domain broker into the ECA-ML rule format. The action component of
such an ECA rule contains an embedded event (e.g., travel:half-booked). Hereby,
the (translated) ECE rules can be registered at the ECA rule engine for rule
evaluation. The ECA rule engine in turn registers for all events (that were
given in the mars:defined-as part of the rule definition) at the domain broker.

5.2. RULE-BASED DEFINITIONS 73

The translated ECE rule will eventually be evaluated and the resulting event
handed to the domain broker.

ECE rules are used for the definition of the relationship between events.
ACA rules can be used in a similar manner for actions.

5.2.3 ACA Rules

As discussed in Section 4.3.2 in the context of opaque rule components, a higher
degree of abstraction allows for action definitions independent from whatever
data manipulation language is used at the application domain nodes. There are
two different ways for the handling of abstract actions (see also Figure 5.1):

a) Actions are the consequences of executed rules. The action execution
engine delivers the action(s) to the domain broker. The action is then
sent to all application domain nodes that support that kind of action. The
abstract action still has to be mapped to an application specific update.
Usually, domain nodes perform such mappings by the means of rules.
These rules are called ACA rules because they define a mapping between
different action specifications. The meaning of an action (as specified in
terms of the domain ontology) becomes expressed by an update in the
data manipulation language of the application node. Such a translation
from abstract (higher level) to definite actions (local level) is called a
vertical mapping because the degree of abstraction is reduced. ACA rule
mappings offer an interface between the abstract rule level (Mars) and
the data level of applications (e.g. Swan). This will be discussed in more
detail in Chapter 8 as a part of the Swan architecture.

b) Horizontal mappings, also specified by ACA rules, map between abstract
actions. As a consequence these mappings define an action either more
precisely or by giving alternatives. An action specification in form of an
ACA rule can be described as in order to do A do B and then C, for exam-
ple map buy-flight-ticket to pay-ticket followed by book-seat). Moreover,
ACA rules can be used like database instead-of triggers. Hereby, an ab-
stract action is specified to be executed instead of the original action under
certain conditions (e.g. execute buy-rail-ticket instead-of buy-flight-ticket
if seats are available fails). ACA rules can be handled by the ECA rule
engine much like ECA rules only that the rule engine reacts on actions
instead of events.

Vertical ACA mappings can be defined as part of the domain ontology as long
as both action components are defined in terms of the domain. ACA mappings
which map abstract actions to application specific updates (opaque fragments)
are defined and executed by the application. Example 8.4 in Section 8.4 shows
how these mappings are realised in Swan.

The next example from the banking domain illustrates how horizontal ACA
mappings can be used:

Example 5.3 (ACA Rule Definition in the Domain Ontology)
The action transfer �200 from bank account A to B is implemented by two ac-
tions, first debit �200 from account A, second deposit �200 on account B.

74 CHAPTER 5. DOMAIN ONTOLOGIES

<mars:Definition syntax=“xml”>

<mars:defined>

<banking:Money-Transfer amount=“$amount”
from=“$from” to=“$to”/>

</mars:defined>

<mars:defined-as>

<eca:Action>

<ccs:Concurrent
xmlns:ccs=“http://www.semwebtech.org/languages/2006/ccs#”>

<banking:debit amount=“$amount” account=“$from”/>

<banking:deposit amount=“$amount” account=“$to”/>

</ccs:Concurrent>

</eca:Action>

</mars:defined-as>

</mars:Definition>

2

This ACA rule is part of the domain ontology. The domain broker translates
this ACA rule definition such that it can be registered as an ordinary ECA rule
at the ECA rule engine. In this situation, no application node registered for
supporting banking:Money-Transfer. Instead, the ECA rule engine registered
tor banking:Money-Transfer as an event which will initiate the evaluation of the
(translated) ACA rule. The execution of the action part will be performed by
an action engine, e.g. a CCS engine.

It has been shown how actions and events are used in rule definitions. The
dynamic relationship between actions and events still has to be investigated.

5.2.4 Dynamic Aspects of Actions and Events

The main component in Mars are ECA rules. Events and actions are the most
important notions for the definition of the domain behaviour.

The Mars ontology (see Section 4.4) abstractly defines actions and events
as domain notions. The domain ontologies give precise specifications of actions,
events and rule definitions that are used in the application domain. The ap-
plication domain nodes announce the range of actions that they support. By
employing the same domain notions it is possible that the consequence of an
ECA rule can eventually be executed at a domain node without specifying where.
This is different from ordinary Web Service invocations where the Web Service
has to be addressed explicitly. The abstract nature of an action in Mars implies
that it does not specify how the action should be executed. It is completely left
to the application domain node how this domain notion will be handled. The
same holds true for abstract event definitions, which do not specify exactly what
happened but how an incident is seen.

So far actions and events are merely declarations of domain notions. As a
next step it is desirable to use them for descriptions of the dynamic notions of an
application domain. Such a description needs a vocabulary which can be used to
talk about actions and events in terms of their relationships among each other,
their pre- and postconditions. An ontology that utilises such a vocabulary can
be in turn applied in the reasoning about the effects of actions and events or,

5.2. RULE-BASED DEFINITIONS 75

more generally speaking, about the dynamic aspects of an application domain.
This is a subject of ongoing research in Mars.

The introduction of Mars and domain ontologies in the last chapters pro-
vided the basis for the main contribution of this thesis: A domain node for the
Semantic Web. This domain node uses events for the communication and it
translates abstract actions to knowledge base updates by the use of ACA rules.
The components of this domain node architecture are described in the next part
of this work.

76 CHAPTER 5. DOMAIN ONTOLOGIES

Part II

SWAN: Semantic Web

Application Node

77

Chapter 6

Introduction

The following Chapters 6 - 10 contain the main contribution of this thesis,
giving a thorough examination of the features and characteristics of the Swan

architecture. The previous chapters about Mars and domain ontologies have
prepared the ground for the description of the concept of an application domain
node. It is the scope of this thesis to describe how an active knowledge base
can be integrated into an event-driven environment and how its behaviour can
be specified in form of rules.

This part is structured as follows: The present chapter explains the core
features of the Swan architecture. Furthermore, questions concerning data ma-
nipulation in a knowledge base are depicted. The specification of the behaviour
of a domain node by reactive rules in form of triggers is presented in Chapter 7.
Next, Chapter 8 gives a description of the ACA rule mapping mechanism, which
provides an interface that allows to integrate Swan into the event-driven en-
vironment Mars. Chapter 9 deals with the hybrid reasoning capabilities of
Swan and shows how F-Logic rules can be used in combination with OWL rea-
soning. A logical characterisation of the domain nodes’ behaviour can be found
in Chapter 10.

6.1 SWAN Architecture: Overview

6.1.1 RDF Storage

Whereas in relational databases there are only limited possibilities to express
meta-data (in form of the database schema), the situation is completely dif-
ferent with knowledge bases (see Section 3.3). Here, the expressiveness of the
meta information depends on the expressiveness of the ontology description lan-
guage or the rule formalism that is used. Thus, one prerequisite to the data
model of the knowledge base is how data and metadata can be represented.
The most widely used formalism for the representation of data in the Seman-
tic Web today is the Resource Description Framework (RDF), which has been
described in Section 3.4. One of the central tasks in the Swan architecture is
to store RDF data, furthermore, to allow for querying and data manipulation.
For the handling of RDF data in Java there are at least two major frameworks:
Jena [Jen] and Sesame [Ses]. Both frameworks allow for the use of a relational

79

80 CHAPTER 6. INTRODUCTION

Domain Application Node

Interface

Queries /
Updates

Events /

Answers

RDF Knowledge Base
(Jena + Triggers)

RDF Data Storage
(PostgreSQL)

OWL Reasoner
(Pellet)

Figure 6.1: Architecture of the Domain Application Node

database as a backend for the persistent storage of RDF data. For the imple-
mentation of Swan the decision was made in favour of Jena in combination
with a PostgreSQL database. Figure 6.1 presents the basic architecture of the
RDF knowledge base in Swan.

Internally, manipulations of RDF data are additions and removals of RDF
statements. These manipulations are realised by methods of the Jena API.
This storage layer, however, is invisible to the user. Instead, Swan offers a user
interface for the manipulation and administration of the knowledge base.

6.1.2 User Interface

The user interface of Swan allows to give update commands to the knowledge
base. The following commands can be used for the specification of data manip-
ulations:

• insert($sub,$pred,$obj): Insert a statement into the knowledge base.

• delete($sub,$pred,$obj): Delete a statement from the knowledge base.

• delete-resource($res): Delete all statements that contain the given re-
source. This actually results in a set of delete operations.

• update-subject($sub,$pred,$obj,$new-sub): Update the subject posi-
tion of the given statement with a new value.

6.1. SWAN ARCHITECTURE 81

• update-predicate($sub,$pred,$obj,$new-pred): Update the property po-
sition of the given statement with a new value.

• update-object($sub,$pred,$obj,$new-obj): Update the object position
of the given statement with a new value.

The control of the administrative functionalities of the domain node is cov-
ered by the following commands:

• read-rdf : Read a set of RDF statements from a file or URL into the
knowledge base.

• dump: Dump the contents of the knowledge base into a file.

• rename($old-res,$new-res): Globally redefine a resource name in the
knowledge base.

• rename-property-of-class($old-pred,$new-pred,$class): Redefine the
name of the given property for all defined individuals of the given class.

• actionSequence: Execute a sequence of arbitrary commands.

The rename operations are different from the update operations: a resource
name is changed globally in the knowledge base. The rename operation is not
intended to be used for updates but only for internal revisions. Also, the read-
rdf operation is not considered for updates. Rather it is designed to be used for
the initialisation of the knowledge base.
Queries to the knowledge base can be given by the following commands:

• sparql-query Execute a given SPARQL on the knowledge base.

• ask-query Execute an ASK query, returning true or false.

These queries are executed by the query engine of Jena, which is an imple-
mentation of SPARQL with some additional features like aggregation and filter
functions.

There are also commands that allow for high level communication with the
application domain. On the rule level, Swan communicates with the surround-
ing Mars framework or other domain nodes by the raising of events or by
receiving actions. Event raising provides information about the internal state
of affairs, action execution enforces the consequences of application domain be-
haviour as defined by ECA rules. The following commands can be used in this
context:

• raise-event: Raise an event which will be sent to the domain broker.

• raise-directed-event: An event will be raised and sent to the address
which is given as a parameter of the application node action.

XML Interface. The above commands can also be submitted to the applica-
tion node via an XML interface. These commands are called application node
actions in analogy to the notion of actions in Mars. The XML fragments may
consist of update operations or sequences of actions as described before.

Knowledge base updates in XML markup use the rdfu namespace1. Updates
can be given to the user interface of the Knowledge base as native update
commands like in the following example:

1xmlns:rdfu=”http://www.semwebtech.org/languages/2006/rdfupdate#”

82 CHAPTER 6. INTRODUCTION

i n s e r t (h t t p :// example . org#Susan ,
h t t p :// f am i l y . org#hasChi ld ,
h t t p :// example . org#Peter) .

Usually, however, the commands are given as XML fragments. The following
XML fragment causes the same insert operation as the native update command
above:
<rd fu : i n s e r t xmlns : rd fu=

” h t t p ://www. semwebtech . org / l anguage s /2006/ rd f upda t e#”>
<r d f : s u b j e c t r d f : about=”h t t p :// example . org#Susan”/>

<r d f : p r e d i c a t e r d f : about=”h t t p :// f am i l y . org#hasCh i l d”/>

<r d f : o b j e c t r d f : about=”h t t p :// example . org#Peter”/>

</rd fu : i n s e r t >

The XML fragment will be translated by the XML interface and given as a
native update to the knowledge base.

A SPARQL query can be given to the domain node in form of an appl-
node:query element, the query itself can be specified either with an sparql-query
attribute node or with the content of that element like in the following example:

<applnode : query xmlns : applnode=
”http ://www. semwebtech . org /2006/ app l i c a t i on−node#”>
< ! [CDATA[s e l e c t ?x where {

<http :// example . org#Susan>

<http :// fami ly . org#hasChild> ?x}
]] >

</applnode : query>

If more than one action has to be executed at one time the actions can be
given as an action sequence:

Example 6.1
<applnode : act ionSequence

xmlns : applnode=”http ://www. semwebtech . org /2006/ app l i c a t i on−node#”
xmlns : rd fu=”http ://www. semwebtech . org / languages /2006/ rdfupdate#”>
xmlns : rd f=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#”

<rd fu : i n s e r t
<rd f : s ub j e c t rd f : about=”http :// example . org#Susan”/>

<rd f : p r ed i c a t e rd f : about=”http :// fami ly . org#hasChi ld”/>

<rd f : ob j e c t rd f : about=”http :// example . org#Peter”/>

</rdfu : i n s e r t >

<applnode : query xmlns : applnode=
”http ://www. semwebtech . org /2006/ app l i c a t i on−node#”>
< ! [CDATA[s e l e c t ?x where {

<http :// example . org#Susan>

<http :// fami ly . org#hasChild> ?x}
]] >

</applnode : query>

</applnode : act ionSequence>

Action sequences and queries are administrative actions (see Section 6.1.2) and
make use of the application-node namespace2.

Also the raising of events, adding or removal of knowledge base triggers
or ACA rules can be achieved in this way by embedding the event or the rule
definition in the application-node action element. The raising of directed events,
which can also be used for the sending of messages, needs a target-url attribute
for the specification of the recipient:

2 xmlns:applnode=”http://www.semwebtech.org/2006/application-node#”

6.2. INTENSIONAL DATA: THE REASONING LAYER 83

<applnode : r a i s e−d i r ec t ed−event
xmlns : applnode=”http ://www. semwebtech . org /2006/ app l i c a t i on−node#”
target−u r l=”http :// example . org#event−s e r v i c e / incomingevents”>

<f ami ly : new−marriage xmlns : f ami ly=”http :// fami ly . org#”>
<f ami ly : b r ide fami ly : id=”http :// example . org#A l i c e M i l l e r ”/>

<f ami ly : groom fami ly : id=”http :// example . org#John Doe”/>

</fami ly : new−marriage>

</applnode : r a i s e−d i r ec t ed−event>

Basically, the knowledge base in Swan provides the storage of RDF data.
Beyond that, also intensional data can be specified.

6.2 Intensional Data: The Reasoning Layer on

Top of RDF

Swan supports the ontology description language OWL , which can be used
for the specification of intensional data. In order to apply OWL reasoning, an
inference engine has to be used in order to build the OWL knowledge base. Sev-
eral projects exist implementing description logics reasoners. One that has been
favoured for this work is Pellet [Pel], for it is freely available and implements the
latest language features of OWL. Other popular reasoners are Racer [HM01]
and Fact++ [Hor98].

The basic data structure in Jena is an RDF graph. Manipulations to the
RDF data are performed by the Model interface. The Model is constructed
from the Graph and can be enhanced by reasoning mechanisms, resulting in an
InfModel (inference model) or in a further subclass, the OntModel (ontology
model). These models contain additional facts that have been derived by an
OWL reasoning engine. Note that the term model as it is used by the Jena

framework is misleading as it does not denote the same thing as is known from
model theory. The model as it is used in Jena is better described as a (spe-
cialised) theory. The theory consists of the given OWL axioms and the TBox
data (concept and role definitions). Moreover, the theory is specialised with
regard to the assertions in the ABox. As long as the theory is not closed there
are many models in the sense of model theory. Hence, the knowledge base is
better named a specialised theory. Nevertheless, the notion of a model is used
in this work when considering implementation and architectural details of the
Swan architecture as in Jena. Formal considerations, however, employ the
model theoretic point of view.

Jena itself offers a variety of built-in reasoners, each of them covering dif-
ferent subsets of OWL, RDFS and (for historical reasons mainly) DAML. The
capabilities of these reasoners are limited, though. Additionally, the integration
of external reasoners is supported. One possibility is to use the DIG interface
[DIG].

6.2.1 Limitations of the DIG Interface

The idea behind this design is to have a uniform access mechanism to arbitrary
description logic reasoners. Many DL reasoners indeed implement the DIG in-
terface protocol, which makes it easy to integrate them in an already existing
set of services. The DIG interface is based on a tell and ask mechanism. First,

84 CHAPTER 6. INTRODUCTION

the application tells the data contained in the knowledge base to the reasoner,
then the interface can be asked. Changes to the knowledge base are told in the
same way. In Jena, the coupling of the knowledge base and the reasoner is
invisible to the application itself which means that the InfModel can be queried
and updated in the usual fashion. The underlying programme logic translates
the query into questions that are understood by DIG. However, the advantage
of having a uniform access mechanism for arbitrary reasoners has a severe draw-
back: the translation via the tell & ask interface supports only a limited set of
OWL axioms. Independent from both the set of OWL axioms that are used in
the ontology and the reasoning capabilites of the reasoner that is called via DIG,
the expressiveness of answers to the queries is limited to the expressiveness of
the interface itself.

The following example shows that DIG is limited to entailments on hierar-
chical relationships. For instance, it is not possible to translate the OWL axiom
owl:sameAs via DIG. The ontology defines four individuals: :Peter, :John, :Katrin
and :Susan. :Katrin has a child :John, :John has two mothers :Katrin and :Susan.
It is possible to derive that :Katrin and :Susan have to be the same person (see
again Example 3.13).

Example 6.2 (Limitations of the DIG interface)
@pre f i x owl : <h t t p ://www.w3 . org /2002/07/ owl#>.
@pre f i x r d f : <h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#>.
@pre f i x r d f s : <h t t p ://www.w3 . org /2000/01/ rd f−schema#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x :< h t t p :// example . org#>.
f am i l y : hasMother a owl : Func t i ona lProper t y ;

r d f s : subProper tyOf f am i l y : hasParent .
f am i l y : hasCh i l d owl : i n ve r s eO f f am i l y : hasParent .
: Peter f am i l y : hasMother : Susan , : Katr in .
: Katr in f am i l y : hasCh i l d : John .

Therefore, the following query, which selects all known family:hasChild re-
lationships, should return both :John and :Peter being children of :Susan and
:Katrin:

Example 6.3
SELECT ?person ? c h i l d
FROM < f i l e : p e t e r s n o t f o und b r o t h e r . n3>

WHERE { ? person <h t t p :// f am i l y . org#hasChi ld> ? c h i l d . }

However, using a DL reasoner via the DIG interface the only result is

| person | ch i l d |
===
| <http :// example . org#Katrin> | <http :// example . org#John> |

By the use of a sophisticated DL reasoner like Pellet, the following query
results can be found:

| person | ch i l d |
==
<http :// example . org#Susan>	<http :// example . org#John>
<http :// example . org#Susan>	<http :// example . org#Peter>
<http :// example . org#Katrin>	<http :// example . org#John>
<http :// example . org#Katrin>	<http :// example . org#Peter>

6.2. INTENSIONAL DATA: THE REASONING LAYER 85

Considering that the additional family:hasChild relationships can be derived from
the functional nature of the family:hasMother relationship it becomes obvious
that it is not possible to derive the equivalence of :Katrin and :Susan by the use
of the DIG interface.

Because of the severe restrictions of the DIG interface a different solution
for the integration of a DL reasonser was chosen.

6.2.2 Pellet

A completely different approach is possible when using the OWL-DL reasoner
Pellet. Pellet offers several interfaces that allow access to its reasoning
capabilites. One interface enables a tight coupling of Jena with Pellet. The
OntModel is built using Pellet in the same way (as far as it concerns the
programmer of the application) as the “internal” reasoners that are shipped
with Jena. Pellet is under active development and most of the features of
the current OWL1.1 proposal are integrated into Pellet already.

Example 6.4
Pellet incorporates the OWL1.1 feature of property chains. The object property
family:hasSibling is introduced, consisting of the combination of properties fam-
ily:hasMother and family:hasChild. Note that this example makes use of lists (a
single linked list) and blank nodes (anonymous resources annotated with empty
square brackets) that have not been mentioned before.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x r d f : <h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#>.
@pre f i x r d f s : <h t t p ://www. w3 . org /2000/01/ rd f−schema#>.
@pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>.
@pre f i x owl11 : <h t t p ://www. w3 . org /2006/12/ owl11#>.
@pre f i x : <h t t p :// example . org#>.
: Peter f am i l y : hasMother : Susan .
: Peter f am i l y : hasMother : Katr in .
: John f ami l y : hasMother : Katr in .

f am i l y : hasCh i l d a owl : Ob j ec tProper t y ;
owl : i n ve r s eO f f am i l y : hasParent .

f am i l y : hasMother a owl : Func t i ona lProper t y ;
r d f s : subProper tyOf f am i l y : hasParent .

f am i l y : hasMother r d f : t ype r d f : Proper ty ;
r d f s : range f am i l y : Mother ;
r d f s : domain f ami l y : Ch i l d .

f am i l y : h a s S i b l i n g
a owl : Ob j ec tProper t y .

[] a r d f : L i s t ;
r d f : f i r s t f am i l y : hasMother ;
r d f : r e s t (f am i l y : hasCh i l d) ;
r d f s : subProper tyOf f am i l y : h a s S i b l i n g .

Example 6.5 (Query for siblings)
SELECT ? c h i l d ? s i b l i n g
FROM < f i l e : p e t e r s f o und b r o t h e r . n3>

WHERE { ? c h i l d <h t t p :// f am i l y . org#ha sS i b l i n g > ? s i b l i n g . }

86 CHAPTER 6. INTRODUCTION

The query returns all pairs of resources that are related by the (derived)
family:hasSibling property. The result contains :Peter being the sibling of :Peter
and :John (and the same pairs for :John):

| ch i l d | s i b l i n g |
===
<http :// example . org#Peter>	<http :// example . org#John>
<http :// example . org#Peter>	<http :// example . org#Peter>
<http :// example . org#John>	<http :// example . org#John>
<http :// example . org#John>	<http :// example . org#Peter>

Note that it is not possible to refine the definition of the family:hasSibling re-
lationship such that a person is no longer derived to be its own sibling. However,
a FILTER clause could be used in the SPARQL query such that only distinct
pairs of siblings are returned.

Now that the knowledge base is equipped with a reasoner it contains both
explicit and implicit knowledge. This has severe consequences for updates to
the knowledge base.

6.3 Updates to the Knowledge Base

Updates to knowledge bases is a topic which has been studied intensively for
many years. Although these research activities stem from different communities
(see Section 12.5 for a comparison and discussion) the problem statements of
these works are the same. How should an update be performed if the update
causes inconsistencies or if it is ambiguous? Consider the next example:

Example 6.6
@pre f i x owl : <h t t p ://www.w3 . org /2002/07/ owl#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x : <h t t p :// example . org#>.

: Peter f am i l y : hasParent : Susan .
f am i l y : hasParent owl : i n ve r s eO f f am i l y : hasCh i l d .

It is explicitly known that :Susan is the mother of :Peter while it is implic-
itly known that (:Susan family:hasChild :Peter). What is expected to happen
in a knowledge base if the statement (:Susan family:hasChild :Peter) has to be
inserted? There can be different solutions:

a) The update operation is executed regardless of the intensional data of
the knowledge base. As long as the statement is not already explicitly
contained in the knowledge base, the statement is added. This may, as in
the example above, cause redundancies.

b) The update operation is executed such that a desired state will be reached.
Therefore, not only the extensional data but also the intensional knowledge
has to be considered. With regard to the example above, for asserting
the statement nothing has to be done because the statement is already
(implicitly) known.

In order to be able to specify which kind of update is intended by the user,
there are intensional update operations to the knowledge base in Swan :

6.3. UPDATES TO THE KNOWLEDGE BASE 87

• assert($sub,$pred,$obj) Assure that the given statement will be entailed
by the knowledge base after the update.

• retract($sub,$pred,$obj) Assure that the given statement will not be en-
tailed by the knowledge base after the update.

All update operations in Swan are, internally, operations on the graph struc-
ture which are realised by the use of the Jena framework. The commands of
the user interface of Swan provide the user the possibility to specify whether
an update on the graph (an extensional update) or on the knowledge base (an
intensional update) is desired. Hence, the first group of updates (as described in
Section 6.1.1) comprises of the insert, delete, and update operations, all of which
directly effect the RDF graph by adding, removing or updating statements. The
second group comprises the assert and retract operations, which assure that the
knowledge base is in a specified state after the update operation. While the for-
mer group needs no further explanation, the intensional updates are explained
in detail in the following.

6.3.1 Retract

There are two possible update mechanisms for the removal of a statement: delete
and retract (the delete-resource operation corresponds to a set of delete opera-
tions). A delete operation will finish successfully if the statement can be removed
and the knowledge base is still valid. The effect of a delete operation, however,
can be ambiguous: it might be executed successfully even in case that the state-
ment is still entailed by the knowledge base afterwards. This can happen in
situations like in the example above when the knowledge base contains redun-
dancies. For this reason it is not necessarily possible to predict the state of the
knowledge base after a delete operation. The semantics of the retract operation
on a knowledge base, however, is well-defined. It is only considered to complete
successfully if a statement is not entailed by the knowledge base after the up-
date. Thus it can be regarded as a guarantee towards the state of the knowledge
base after the completion of the retract operation. Hence, if the statement (:Su-
san family:hasChild :Peter) was added to Example 6.6 then the retraction of the
information (:Peter family:hasParent :Susan) is only possible if also the statement
(:Susan family:hasChild :Peter) is removed. So, a retract operation may consist
of a set of updates. Note that retract is defined such that the update is also
considered a success if the statement did not exist before.

6.3.2 Assert

The situation for the addition of a statement to the knowledge base is similar:
even if a statement already exists (as an inferred statement), an insert operation
would be performed. Moreover, adding a statement may cause the knowledge
base to become inconsistent. Assert guarantees that a statement is entailed
by the knowledge base afterwards. Hence, it is again a guarantee towards the
state of the knowledge base after the update. In order to achieve that state, an
assert operation may consist of an arbitrary number of updates. If, however,
the knowledge base already entails the statement nothing has to be done. The
assert fails, if the statement would invalidate the model.

88 CHAPTER 6. INTRODUCTION

These considerations about knowledge base updates are reflected in the fol-
lowing formal specification.

6.4 Formal Specification of Updates

The formal evaluation of updates in Swan in this section is given from a model-
theoretic point of view. OWL entailment offers a model theory for a given
RDF graph which consists of a Description Logic ABox and TBox (see Section
3.6). Furthermore, a distinction can be made between base facts and derived
facts. The former are contained in the underlying graph whereas the knowledge
base contains both base and derived facts. A knowledge base is not a simple
RDF graph extended with further edges but it is a theory which consists of an
RDF graph and a set of formulas (OWL axioms) that allows to draw further
conclusions.

6.4.1 Graph Updates

A set of updates U on a graph G consists of either insertions of triples ins(x,y,z)
or deletions of triples del(x,y,z).

(ins(x, y, z), G) 7→ G ∪ (x, y, z)

(del(x, y, z), G) 7→ G\(x, y, z)

A modification of a triple consists of a deletion followed by the insertion of a
triple such that exactly one of the positions in the corresponding triple differs:

(mod((x, x′), y, z), G) 7→ (G\(x, y, z) ∪ (x′, y, z))

(mod(x, (y, y′), z), G) 7→ (G\(x, y, z) ∪ (x, y′, z))

(mod(x, y, (z, z′)), G) 7→ (G\(x, y, z) ∪ (x, y, z′))

Equivalently, the notation mod(t, t′) can be used for modifications, where t
is the original triple and t′ is the resulting triple.

Applying updates. The effect of a set of updates U on a graph G is defined
via the Apply operator. It is a mapping from a pair (U,G) to a result graph:

Definition 6.1 (Apply)

Apply : 2U × G → G

(U,G) 7→ G \ {(x, y, z) : del(x, y, z) ∈ U}
∪ {(x, y, z) : ins(x, y, z) ∈ U}

U is consistent if

∀(x, y, z) : (ins(x, y, z) ∈ U → del(x, y, z) /∈ U)

Given that U is consistent, all u ∈ U can be applied in arbitrary order:

Apply({u1 . . . un}, G) = (Apply(u1, Apply(. . . , Apply(un, G))))

2

6.4. FORMAL SPECIFICATION OF UPDATES 89

Note that a set of updates U = {ins(x, r, y), del(y, r−1, x)} can be applied
consistently to a graph because both ins(x, r, y) and del(y, r−1, x) exist as ex-
plicit statements. The situation for updates to intensional knowledge (e.g. r−

is the inverse property of r) is different.

6.4.2 Updates to Intensional and Derived Knowledge

While insert, delete, and update only effect the graph (the ABox and TBox of the
knowledge base), the definition of assert and retract has to consider changes to
the knowledge base. In the following, updates to a knowledge base are examined
with respect to the theory.

Definition 6.2 (Theory of a Graph G)
The relationship between a theory Th and a graph G is defined for closed for-
mulae ϕ if

Th(G) = {ϕ : Th |=OWL ϕ}
2

Definition 6.3 (Minimal Graph)
Let G be any graph and Th := Th(G). If there is no G′ such that G′ &
G and Th = Th(G), then G is a minimal graph. 2

Definition 6.4 (Inverse Properties)
If Th(G ∪ (x, r, y)) |= (y, r−, x) then r− is the inverse property of r . 2

For the definition of updates to the knowledge base the following restrictions
are introduced:

a) Neither assert nor retract are allowed to perform changes on the TBox.

b) A theory update consists of minimal changes (according to a minimal
changes semantics as described below).

No Changes to the TBox. Retract and assert operations are only defined
for statements of the ABox. There are two reasons for this restriction.

- First, consider again Example 6.6 where the deletion of the statement
(:Susan family:hasChild :Peter) was not possible. That statement is derived
and does not exist as a base fact, hence, it cannot be deleted. If this state-
ment has to be retracted, there are, theoretically, two possibilities: either
delete the ABox statement (:Peter family:hasParent :Susan) or the TBox
statement (family:hasMother owl:inverseOf family:hasChild). The deletion
of the former is reasonable because the statements are closely related and
the deletion reflects the intention of the update operation. A deletion of
the other statement would also come to the desired result, but it would,
at the same time, cause the removal of all other (derived) statements that
make use of the inverse nature of that property definition.

- Intensional updates to the TBox can hardly be achieved. For an ABox,
there are situations where a deleted statement can be reconstructed by
derivation from another statement. There is no comparable situation for

90 CHAPTER 6. INTRODUCTION

TBoxes. This can be explained by the fact that there are no bidirectional
axioms like owl:inverseOf as class constructors. Therefore, the delete oper-
ation should always be sufficient for the specification of an update of the
TBox. The same is true for insert operations on the TBox.

Hence, assert and retract operations are defined for ABox updates only.
Updates to the TBox have to be explicitly defined by insert or delete operations.

Minimal Updates. The restriction of effects of updates to minimal changes
is proposed in order to prevent extensive changes to the TBox caused by the-
ory updates. For example, consider a transitive family:hasAncestor relationship:
(:Peter family:hasAncestor :Susan) (:Susan family:hasAncestor :Mary). It can be
deduced that :Mary is :Peters ancestor. Retracting the inferred statement (:Peter
family:hasAncestor :Mary) is only possible by removing both of the explicit state-
ments followed by inserting the positive and the negative disjunction of the two
statements (one does definitely exist, but not the two of them). This disjunc-
tion can be expressed in an OWL ontology, but it involves massive changes to
the TBox: Two statements can be defined to be mutually exclusive only by
constructing complex TBox assertions in form of disjoint classes from named
individuals (nominals).

Definition 6.5 (Assert)
Consider a graph G and an ABox statement s = (x, y, z). Now consider a set U
of ABox updates to G such that Th(U(G)) |= s.

U is a minimal set of updates with respect to the assertion of s to G if for all
U ′

if U ′ & U then Th(U ′(G)) 6|= s.

Two sets of updates U1 and U2 are equivalent if

Th(U1(G)) = Th(U2(G))

A set U = {U1, U2, . . . , Um} of minimal sets of updates is unambiguous iff all Ui

are equivalent.

Consider the set U = {U1, U2, . . . , Un} of all minimal sets of updates with respect
to the assertion of s to G such that all Ui ∈ U are sets of ABox updates. If U
is unambiguous then let U+m

G,s := U .

If U+m
G,s is defined for G, s and U+m

G,s 6= ∅ then s is an assertable statement to G.

For the assertion of s to G any U from U+m
G,s can be chosen. The signature and

definition of assert are:

assert : s× G → G

(s,G) 7→ U(G) for some U ∈ U+m
G,s

2

Note that ∅ is the only minimal set of updates with regard to assert(s,G)
if Th(G) |= s.

6.4. FORMAL SPECIFICATION OF UPDATES 91

Note also that despite the fact that sets of minimal updates can be equiv-
alent there might be a preferable set of minimal updates. For example, U1 =
{ins(x, r, y)} is equivalent to U2 = {ins(y, r−1, x)}. If, however, r is the pred-
icate of the statement s that is to be asserted then U1 is preferred over U2

because it is closer to the intention of s.

Definition 6.6 (Retract)
Consider again a graph G and an ABox statement s = (x, y, z). Now sets U of
ABox updates to G are considered such that Th(U(G)) 6|= s.

U is a minimal set of updates with respect to the retraction of s from G if for
all U ′

if U ′ & U then Th(U ′(G)) |= s.

Consider the set U = {U1, U2, . . . , Un} of all minimal sets of updates with respect
to the retraction of s from G such that all Ui ∈ U are sets of ABox updates. If
U is unambiguous then let U−m

G,s := U .

If U−m
G,s is defined for G,s and U−m

G,s 6= ∅ then s is retractable from G. For the
retraction of s from G, any U from Um

G,s can be chosen. The signature and
definition of retract are:

retract : s× G → G

(s,G) 7→ U(G) for some U ∈ U−m
G,s

2

The next chapter will deal with the actual realisation of these operations.
This is achieved by the use of triggers which complete the intensional update.

92 CHAPTER 6. INTRODUCTION

Chapter 7

RDF-Triggers:

An Active RDF-Database

7.1 Motivation

In Section 6.4.2 the problems of knowledge base updates have been analysed
formally. Furthermore, the semantics of the theory update operations assert
and retract were given. This chapter describes the concept of knowledge base
triggers in Swan, which allow to realise intensional updates as defined by assert
and retract.

The presence of intensional data poses additional problems in comparison
to simple graph updates. For example, consider a situation where an action de-
mands for the deletion of facts from the knowledge base. What if that knowledge
does not exist explicitly but only as derived facts? This situation is illustrated
with the next example:

: Peter fami ly : hasParent : Susan .
fami ly : hasChi ld owl : inve r s eOf fami ly : hasParent .

The following statement is entailed by the knowledge base but it is not contained
in the underlying graph:

: Susan fami ly : hasChi ld : Peter .

Hence, the statement cannot be removed from the graph by directly deleting
it. This can only be achieved by the retract operation. The intensional update
itself, however, does not specify what update on the graph level has actually
to be carried out. Rather, it specifies the desired result. Therefore, intensional
updates have to be completed. This means that update operations have to be
performed instead of or in addition to the intensional update. For example,
instead of retracting (:Susan family:hasChild :Peter) the statement (:Peter fam-
ily:hasPartent :Susan) should be deleted. The completion of intensional updates
can be realised by knowledge base triggers.

93

94 CHAPTER 7. RDF TRIGGERS

7.2 Classification of Triggers

7.2.1 Trigger Basics

The trigger mechanism for an RDF knowledge base as it is used in Swan has
been presented in [MSvL06]. Whereas triggers are common with databases there
exists, to the best of the authors knowledge, no comparable trigger mechanism
for RDF knowledge bases.

The basic facilities for storage, access, and manipulation of RDF data are
provided by the Jena-framework (see again Figure 6.1). The trigger implemen-
tation in Swan adds the possibility for the user to define how the knowledge
base will react upon changes. Triggers can be added to the knowledge base
by the command register-trigger, the removal of a trigger is possible with the
command delete-trigger.

Triggers follow the ECA (event-condition-action) paradigm, the syntax of a
knowledge base trigger in Swan is

ON event WHEN condition DO BEGIN action END;

The relevant events on this level are the RDF update operations assert,
retract, insert, delete, and modify. Optionally, the event definition can be refined
such that only statements about individuals of a given class are considered.
Quite similar to SQL triggers, events bind OLD and NEW variables that allow
other trigger components access to information about subject, predicate, or
object of the updated item. The condition of a trigger is optional and is specified
by a SPARQL query, which is evaluated on the knowledge base. Additional
variables can be bound by the condition. The action part of the trigger consists
of a sequence of commands, either updates, the raising of events or the sending
of messages.

Before going into the details of knowledge base triggers it is necessary to
clarify the meaning of change.

7.2.2 Notions of Change

There are different notions which are used in the context of updates to a know-
ledge base.

Updates. An update is an operation which specifies either explicitly or implic-
itly what has to be done (see Section 6.3).

Changes. The execution of the update results in a changed knowledge base,
i.e., the differences of the states of the knowledge base before and after the
update. Changes are the visible effects of updates.

This distinction is reflected in different kinds of triggers that are available
in Swan. On the one hand, there are pre-reasoning triggers which react upon
updates to a knowledge base. On the other hand there are triggers that re-
act upon the changes. These triggers are called post-reasoning triggers. The
characteristics of both kinds of triggers are explained in the following.

7.2. CLASSIFICATION OF TRIGGERS 95

7.2.3 Pre-Reasoning Triggers

Pre-reasoning triggers react when the specified update occurs but before any
modifications to the data have been made. Therefore, the specification of the
event part of these triggers directly relates to the update operation name:

ON {INSERT|ASSERT|DELETE|RETRACT|UPDATE} OF property

OF INSTANCE [OF class]

If an update is to be executed all pre-reasoning triggers are evaluated by com-
paring the event definition of the trigger to the update that is to be performed.
Optionally, a condition has to be examined. Those triggers that eventually do
fire upon that update add their consequences to a queue of additional updates.
When all triggers have been evaluated then all updates in the queue are exe-
cuted as a whole and the resulting knowledge base is checked for consistency. In
case that the knowledge base becomes inconsistent, the update is rejected and
all changes are rolled back.

Pre-reasoning triggers can be used for two different purposes. Firstly, they
can ensure the integrity of the knowledge base. For example, consider an up-
date which adds the statement (:Susan family:hasHusband :Jeff) to the following
knowledge base:

Example 7.1
@pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x : <h t t p :// example . org#>.

f am i l y : hasHusband a owl : Func t i ona lProper t y .
: Susan f ami l y : hasHusband : Jack .
: Jack owl : d i f f e r en tFrom : J e f f .

Here, family:hasHusband is defined as a functional property. Inserting the new
statement violates the ontology with respect to this property. One way to
prevent the knowledge base from becoming inconsistent is to reject the update.
Another possibility is to use a pre-reasoning trigger which modifies the property
of the existing family:hasHusband relationship of :Susan to family:divorcedWith
so that the statement can be inserted. The next example shows the definition
of a trigger, which can be used in this manner:

Example 7.2
ON INSERT OF h t t p :// f am i l y . org#hasHusband
WHEN s e l e c t ? husband

where {<$new . s u b j e c t >

<h t t p :// f am i l y . org#hasHusband>

?husband .}
DO BEGIN
update ($new . s u b j e c t , h t t p :// f am i l y . org#hasHusband , $husband)

s e t p r e d i c a t e = h t t p :// f am i l y . org#divorcedWith ;
END;

It is necessary for pre-reasoning triggers to react before the modifications
occur and, even more important, before the integrity of the knowledge base is
checked by the reasoner. For that reason the name pre-reasoning triggers was
chosen.

96 CHAPTER 7. RDF TRIGGERS

A closely related purpose for pre-reasoning triggers is the completion of in-
tensional updates. Here, the trigger specifies what updates should be performed
on the occurence of an assert or retract operation. These additional updates have
to be specified such that the desired state of the knowledge base is reached. Con-
sider the following example:

Example 7.3
ON RETRACT OF h t t p :// f am i l y . org#hasCh i l d OF INSTANCE
DO
BEGIN
d e l e t e ($o l d . o b j e c t , h t t p :// f am i l y . org#hasParent , $o l d . s u b j e c t) ;
END;

This example also demonstrates, how variable bindings can be used in the
trigger definition. One possibility is to address OLD and NEW values, very
much like with database triggers. For example, the subject of an inserted state-
ment (from the event) can be used in the action part with $new.subject.

While pre-reasoning triggers react upon updates, the situation is different
with post-reasoning triggers.

7.2.4 Post-Reasoning Triggers

Post-reasoning triggers do not react upon updates. Rather, the changes in the
knowledge base after an update occured are the events which activate the post-
reasoning triggers. Post-reasoning triggers are evaluated as soon as all modi-
fications have been made. At that time, also the deductions by the reasoning
process will be complete. Hence the name post-reasoning triggers. They can be
divided into two classes. Those that perform external actions like sending mes-
sages or raising events. They are put into a queue for later execution whereas
those post-reasoning triggers that cause update operations are executed imme-
diately. In case that an update fails, the changes have to be reverted to the state
before the initial update. If all updates are executed successfully, the queue of
external actions can be processed. After that, the update process terminates.

The event part of a post-reasoning trigger specifies the changes that will activate
the trigger:

• ON {INSERTION|MODIFICATION|DELETION} OF property

OF INSTANCE [OF class] is raised, if a property is added to/updated/
deleted from a resource (optionally: of the specified class).

• ON {CREATION|MODIFICATION|DELETION} OF INSTANCE OF class is
raised, if a resource of a given class is created, modified or deleted.

• ON NEW PROPERTY OF INSTANCE [OF class] is raised, if a new property
is added to an instance (optionally: to a specified class). This extends
ON INSERTION OF property OF INSTANCE to properties that cannot be
named (are unknown) during the rule design.

• ON NEW STATEMENT ABOUT INSTANCE [OF class] is raised, if a new state-
ment is added to an instance (optionally: of a specified class). This extends

7.2. CLASSIFICATION OF TRIGGERS 97

ON NEW PROPERTY to the case that a new value for an already existing
property is added that cannot be named (are unknown) during the rule
design.

• ON NEW CLASS is raised, if a new class is introduced,

• ON NEW PROPERTY [OF class] is raised, if a new property (optionally: of
a specified class) is introduced (in the metadata).

Post-reasoning triggers give specifications of the behaviour for the domain node.
They allow to define what else has to be done when an event occurs. These
specifications include either further updates or the raising of events. Example
7.4 presents an post-reasoning trigger which causes the raising of an event:

Example 7.4
ON INSERTION OF h t t p :// f am i l y . org#hasParent OF INSTANCE
WHEN s e l e c t ? s i b l i n g

where {<$new . o b j e c t >

<h t t p :// f am i l y . org#hasChi ld>

? s i b l i n g .
FILTER (? s i b l i n g != <$new . s u b j e c t >) . }

DO
BEGIN
RAISE EVENT
(

<f am i l y : newChild name=”$new . s u b j e c t ”
xmlns : f am i l y=”h t t p :// f am i l y . org#”>
<f am i l y : h a s S i b l i n g name=” $ s i b l i n g ”/>

</ f ami l y : newChild>

) ;
END;

Furthermore, this example illustrates how variable bindings can be offered by
the condition part of the rule (WHEN clause). The SPARQL query selects all
children of the new object. Although the new child will already be part of the
knowledge base at the time of that query, it is not returned as a query result
because of the applied FILTER.

Triggers react on specified updates to resources in the knowledge base. If
two or more resources are equivalent, the same trigger might fire more than
just once upon a single update. In the following it is explained how triggers are
evaluated in such situations.

7.2.5 Trigger Evaluation and Redundancy

Consider again the data from Example 6.4 and the trigger definition in Example
7.4. If the statement (:Gloria family:hasParent :Susan) is inserted, the trigger
causes two events to be raised for every child of :Susan. This contradicts the
expectation of only one event per child. For an explanation one has to consider
that :Susan and :Katrin are defined to be the same. From the inserted statement
the additional knowledge (:Gloria family:hasParent :Katrin) can be derived. The
trigger will also fire upon this statement as it is part of the changes in the
knowledge base. The question that arises in this context is whether triggers
should be activated on every change or only on semantically distinct changes.

98 CHAPTER 7. RDF TRIGGERS

Here, the decision was made in favor of the first variant and only semantically
distinct events are risen. It is assumed that the knowledge of the application
domain is distributed properly such that it makes no difference for other nodes,
which of the possible events is risen.

Technically, this is done by analysing the list of updated statements. If two
statements are equivalent, one of them is filtered out. The remaining statements
will be passed on for trigger evaluation. This does, of course, only effect post-
reasoning triggers.

Until now, only the event part that causes the trigger to fire has been ex-
amined. Next it is shown, how the action part has to be specified.

7.2.6 Actions in Trigger Definitions

The action part of the trigger consists of a sequence of commands, either up-
dates, the raising of events or the sending of messages. The difference between
the raising of an event and the sending of a message is that events have to be
well-formed XML fragments, which are sent to the domain broker. Messages,
however, can be sent to arbitrary recipients with ordinary text content.

All updates that are consequences of a trigger are executed in the same way
as any other knowledge base update. This will, in turn, cause the evaluation of
pre- and post-reasoning triggers. The following actions are possible:

• DO BEGIN

{INSERT|ASSERT|MODIFY|DELETE|RETRACT}(subject, predicate, object);
END;

• DO BEGIN RAISE EVENT (xml-fragment);
END;

• DO BEGIN SEND (recipients-http-address ; message-text) END;

The action part is executed for each tuple of variable bindings matched by
the event part. In Example 7.4 the trigger reacts, after a new statement (x
family:hasMother y) has been inserted. This means that an event will be risen
for every other child of the mother y.

The different kinds of triggers in Swan are now known. Next, a formal
specification for these triggers is given.

7.3 Formal Specification of Triggers

7.3.1 Computing Changes

The changes in a knowledge base upon a set of updates U are calculated from
the difference of two theories Th and Th′ where Th′ = Th ∪ U . The difference
can be computed as the difference of two sets of triples because the theories
contain only positive ground atomic facts.

The difference between theories is a set of insert and delete operations which is
computed by δ:

δ : M×M → 2U

(M,M ′) 7→ Ins0(M,M ′) ∪Del0(M,M ′)

7.3. FORMAL SPECIFICATION OF TRIGGERS 99

where

Ins0(M,M ′) = {(x, y, z) : (x, y, z) ∈M ′ ∧ (x, y, z) /∈M}

Del0(M,M ′) = {(x, y, z) : (x, y, z) ∈M ∧ (x, y, z) /∈M ′}

This difference, however, is only an approximation of the changes from M to
M ′: If M ′ results from M by applying a set of updates U , and U contains
any modifications, these are contained in δ(M,M ′) as pairs of insertions and
deletions.

With respect to a given set of updates U , the changes between two specialised
theories M and M ′ are computed by ∆:

∆ : (M×M× 2U) → 2U

(M,M ′, {U1, . . . , Uk}) 7→ Del(M,M ′) ∪ Ins(M,M ′) ∪Mod(M,M ′)

Modifications in ∆ are, with regard to an update in U , either explicit or
implicit. Implicit modifications occur for updates involving a triple (s, p, o)
where p is either an inverse, a symmetric or a transitive property.

- Let p− be an inverse property of p. For all modifications mod(t1, t2) in U
exists an implicit modification mod(t−1 , t−2) in ∆ where t−1 = (o, p−, s) is
an inverse triple of t1 and either t−2 = (o′, p−, s) or t−2 = (o, p−, s′) is an
inverse triple of the respective t2.

- Let p be a symmetric property. For all modifications mod(t1, t2) in U
there exists an implicit modification mod(ts1, t

s
2) in ∆ where ts1 = (o, p, s)

is the symmetric triple to t1 and either ts2 = (o′, p, s) or t−2 = (o, p, s′) is
the symmetric triple to the respective t2.

Implicit modifications due to the use of transitive properties are not consid-
ered here. There are situations, especially with large sets of updates U , where
the relationship between these modifications and the modifications in U cannot
be reconstructed.

Del, Ins, and Mod are defined as follows:

Definition 7.1 (Updates)

Del(M,M ′) = Del0(M,M ′)\

{t1 = (x, y, z) ∈ Del0(M,M ′) :

there is a t2 such that mod(t1,t2) ∈ U or

mod(t−1 ,t−2) ∈ U or

mod(ts1,t
s
2)) ∈ U}

Ins(M,M ′) = Ins0(M,M ′)\

{t2 = (x, y, z) ∈ Ins0(M,M ′) :

there is a t1 such that (mod(t1,t2) ∈ U or

mod(t−1 ,t−2)) ∈ U or

mod(ts1,t
s
2)) ∈ U}

Mod(M,M ′) = { mod(t1, t2) : mod(t1, t2) ∈ U such that

t1 ∈M and t2 ∈M ′ }

100 CHAPTER 7. RDF TRIGGERS

2

7.3.2 Trigger Evaluation

The general structure of a trigger is

on u when γ do u′

where γ is a conditional expression, and u′ is a set of updates. Note that u, γ
may contain variables. A trigger is activated if a substitution σ exists such that
σ(ui) = u′

i for a ui ∈ U .

First, a general definition for the evaluation of triggers will be given. Later, this
definition will be specified for pre-reasoning and post-reasoning triggers. The
overall process of trigger evaluation is described schematically in Figure 7.1.

TR
ω
Tpost

∆ 6= 0 True

False

∆

U

TR
ω
Tpre

M0 := M(G0) G0

M1 := M(G1) G1

Figure 7.1: Evaluation of Triggers and Updates

Triggers are evaluated using the trigger evaluation operator TR. The signature
of TRT,G is:

TRT,G : 2U → 2U

7.3. FORMAL SPECIFICATION OF TRIGGERS 101

Definition 7.2 (TRT,G)
For a set T of triggers and a graph G, an update U is complemented by TRT,G

such that

TRT,G(U) = U ∪
⋃

t∈T

(σ(u′
t) | t = (on ut when γ do u′

t) and

σ is a substitution such that σ(ut) ∈ U and

ut ∈ U and

M(G) |=OWL σ(γ))

The fixpoint of TRω
T,G is defined as follows:

TR0
T,G(U) = TRT,G(U)

TRi
T,G(U) = TRT,G(TRi−1

T,G(U)) for i ≥ 1

TRω
T,G(U) = lim

i→∞
TRi

T,G(U)

TRω
T,G is well-defined if the iteration ends in a finite number of steps:

TRT,G(TRimax
T,G (U)) = TRimax

T,G (U)
2

Pre-reasoning triggers. Pre-reasoning triggers Tpre are intended for the com-
pletion of an initial set of updates such that consistency of the specialised theory
M is guaranteed after all updates are applied. It is necessary to compute a fix-
point, because the updates by the triggers again have to be completed . The
operator TRω

Tpre,G is used for that fixpoint computation, resulting in the com-
pleted set of updates Ucomp.

Ucomp = TRω
Tpre,G(Ubase)

Applying Ucomp to G results in G′ for which a specialiced theory M ′ exists. δ
computes the set of changes ∆ from M ′, M and Ucomp.

M ′ = M(Apply(Ucomp, G)
︸ ︷︷ ︸

=:G′

)

∆ = ∆(M,M ′, Ucomp)

Post-reasoning triggers. Post-reasoning triggers Tpost are evaluated using
the operator TRTpost,G, reacting on the changes ∆:

Ubase = TRTpost,G(∆)

The resulting updates Ubase are the consequences of the post-reasoning triggers.

Raising of Events. The consequence of a post-reasoning trigger can be either
an update or the raising of an event. As events shall be raised only in case
of a successful update, the raising of events has to be delayed until the update
process TU is finished and no further updates are triggered. All events that have
been accumulated up to this point are then risen simultaneously. The raising of

102 CHAPTER 7. RDF TRIGGERS

events is realised by applying the TR operator for sets of event-raising triggers
Tevt. The signature is the following:

TRTevt,G : 2U → (2U , 2E)

U 7→ (U ′, E)

where E is the set of events that are delayed until the end of the update process.
When TRTpost,G is evaluated on a set of changes ∆ also TRTevt,G is evaluated
on the same ∆.

Note that this division of post-reasoning triggers into event raising triggers
and others causing further updates is only theoretical. In the implementation,
both kinds of post-reasoning triggers are evaluated at the same time. With
regard to the formal definition, however, this assumption can be made without
loss of generality as the event triggers have no side effect on the update process
at all.

Definition 7.3 (Update execution TU)
The execution of updates is defined by the operator TU as follows:

TU : M × 2U → (M,∆)

TU(M,∆) = (M(Apply(TRω
TP re,G(TRTpost,G(∆)), G))

︸ ︷︷ ︸

=:M

, δ(M,M(G), U)
︸ ︷︷ ︸

=:∆

)

TU0(M,∆) = TU(M,∆)

TU1(M,∆) = TU(TU0(M,∆) ↓ 1 , TU0(M,∆) ↓ 2)

TU i+1(M,∆) = TU(TU i(M,∆) ↓ 1 , TU i(M,∆) ↓ 2)

TUω(M,∆) = lim
n→∞

TUn(M,∆) ↓ 1

is reached if TU i(M,∆) ↓ 2 = ∅

The application of a set of completed updates U (pre-reasoning triggers already
fired once) is defined as:

TUω(M(Apply(U,G))
︸ ︷︷ ︸

=:M

, δ(M(G),M(Apply(U,G)), U
︸ ︷︷ ︸

=:∆

)

2

For an initial update u the set of induced updates U has to be calculated:

U := Ucomp := TRω
Tpre,G(u)

TUω can be expressed with regard to the the initial update u as

∆ = δ(M(G)
︸ ︷︷ ︸

=:M

,M(Apply(TRω
Tpre,G(u), G))

︸ ︷︷ ︸

=:M ′

, TRω
Tpre,G(u)

︸ ︷︷ ︸

=:U

)

M = M(G)

This formal specification completes the considerations about knowledge base
triggers in Swan. In the following chapter, ACA rule processing is described as
another central aspect of the Swan architecture.

Chapter 8

The ACA-Rule-Aware

Application Node

The infrastructure of the Mars architecture is orchestrated by the exchange
of events, which are distributed by a domain broker. The integration of the
application domain nodes, however, depends on the actions that they receive
from the domain broker. The abstract actions from the application domain are
translated into knowledge base updates by the use of ACA rules (see Section
5.2.3). In the scope of this thesis an ACA rule mapping mechanism was inte-
grated into the Swan architecture. The following chapter gives a description of
this component.

8.1 Wrapper Components

The translation of abstract actions is realised by a wrapper around the know-
ledge base. Abstract actions are translated by the help of XQuery scripts into
knowledge base updates, given as XML fragments as presented in Section 6.1.2.
These fragments are passed to the knowledge base for execution. Hence, the
ACA rule mapper consists mainly of an XQuery engine.

Moreover, a set of built-in XQuery functions is available. These functions
create proper XML fragments for update operations. For example, the following
XQuery function returns an XML fragment for an rdfu:insert operation:

Example 8.1 (rdfu-Action insert)
d e c l a r e f un c t i on rd fu : i n s e r t ($sub , $pre , $ob j) {

i f (e x i s t s ($ob j)) then
(
<rd fu : i n s e r t >

<r d f : s u b j e c t r d f : about=”{ s t r i n g ($sub)}” />

<r d f : p r e d i c a t e r d f : about=”{ s t r i n g ($pre)}” />

{ i f (r d fu : i s L i t e r a l ($ob j))
then <r d f : o b j e c t >{ s t r i n g ($ob j)}</ r d f : o b j e c t >

e l s e <r d f : o b j e c t r d f : about=”{ s t r i n g ($ob j)}” />

}
</rd fu : i n s e r t >

) e l s e ()
} ;

103

104 CHAPTER 8. ACA RULES

Domain Broker

Actions

Domain
Node ACA Wrapper

Interface

Opaque Actions

=

Native
Knowledge
Base
Updates

Abstract Actions

Events

OWL Knowledge Base

Answers

Figure 8.1: Architecture of the Domain Application Node

Instead of giving the whole XML fragment, the following XQuery function call
is sufficient:

rd fu : i n s e r t (: Susan , fami ly : hasChild , : Peter) .

This is useful for better readability and also for the ease of writing of ACA
rules.

ACA rules are added to or removed from the domain node by the use of the
application-node actions applnode:register-aca-mapping and applnode:delete-aca-
mapping.

In the following, an example of a simple application domain is given, which
is used for illustrating the handling of abstract actions in Swan.

8.2 An Application Domain Example

Consider a city council that has its own application domain consisting of dif-
ferent services. If, for example, the civil registry office raises a new-marriage
event, several other nodes will have to react upon that event. This is imple-
mented by an ECA rule. The evaluation of the rule ON new-marriage WHEN
not already-married DO register-marriage will cause the action family:register-
marriage to be executed. The domain broker will send the action description

8.2. AN APPLICATION DOMAIN EXAMPLE 105

to all appropriate application domain nodes, e.g. the tax office. The abstract
action family:register-marriage has to be mapped to a knowledge base update.

First, consider the domain ontology which will be used in this chapter. It
provides for a definition of the necessary vocabulary of the application domain.

Example 8.2 (Family Ontology)
@pre f i x r d f s : <h t t p ://www. w3 . org /2000/01/ rd f−schema#>.
@pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>.
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x : <h t t p :// example . org#>.
@pre f i x mars : <h t t p ://www. semwebtech . org /2006/mars#> .
f am i l y : Act ion

a owl : C las s ;
r d f s : subClassOf mars : Act ion ;
mars : be l ongs−to−domain f ami l y : .

f am i l y : r e g i s t e r −marriage
a owl : C las s ;
r d f s : subClassOf f am i l y : Act ion ;
mars : be l ongs−to−domain f ami l y : .

f am i l y : Female r d f s : subClassOf f am i l y : Person .
f am i l y : Male r d f s : subClassOf f am i l y : Person ;

owl : d i s j o i n tW i t h f am i l y : Female .
f am i l y :Groom r d f s : subClassOf f am i l y : Male .
f am i l y : Bride r d f s : subClassOf f am i l y : Female .
f am i l y : marriedTo

a owl : Func t i ona lProper t y ;
a owl : SymmetricProperty ;
r d f s : range f am i l y : Person ;
r d f s : domain f ami l y : Person .

f am i l y : Husband owl : i n t e r s e c t i o nO f (
f am i l y : Male

[a owl : R e s t r i c t i o n ;
owl : onProperty f am i l y : marriedTo ;
owl : c a r d i n a l i t y 1 ;
owl : someValuesFrom fami l y : Female]) .

f am i l y : Wife owl : i n t e r s e c t i o nO f (
f am i l y : Female

[a owl : R e s t r i c t i o n ;
owl : onProperty f am i l y : marriedTo ;
owl : c a r d i n a l i t y 1 ;
owl : someValuesFrom fami l y : Male]) .

The concepts family:Wife and family:Husband and the property family:marriedTo
define aspects of the application domain, refining the concepts family:Person,
family:Female, and family:Male. The fact base contains no individuals so far.
Besides that, there are definitions for application node concepts: family:Action
and its subclass family:register-marriage. Note that abstract action names have
to be declared before they can be used in ACA mappings. Now consider the
following register-marriage action:

Example 8.3 (Abstract Action Definition: Register New Marriage)
<f am i l y : r e g i s t e r −marriage xmlns : f am i l y=”h t t p :// f am i l y . org#”>

<f am i l y : Bride f am i l y : i d=”h t t p :// example . org#A l i c e M i l l e r ”/>

<f am i l y :Groom fami l y : i d=”h t t p :// example . org#John Doe”/>

</ f ami l y : r e g i s t e r −marriage>

The action is kept simple, the only elements are family:Bride and family:Groom
which contain an attribute that provides an URI for identification. A real-world

106 CHAPTER 8. ACA RULES

scenario would certainly deliver more information about the event, like dates of
birth, date of marriage, maiden names, and so on. For the purpose of demon-
stration of the ACA rule mapping the action definition can be simplified without
loss of generality.

The action family:register-marriage is no executable action like a knowledge
base update, rather it is defined by the domain ontology to be an action of the
application domain. The action has to be translated into an action description
that is given in the domain nodes own update vocabulary.

8.3 Translating Actions into Updates

ACA rules can be given either as XQuery or XSLT scripts, which define the
transformation from an abstract action (as specified in the application domain
ontology) into one or a series of simple knowledge base actions.

Consider the following ACA mapping realised in form of an XQuery script.
The script translates the action from Example 8.3 into a sequence of two know-
ledge base updates.

Example 8.4 (ACA rule for register-marriage actions)
d e c l a r e namespace f am i l y=”h t t p :// f am i l y . org#”;
f o r $marriage in / f am i l y : r e g i s t e r −marriage
l e t $ b r i d e := s t r i n g ($marriage / f am i l y : Bride /@family : i d) ,

$groom := s t r i n g ($marriage / f am i l y :Groom/@family : i d)
r e tu rn
app lnode : ac t i onSequence ((
rd fu : i n s e r t ({ $ b r i d e } , ” h t t p :// f am i l y . org#marriedTo ” ,

{$groom }) ,
r d fu : i n s e r t ({ $ b r i d e } ,

” h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#type ” ,
” h t t p :// f am i l y . org#Wife ”)

))

The XQuery is evaluated on the received XML fragment. The let-clause
extracts the attribute values of the identifiers and binds them to the XQuery
variables. The XQuery script returns an applnode:actionSequence which con-
tains two simple actions. The update actions are given as XQuery function calls
(rdf:insert). The return clause of the XQuery is equivalent to the following XML
fragment:

Example 8.5 (Resulting Knowledge Base updates, given in XML)
<applnode : act ionSequence

xmlns : applnode=”http ://www. semwebtech . org /2006/ app l i c a t i on−node#”
xmlns : rd fu=”http ://www. semwebtech . org / languages /2006/ rdfupdate#”>
xmlns : rd f=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#”

<rd fu : i n s e r t
<rd f : s ub j e c t rd f : about=”{$br ide}”/>

<rd f : p r ed i c a t e rd f : about=”http :// fami ly . org#marriedTo”/>

<rd f : ob j e c t rd f : about=”{$groom}”/>

</rdfu : i n s e r t >

<rd fu : i n s e r t
<rd f : s ub j e c t rd f : about=”{$br ide}”/>

<rd f : p r ed i c a t e
rd f : about=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type”/>

<rd f : ob j e c t rd f : about=”http :// fami ly . org#Wife”/>

</rdfu : i n s e r t >

</applnode : act ionSequence>

8.4. CONDITIONS IN ACA RULES 107

As a result of the mapping of the action two statements will be inserted
(using the namespace prefixes as defined in the ontology in Example 8.2):
(:Alice Miller family:marriedTo :John Doe) and (:Alice Miller rdf:type family:Wife).
Because of the definition of family:Wife and family:Husband in the ontology the
OWL reasoner will be able to conclude that :John Doe is family:marriedTo :Al-
ice Miller and, moreover, that he is a family:Male and a family:Husband.

Note that these (internal) XML fragments do not need to contain any name-
space declarations for rdfu or rdf elements, because the namespaces are added
automatically by the wrapper.

In the previous examples, only the action parts in ACA rules have been
considered. These rules may, however, also contain conditions.

8.4 Conditions in ACA rules

The condition component of an ACA rule is given as an rdfu:condition element in
the return-clause where the resulting actions of the ACA rule have to be embed-
ded as child elements. The condition element has to contain an ASK-attribute
which specifies a SPARQL-ASK query and is evaluated on the knowledge base.
If this query evaluates to true then all the elements which are contained within
the condition element will be executed.

In the following example the ACA rule causes the insertion of a statement
only in case that neither the family:Bride nor the family:Groom are already mar-
ried. Note that the query uses negation by employing the filter clause (see also
Example 3.11). The query will return true if neither the family:Bride nor the
family:Groom already have a family:marriedTo relationship. Note also that this
time the insert commands are given as XML elements.

Example 8.6 (ACA rule with a condition)
d e c l a r e namespace f am i l y =”h t t p :// f am i l y . org#”;
f o r $marriage := // f ami l y : r e g i s t e r −marriage
l e t $ b r i d e := s t r i n g ($marriage // Bride /@family : i d)
l e t $groom := s t r i n g ($marriage /Groom/@family : i d)
r e tu rn
<rd fu : c ond i t i on xmlns : rd fu=

” h t t p ://www. semwebtech . org / l anguage s /2006/ rd f upda t e#”
xmlns : r d f=”h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#”
xmlns : f am i l y=”h t t p :// f am i l y . org#”
rd fu : ask=”OPTIONAL {{ &l t ;{ $ b r i d e}&g t ;

& l t ; h t t p :// f am i l y . org#married&g t ; ? X}}
OPTIONAL {{ &l t ;{ $groom}&g t ;

& l t ; h t t p :// f am i l y . org#married&g t ; ? X}}
FILTER (! bound (? X))” >

<rd fu : i n s e r t >

<r d f : s u b j e c t r d f : about=”{ $ b r i d e }”/>

<r d f : p r e d i c a t e r d f : about=”h t t p :// f am i l y . org#marriedTo”/>

<r d f : o b j e c t r d f : about=”{$groom}”/>

</rd fu : i n s e r t >

<rd fu : i n s e r t
<r d f : s u b j e c t r d f : about=”{ $ b r i d e }”/>

<r d f : p r e d i c a t e r d f : about=
” h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#type”/>

<r d f : o b j e c t r d f : about=”h t t p :// f am i l y . org#Wife”/>

</rd fu : i n s e r t >

</rd fu : cond i t i on >

108 CHAPTER 8. ACA RULES

Note that the curly brackets are doubled within the ASK query in order to escape
them within the XQuery script. For the same reason ”<” and ”>” have to be
escaped or given as character references (e.g. ”<”). 2

Consider that the statement (:Alice Miller family:marriedTo :John Doe) is already
contained in the knowledge base. Let the following action be evaluated by the
ACA rule from Example 8.6:

<f ami ly : r e g i s t e r −marriage>

<f ami ly : b r ide fami ly : id=”http :// example . org#Susan Porter”/>

<f ami ly : groom fami ly : id=”http :// example . org#John Doe”/>

</fami ly : r e g i s t e r −marriage>

As :John Doe already has a family:marriedTo relationship to :Alice Miller the rule
condition is not fulfilled and no updates on the knowledge base will be made.

The examination of conditions in ACA rules completes the description of the
ACA wrapper in Swan. In the next chapter, the hybrid reasoning component
of Swan is presented.

Chapter 9

The F-Logic Reasoner

Extension for Hybrid

Reasoning

9.1 Introduction

The limits of the expressiveness of OWL are a well-known issue (see Section 3.7),
which has led to many proposals for hybrid reasoning with conceptual languages
like Description Logics. In search of a complementing formalism, F-Logic is an
interesting candidate.

F-Logic is based on classical predicate calculus and adapts the concepts of
classes, objects, and types from object-oriented programming. In this way, F-
Logic integrates the paradigms of logic programming and deductive databases
with the object-oriented programming paradigm. Unlike Description Logics, F-
Logic is relationally complete1. It provides a simple and clear specification for
many problems that are beyond the expressive power of any DL [ADG+05].

The general concept of hybrid reasoning has been presented already in Sec-
tion 3.7. Hybrid reasoning in Swan involves an OWL knowledge base and an
F-Logic reasoner. The design principle of this reasoning architecture has been
presented in [MSK07]. Both the OWL knowledge base and the F-Logic rea-
soner are self-contained. With respect to hybrid reasoning, however, the OWL
knowledge base is the coordinating component. F-Logic reasoning is applied
in order to complete the OWL knowledge base. The coupling of the hybrid
reasoning components is realised by a translation of the OWL knowledge base
into F-Logic expressions and, in the other direction, by queries from the hybrid
reasoning core to the F-Logic reasoner (see Figure 9.1).

Before the hybrid reasoning mechanism in Swan is explained in detail, the
basic concepts of F-Logic are described.

1In fact, F-Logic is computationally complete as function symbols, and object creation are
features of F-Logic.

109

110 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

9.2 F-Logic

The following considerations give an overview of F-Logic. For a formal intro-
duction to F-Logic see Section 2.4.

Frame languages are deductive languages for knowledge representation. They
are object-oriented where the objects are represented by frames. The attributes
of a frame are called slots. The slots are named and their values are either literals
or object references. Slots can be either single-valued or multi-valued. Frames
and slots strongly correspond to instances and properties that can be identified
in ontology description languages like OWL (and even more so in OIL). Because
frame languages use mainly objects as modelling concepts, every object-oriented
language can be regarded as a frame language. But usually the term frame is
associated with knowledge representation and artificial intelligence.

There exist several frame languages in the area of knowledge representation,
e.g. KL-ONE [BS85], OIL [HFB+00] (see again Section 3.6) and F-Logic [KL89]
[KLW95].

9.2.1 Basic Concepts

Objects

The basic building blocks in F-Logic are objects. They have an object name
(that can be used in order to address them) and an object identifier (for internal
representation). Id-terms are terms composed of function symbols and constants
and serve as names of classes, objects and attributes. Here, only function-free
id-terms are considered. Following the classic convention in logic programming,
constants are denoted by names beginning with a lowercase letter (whereas
variable names always start with an upper-case letter). In F-Logic, entities,
described via id-terms, act at the same time as classes, objects, and methods.

Following the object-oriented paradigm, objects can be organised by declar-
ing them being members of classes, whereas the relationships between objects
are realised by attributes.

Atoms and Molecules

In F-Logic, a basic expression consists of a host object, an attribute name, and a
result object, all denoted by id-terms. Such expressions are called data-F-atoms.

Data-F-atoms provide information about objects. It is also possible to collect
information about one object in an F-Molecule:

Example 9.1
susan : mother [hasCh i l d −>> { john , p e t e r }] .

This molecule defines that susan belongs to the class mother and gives a
set of objects names (john and peter) that are result objects for the attribute
hasChild. This F-molecule makes use of an isa-F-atom (susan : mother), that
defines the relationship of an object (susan) to a class (mother). Besides that,
there are subclass-F-atoms that define the hierarchical relationships of classes
(e.g. mother :: person).

In addition to that there are also P-molecules that allow for the usage of
predicate symbols in such a way as in predicate logic: a symbol followed by one

9.2. F-LOGIC 111

or more id-terms. The expression peter[hasMother->susan] is equivalent to the
P-molecule hasMother(peter,susan).

Attributes and Signatures

Attributes can be either single-valued (like in peter[hasMother->susan]), denoted
by a single-headed arrow "->", or multi-valued, denoted by a double-headed
arrow "->>" like in Example 9.1. In order to define which attributes are ap-
plicable to which classes (and their instances), signature F-atoms can be used.
For signatures, the "->" and "=>" symbols are used (as with data-F-atoms a
single or a double arrowhead indicates functional or multi-valued attributes).
Signature-F-atoms are definitions, in contrast to DL, where restrictions on do-
main and range of a property actually are assertions. There are implementations
of F-Logic, which give a semantics to the signature-F-atoms such that they can
be used as constraints. But this is not the case for all F-Logic implementations.

Queries

An F-Logic knowledge base can be queried in a simple way by putting variables
in appropriate syntactic positions of F-atoms. Both schema information associ-
ated with classes and the structure of individual objects can be queried in this
way.

Queries are given by a conjunction of (possibly negated) P-molecules and
F-molecules. The beginning of a query is denoted by "?-", any of the id-terms
can be replaced by a variable. For example, consider the following queries:

?− X : mother
?− susan [hasChi ld −>> Y] .
?− susan [X−>>Y] .

The first query returns (given the programme from Example 9.1) the following
result:

X/susan

The second query returns all objects that are related to susan by the multi-
valued attribute hasChild (john and peter). The last query returns tuples binding
attribute names to object names for every multi-valued attribute that can be
applied to the object susan:

X/hasChi ld Y/ john
X/hasChi ld Y/ pete r

There is a special kind of variables that can be used in rules that are called
don’t-care-variables that begin with an underscore followed by an upper-case
letter. They can be used as join variables in the query but are not considered
in the answer to that query.

Rules

In contrast to DL, derivation of new facts is not based on assertions but on the
use of derivation rules. They consist, like in Datalog, of a rule head and a rule
body. The rule body is a query, the rule head (the conclusion) is a conjunction
of P-molecules or F-molecules. If the query is true then also the head is true
(head :- body). A rule may contain variables, it is then called a non-ground

112 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

rule. Variables may occur in both the head and the body of a rule. If these
variable bind tuples in the body of a rule, the same tuples are also bound in the
head. Hereby, new attributes or additional values to an existing (multi-valued)
attribute can be assigned to an object.

X : mother , Y : ch i l d
:−
Y [hasMother −> X] .

For every host object Y that has a hasMother-attribute with a result object X,
the rule derives, that X is a mother and Y is a child. For instance, if susan,peter
are bound to the variables X,Y, then these variable bindings are available in the
rule head, such that susan : mother and peter : child can be added to the fact
base.

Similarly, the attribute hasChild of an object can be defined by the use of
deductive rules instead of an explicit specification:

X [hasChi ld −>> Y]
:−
Y [hasMother −> X] .

This rule expresses that hasChild is the inverse relationship to hasMother,
similar to the Example 3.7 where these relationships are defined in OWL.

9.2.2 Default Inheritance

Besides the logical derivation rules that have already been explained there are
also default inheritance atoms, which can be used for the derivation of new facts.

In object-oriented systems there are two different kinds of inheritance: struc-
tural and behavioural. The first defines how signatures can be inherited, in other
words, how methods are inherited by subclasses from their superclasses and
made available to their instances. The latter (also called value inheritance or
result object inheritance) allows to propagate results for methods from a class
to its sub-classes. In F-Logic, multiple inheritance is possible.

Example 9.2 (Non-monotonic inheritance with penguins)
Consider a knowledge base that defines the class bird. All that is known about
birds is that they have feathers and that they can fly. That knowledge is expressed
via hasFeather and canFly slots, both filled with the default value true. If we
define tweety to be a bird, we automatically conclude that it has feathers and
that it can fly. But what, if tweety is a penguin? The knowledge base defines
the class penguin as a subclass of bird. It inherits (by structural inheritance)
the property hasFeathers with the default value (by behavioural inheritance) true
but overwrites the property canFly with the value false. Every instance of the
class penguin inherits the default value true for the property hasFeathers and the
default value false for the property canFly. 2

It is possible to make use of both structural and (non-monotonic) behavioural
inheritance in F-Logic. Consider the following example:

Example 9.3 (Non-monotonic behavioural inheritance)
1 abraham : jew .
2 jew : : person .
3 p e t e r : person .

9.2. F-LOGIC 113

4 person [b e l i e v e s I n∗−>something] .
5 jew [b e l i e v e s I n ∗−> jehowa] .

7 ?− X[b e l i e v e s I n −>Y] .

The default in line 4 makes people typically believe in something and line 5
defines that jews normally believe in jehowa. Line 7 is a query for all host and
result objects connected by a believesIn property. 2

The answer to the query from the last example is:

X/abraham Y/jehowa
X/ pete r Y/ something

The combination of deductive rules and default inheritance for object-oriented
database systems has been evaluated in [MK01]. In Section 2.5 a formal intro-
duction to default logic and its application to an OWL knowledge base has been
given.

Some of the rich features of F-Logic have been presented above, many of
them are not available in DLs. But there are also features in DLs that have no
counterpart in F-Logic.

9.2.3 Comparison of F-Logic with DLs

One of the main differences between OWL and F-Logic concerns the representa-
tion of existential information. While it is hardly possible in F-Logic to express
if A is a parent there has to be an instance B that is a child this can be specified
easily in OWL:

Example 9.4 (Existential Quantifications in OWL)
1 @pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>.
2 @pre f i x r d f : <h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#>.
3 @pre f i x r d f s : <h t t p ://www. w3 . org /2000/01/ rd f−schema#>.
4 @pre f i x f am i l y : <h t t p :// f am i l y . org#>.
5 @pre f i x : <h t t p :// example . org#>.
6 f am i l y : parent owl : e q u i v a l e n tC l a s s
7 [a owl : R e s t r i c t i o n ;
8 owl : onProperty f am i l y : hasCh i l d ;
9 owl : minCard ina l i t y 1] .

10 f am i l y : hasCh i l d a r d f : Proper ty ;
11 r d f s : range f am i l y : c h i l d .
12 : Susan a f ami l y : parent .
13 f am i l y : c h i l d owl : oneOf (: Peter) .

It is known that every family:parent has a family:child, e.g. :Susan. In the exam-
ple, the concept family:child is defined as an explicit enumeration of all possible
objects that can be an instance of that concept. Hence :Peter is the only existing
family:child. From that class definition and the existential quantification it can
be deduced that (:Susan family:hasChild :Peter).

Moreover, disjunctive information can be expressed in OWL, for example: a
child is either a son or a daughter :

Example 9.5 (Disjunctive information in OWL)
@pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>.
@pre f i x owl11 : <h t t p ://www. w3 . org /2006/12/ owl11#>.

114 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x : <h t t p :// example . org#>.
f am i l y : son a owl : C las s .
f am i l y : daugh te r a owl : C las s ; owl : oneOf (: Katr in : Susan) .
[a owl : A l l D i f f e r e n t ;

owl : d i s t inc tMembers (: Peter : Katr in : Susan)] .
f am i l y : c h i l d owl : e q u i v a l e n tC l a s s
[owl11 : d i s j o in tUn ionOf (f am i l y : Son f ami l y : Daughter)] .
: Peter a f am i l y : c h i l d .

The example consists of the information that a family:child is either a fam-
ily:Son or a family:Daughter. Furthermore :Susan and :Katrin are the only daugh-
ters in the world. This allows for the conclusion that :Peter cannot be a fam-
ily:Daughter, and that he has to be a family:Son. Drawing conclusions from
disjunctive information like this cannot be achieved in F-Logic.

So far, the features of F-Logic have been described. In the following a
reasoning engine for F-Logic is presented.

9.3 Florid

Currently, there are several implementations of F-Logic available. For exam-
ple, Flora-2 is an open-source system which was developed at Stony Brook and
integrates F-Logic with HiLog [CKW93] and Transaction Logic [CS98]. On-
toBroker [FAD+99] is a commercial product developed by Ontoprise. In this
work, F-Logic Reasoning in Databases (Florid) [FLO98] is used for F-Logic
reasoning. Florid is a C++ implementation of F-Logic and was developed by
the Databases and Information Systems group at Freiburg University. It was
released in version 1.0 in 1996, currently version 4.0 is available.

Florid implements all essential features of F-Logic. Some of the features
which are special to Florid are explained in the following.

9.3.1 Handling of URIs

Normally in F-Logic, id-terms are represented by first-order variable-free terms.
In Florid, the built-in class uri is available. Instances of this class can be
identified by strings, e.g.

”http :// example . org#Susan” : u r i .

Hereby, resource identifiers from RDF can be used directly (when enclosed
in quotation marks) for object identification in F-Logic. This feature of Florid

allows for a direct translation of OWL statements to F-Logic expressions. Note
that it is not possible in F-Logic programmes to use namespace abbreviations
like in N3. Nevertheless, for better readability, these namespace prefixes are
used in the describing texts of some of the following examples. For instance, the
object name ”http://example.org/family#Father” will be written as family:Father
and ”http://example.org#Peter” as :Peter.

9.3.2 Built-In Predicates and Object Creation

For both integers and strings there are a number of built-in methods available
that allow for string manipulation (e.g. substring extraction, string matching),

9.3. FLORID 115

arithmetical operations, and aggregations (e.g. minimum, sum).
Object creation in Florid is possible by a combination of rule application

and built-in functions. Newly generated terms can be used as an object name,
thus creating a new object. Object creation is possible using the built-in func-
tions for string manipulations. Consider the following F-Logic programme:

Example 9.6 (Creating new objects with rules)
F : ” h t t p :// f am i l y . org#Family ” ,
X[” h t t p :// f am i l y . org#isFamilyMemberOf”−>> F] ,
Y[” h t t p :// f am i l y . org#isFamilyMemberOf”−>> F]

:− X[” h t t p :// f am i l y . org#marriedTo”−> Y] ,
X[” h t t p :// f am i l y . org#isFamilyMemberOf”−>> F] ,
Y[” h t t p :// f am i l y . org#isFamilyMemberOf”−>> G] ,
not F = G , not s u b s t r (”−” , F) , not s u b s t r (”−” , G) ,
s t r c a t (F ,”−” ,TMP) , s t r c a t (TMP, G ,F) .

The built-in function strcat returns a new string literal which is a concatenation
of two input strings. In this example, a new family name is created from the
family names of objects that are related by the http://family.org#marriedTo
attribute. The input family names must neither be identical nor double-barelled
names. The new family name is assigned to both objects that are related by
http://family.org#marriedTo. Consider that the following lines are added to this
programme:

Example 9.7
” h t t p :// example . org#John ” [

” h t t p :// f am i l y . org#marriedTo”−>”h t t p :// example . org#Susan ” ;
” h t t p :// f am i l y . org#isFamilyMemberOf”−>> ”Mue l l e r ”] .

” h t t p :// example . org#Susan ” [
” h t t p :// f am i l y . org#isFamilyMemberOf”−>> ” Luedensche id t ”] .

Florid will draw the following conclusions from the resulting programme:

”http :// example . org#John ” [
” http :// fami ly . org#isFamilyMemberOf”−>>”Mueller−Luedenscheidt ”] .

” http :// example . org#Susan ” [
” http :// fami ly . org#isFamilyMemberOf”−>>”Mueller−Luedenscheidt ”] .

”Mueller−Luedenscheidt ” : ” http :// fami ly . org#Family ” .

9.3.3 Architecture

Storage. The actual (extensional) database is stored in the ObjectManager, the
ObjectManagerAccess provides a wrapper for the ObjectManager. The Florid

ObjectManager implements a frame-based storage component which contains a
frame for every object. A frame contains slots for storing properties of an object,
including its class memberships and references to other objects. The frames are
extensible to additional types of properties.

Data Model. The ObjectManagerAccess implements the abstract data model
based on the database which is stored in the ObjectManager, i.e., the naviga-
tion graph extended with intensional properties (transitivity of class hierarchy,
downwards closure of signatures with regard to the class hierarchy , support for
inheritance, object fusion, synonyms, built-in functionality for data conversion,

116 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

string handling including matching regular expressions, arithmetics, aggrega-
tion operators, and annotated literals). It provides iterator-based declarative
access to the database. The above intensional properties are not materialised,
but implemented by the iterators.

Evaluation. The central Florid Evaluation module (LogicEvaluation, Alge-
braicEvaluation, and AlgebraicInsert) provides in fact a generic implementation
of a deductive language over a data model with complex objects. LogicEvalua-
tion implements seminaive bottom-up evaluation of rules. AlgebraicEvaluation
translates rule bodies and heads into the underlying object algebra and evaluates
the generated algebraic expressions using the querying interface of OMAccess.
AlgebraicInsert instantiates the rule heads with the generated variable bindings
and adds the corresponding facts into the database using again the OMAccess
interface. The evaluation of algebraic expressions does not materialize any in-
termediate result, but is purely based on nested iterators.

Output. The PrettyPrinter outputs answers to queries in the variable bindings
format known from Prolog or as an instantiation of the queries.

UserInterface. The UserInterface module allows to use Florid from the
command shell, including interactive queries, and system commands. System-
Commands can also be executed in programmes, mainly controlling programme
execution (user-defined stratification), debugging, and output formatting.

Besides this shell-like command line interface a Web Service interface is
availabe, which is explained in the following.

9.3.4 Florid Server

The reasoning capabilities of Florid can also be used via its Web Service
interface. Here, the reasoner is accessed in a client-server-mode (using HTTP).
The capabilities of the Florid server are the same compared to the stand-alone
implementation. The client-server model, however, makes the reasoner available
over a network infrastructure and can be used by not just one but many clients.
A programme that is given to the server is evaluated in the usual way by a
TP -like fixpoint computation. After the evaluation of the F-Logic programme,
the knowledge base consists of the original facts plus the derivations. Now
the knowledge base can be queried. Hereby it is possible to either request a
complete dump of the knowledge base or an answer to a regular F-Logic query.
Furthermore, SystemCommands can be sent to the web service either by explicit
function calls or by including them within an F-Logic programme.

The output format of the FloridServer is configured such that answers to
queries are returned as query instantiations (?- sys.prn.style@(”instance”))2.

The Florid server keeps all facts in memory for the duration of the session.
When the session ends, the whole knowledge base is dropped. It is also possible
to drop the contents of the knowledge base during the session and restart with
a new programme.

Now that the principles of F-Logic reasoning with Florid are known, the
concept of hybrid reasoning in Swan can be introduced.

2Normally, the answers are given in Prolog style instead.

9.4. HYBRID REASONING IN SWAN 117

9.4 Hybrid Reasoning in SWAN

F-Logic

Florid

new facts

DL

P
el

le
t

grounded
knowledge-base

h
y
b
ri

d
co

re

T
ra

n
sl

a
ti
o
n

Interface

Updates,Queries
OWL Ontology, F-Logic Programme

Answers

Figure 9.1: Hybrid Reasoning Architecture

In [Kat07] a prototype implementation for DL-F-Logic reasoning was re-
alised. It uses the Florid server and Pellet as reasoning engines. The hybrid
reasoning core of that project was integrated into the domain node such that it
enables the utilisation of the hybrid reasonig facilities as a native domain node
action called applnode:start-flogic-reasoning. Furthermore, several extensions
and optimisations were integrated into the hybrid reasoning engine. Central to
the understanding of the hybrid reasoning process is the evaluation strategy.

9.4.1 Evaluation Strategy

Special about the hybrid reasoning combination in Swan is the master-slave
relationship between the two reasoning engines: An OWL knowledge base acts
as a master, which uses an F-Logic reasoner as a slave for reasoning support.

The deductions of the OWL part depend on the definitions in the OWL
ontology. The deductions of the F-Logic reasoner depend on the set of derivation
rules. These rules are specified by an F-Logic programme which is given to the
hybrid reasoning core in addition to the ontology. Default inheritance atoms are
separated from the F-Logic programme, only the derivation rules are given to
the Florid server. The default inheritance atoms are evaluated by the hybrid
reasoning core (the motivation for this strategy will be given later in Section
9.4.3).

The hybrid reasoning process consists of the following steps:

• The hybrid reasoning core translates a subset of the OWL knowledge base
into an F-Logic programme. This translation will be explained in Section
9.4.2. Moreover, the F-Logic inference rules are added to this programme.

• The F-Logic programme is sent to the Florid server, a new F-Logic
knowledge base is created.

118 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

• The Florid server evaluates the programme. Newly derived facts are
added to the F-Logic knowledge base.

• The Florid server is queried by the hybrid reasoning core.

• All newly found information is added as new base facts to the OWL know-
ledge base.

• The F-Logic knowledge base is dropped after it was queried by the hybrid
reasoning core.

This is one iteration of the hybrid reasoning process. It will be re-iterated as
long as any of the two reasoning engines is able to derive new facts. Eventually,
after a fixpoint in alternating derivations is reached, the OWL knowledge base
is complete with regard to the set of given F-Logic rules. In this way the
OWL knowledge base evolves step-by-step by adding newly derived information
from both the F-Logic reasoner and, in response to these additions, by the
DL reasoner. The F-Logic knowledge base, however, is used as a disposable
knowledge-base and is re-created during each iteration.

After reaching a stable state, default inheritance atoms are evaluated by the
hybrid reasoning core on the OWL knowledge base. If any new facts are derived
by default inheritance, another hybrid reasoning process is started.

The described process yields an evolving ontology. Each iteration adds new
information, which can result in the inference of even more information in the
next iteration. Note, however, that usually the OWL knowledge base will be
completed by F-Logic derivations after the first iteration.

The definition of new rules or the addition of new facts to the OWL know-
ledge base may necessitate another hybrid reasoning process until again a stable
state is reached. However, the OWL part of the knowledge base needs not to be
continuously supplemented by F-Logic reasoning but rather on demand when
the specific F-Logic capabilities are needed. This can be controlled by the use
of triggers reacting on changes in the knowledge base, e.g.

ON in s e r t i o n OF INSTANCE OF http ://www.w3 . org /2002/07/ owl#Thing
DO BEGIN

sta r t−f l o g i c −r ea son ing () ;
END;

The hybrid reasoning process depends on the translations of the exported
subset of the OWL knowledge base into F-Logic as well as on the translations
of the query results from the Florid server into OWL expressions.

9.4.2 Translation

For the initialisation of the Florid server, the following parts of the OWL
factbase are translated to F-Logic expressions:

• class definitions,

• subclass-relationships between classes as subclass-F-atoms,

• instances of the classes along with their properties as data-F-atoms (dis-
tinguishing between functional and multi-valued properties),

• range-assertions of object properties as F-signature atoms.

9.4. HYBRID REASONING IN SWAN 119

Table 9.1 shows corresponding statements as OWL and F-Logic expressions,
the DL equivalents are also given for a better understanding.

OWL DL F-Logic

A owl:sameAs B A ≡ B A = B
A rdfs:subClassOf B A ⊑ B A :: B

x rdf:type A A(x) x : A
x p y p(x,y) x[p->>y]

Table 9.1: Translation between OWL and F-Logic. A and B are classes (=con-
cepts) in OWL, host or result objects in F-Logic, whereas p are properties
(=predicates) in OWL and method names in F-Logic. x and y are instances
in OWL and again objects in F-Logic.

Many of the OWL axioms have no direct correspondence to F-Logic expres-
sions. This is not a restriction, however, as only the base facts (the ABox) are
needed for F-Logic reasoning. Therefore, only a fraction of the OWL knowledge
base has to be exported.

All resources that are exported to F-Logic have to be declared to be instances
of the class uri (e.g. ”http://example.org#Peter” : url). Hereby, they can be used
as object names in Florid.

The resulting F-Logic programme is complemented with F-Logic rules which
will be used for the derivation of new facts by the Florid server. The F-Logic
rules are separated into two sets of rules:

• Deduction rules which are added to the F-Logic programme.

• Default inheritance atoms which will later be evaluated by the hybrid
reasoning core on the OWL knowledge base.

Rule evaluation in the Florid server is applied until a local (F-Logic) fix-
point is reached. Now the hybrid reasoning core retrieves the contents of the
F-Logic knowledge base by a series of queries:

Example 9.8 (Query returning the F-Logic fact base)
?− X : Y, X: ur l ,

Y: ur l , not Y: ” h t t p ://www. w3 . org /2002/07/ owl#Thing” .
?− X [Y −> Z] , X: ur l , Y: ur l , Z : u r l .
?− X [Y −>> Z] , X: ur l , Y: ur l , Z : u r l .
?− X: ur l , X : : Y, Y: u r l .
?− X : Y, Y: u r l .
?− X [Y −> Z] , Y : u r l .

These queries retrieve information about class memberships, subclass rela-
tionships, functional, and multi-valued properties, method and class definitions.
The queries are evaluated one by one by the Florid server, each of the answers
is translated accordingly into OWL statements. All OWL statements are added
to the OWL knowledge base as a whole. For example, the first of the queries:

?− X : Y, X: ur l , Y: u r l .

retrieves tuples of individuals that are instances of a class. Again, the built-in
class url is used. All these queries retrieve objects that are instances of the class

120 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

uri, all other instances will be ignored. For example, intermediate resources
that are created by F-Logic rules can be ignored. For the use of the class url
compare Example 9.6 with the follwing programme which is extended by the
use of the url class. This example also illustrates how Florid can be used for
object creation:

Example 9.9 (Creating new objects with rules)
F:” h t t p :// f am i l y . org#Family ” , F : ur l ,
” h t t p :// f am i l y . org#Family ” : ur l ,
” h t t p :// f am i l y . org#isFamilyMemberOf ” : ur l ,
X[” h t t p :// f am i l y . org#isFamilyMemberOf”−>> F] ,
Y[” h t t p :// f am i l y . org#isFamilyMemberOf”−>> F]

:− X[” h t t p :// f am i l y . org#marriedTo”−> Y] ,
X[” h t t p :// f am i l y . org#isFamilyMemberOf”−>> F] ,
Y[” h t t p :// f am i l y . org#isFamilyMemberOf”−>> G] ,
not F = G , not s u b s t r (”−” , F) , not s u b s t r (”−” , G) ,
s t r c a t (F ,”−” ,TMP) , s t r c a t (TMP, G ,F) .

Now consider an OWL knowledge base which contains the following statements:

Example 9.10 (Family ontology extended)
@pre f i x f am i l y : <h t t p :// f am i l y . org#>.
@pre f i x :< h t t p :// example . org#>.
: John f ami l y : marriedTo : Susan .
: John f ami l y : isFamilyMemberOf ”Mue l l e r ” .
: Susan f ami l y : isFamilyMemberOf ” Luedensche id t ” .

After the hybrid reasoning process, the concept http://family.org#Family, its
instance ”Mueller-Luedenscheidt” and the ”http://family.org#isFamilyMemberOf”
relationships will be added to the OWL knowledge base3. A more sophisticated
example can be found at the end of this chapter with Example 9.18.

The result of the queries to the Florid server are translated to a list of
OWL statements, e.g. the results of the query above are translated to:

X rd f : type Y

Translations are necessary in both directions, from OWL to F-Logic and the
other way round. They are, however, not needed for the evaluation of default
inheritance atoms because these are handled by the hybrid reasoning core.

9.4.3 Handling of Default Inheritance Atoms

The second part of the hybrid reasoning process consists of the evaluation of
default inheritance atoms. Default inheritance and its application to Descrip-
tion Logics has been analysed in Section 2.5. Although Florid is capable of
evaluating default inheritance atoms by inheritance triggers, this implementa-
tion is not suitable here. The semantics of default inheritance states that a slot
(property) is to be filled if it cannot be filled in any other way.

Also the evaluation of derivation rules may cause the addition of properties
to individuals (objects). Therefore, the evaluation of default inheritance atoms

3 Object creation is a feature which is not available in OWL. DL reasoning allows to derive
new properties for existing instances, but only from an existing set of properties as defined in
the TBox of the knowledge base. Moreover, it is not possible to derive new entities, neither
in the TBox nor in the ABox.

9.4. HYBRID REASONING IN SWAN 121

has to be postponed until the alternating fixpoint between F-Logic and OWL is
reached. At this point, there are two possibilities for the handling of the default
inheritance atoms:

• Translate the OWL knowledge base to F-Logic as usual, with the only
difference that the set of default inheritance atoms are now added to the
resulting F-Logic programme instead of the derivation rules. If Florid

inferes any new facts, a new alternating fixpoint has to be computed.

• The default inheritance atoms are evaluated by the hybrid reasoning core
in Swan. The defaults are directly applied to the OWL knowledge base.

The disadvantage of the first method is that the whole knowledge base has to
be translated and transmitted to Florid. That is because there is no possibility
to drop just parts of an F-Logic programme (e.g. the inheritance rules). This
continuous re-shipping can become a severe restriction when dealing with large
knowledge bases.

F-Logic

Florid

new facts

DL

P
el

le
t

knowledge-base

Default Inheritance

Evaluation

n
ew

fa
ct

s

d
ef

a
u
lt

s
h
y
b
ri

d
co

re

T
ra

n
sl

a
ti
o
n

InterfaceInterface

Updates,Queries
OWL Ontology, F-Logic Programme

Answers

Figure 9.2: Handling of Default Inheritance Atoms

Therefore, the default inheritance atoms are evaluated by the hybrid reason-
ing core in this hybrid reasoning implementation (see Figure 9.2). The default
inheritance atoms are still given in F-Logic syntax. Because of the strong simi-
larities between the semantics of default inheritance for DL-knowledge bases and
the semantics of default inheritance in F-Logic (see Section 2.5) these atoms can
be evaluated easily on an OWL knowledge base.

Cautious default inheritance application. In Section 2.5 the notion of cau-
tious inflationary extensions has been explained in detail. Default inheritance

122 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

as implemented with the hybrid reasoning engine allows for the computation of
exactly the kind of extensions which are described by this formalisation.

Default Reasoning Process. Default reasoning in the hybrid reasoning core
consists of the following steps:

• Analyse the default inheritance atoms. They have to be evaluated in
correct order so that individuals inherit a default value from their most
specific super-class.

• For each default inheritance atom a set of inherited statements is calcu-
lated (by checking class memberships).

• The sets of inherited statements are added to the knowledge base one by
one. Sets that cannot be added consistently to the knowledge base are
reverted.

• The statements of a reverted set are added separately. Additions of state-
ments that cannot be added consistently are reverted.

Sets of inherited statements might be reverted because they contain mutual
exclusive statements. By adding the statements of reverted sets separately in
the last step at least some of the statements can be added to the knowledge
base given that a consistent subset of applicable statements exists.

Consider the following example where the knowledge base contains :Sarah,
:Abraham, and :Isaac as instances of :Person. The F-Logic programme contains
three default inheritance atoms, all of which define the inheritable property
:believes in for instances of :Person.

Example 9.11
The hybrid knowledge base consists of an OWL ontology. . .
@pre f i x : <h t t p :// example . org#> .
@pre f i x r d f s : <h t t p ://www.w3 . org /2000/01/ rd f−schema#> .
@pre f i x owl : <h t t p ://www.w3 . org /2002/07/ owl#> .
@pre f i x r d f : <h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#> .
: Sarah a :Woman.
: Abraham a :Man .
: I saac a : Person ; : b e l i e v e s i n : Jehova .
: Baal a : OldGod .
:Woman r d f s : subClassOf : Person ; owl : d i s j o i n tW i t h :Man .
:Man r d f s : subClassOf : Person .
: OldGod owl : d i s j o i n tW i t h :God .
: b e l i e v e s i n r d f s : domain :Man ; r d f s : range :God .

. . . and an F-Logic programme:
” h t t p :// example . org#Baal ” : u r l .
” h t t p :// example . org#Jachwe” : u r l .
” h t t p :// example . org#Person” : u r l .
” h t t p :// example . org#b e l i e v e s i n ” : u r l .
” h t t p :// example . org#Be l i e v e r ” : u r l .
X:” h t t p :// example . org#Be l i e v e r ” :−
X[” h t t p :// example . org#b e l i e v e s i n”−>> Y] .

” h t t p :// example . org#Person”
[” h t t p :// example . org#b e l i e v e s i n ”∗−>>”h t t p :// example . org#Baal ”] .

” h t t p :// example . org#Person”
[” h t t p :// example . org#b e l i e v e s i n ”∗−>>

” h t t p :// example . org#Jachwe ”] .
” h t t p :// example . org#Person”
[” h t t p :// example . org#b e l i e v e s i n ”∗−>>”h t t p :// example . org#Ra ”] .

9.4. HYBRID REASONING IN SWAN 123

Every inherited statement (x :believes in :Baal) violates the definition of the be-
lieves in property because only instances of :God are in the defined range of that
property. :Baal, however, is an instance of :OldGod which is disjoint with :God.
:Isaac is not considered for default inheritance at all because this individual al-
ready has a :believes in property. :Sarah cannot inherit the :believes in property
because every inherited statement (:Sarah :believes in y) would be inconsistent
with the definition of the domain of the :believes in property. As a consequence,
there exists no set of inherited statements that can be added as a whole to the
knowledge base. However, applying the inherited statements (:Sarah :believes in
:Jachwe) and (:Abraham :believes in :Jachwe) one by one, the former statement
will be reverted for the known reasons whereas the latter statement can be added
consistently. 2

Depending on the order in which inherited statements and the default in-
heritance atoms are evaluated there can be different extensions to an OWL
knowledge base. Hence, this evaluation strategy is non-deterministic (as was
already shown for defaults in general in Section 2.5). For example, :Abraham
will believe in either :Jachwe or :Ra.

Despite of the non-determinism of default inheritance it can be utilised in
a meaningful way. Consider the following example where the extension of the
OWL knowledge base depends on the order in which the inherited statements
are applied:

Example 9.12
@pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>.
@pre f i x :< h t t p :// example . org#>.
@pre f i x owl11 : <h t t p ://www. w3 . org /2006/12/ owl11#>.
: p e t e r a :Human .
: pau l a :Human ; owl : d i f f e r en tFrom : p e t e r .
: Pope owl : e q u i v a l e n tC l a s s
[a owl : R e s t r i c t i o n ;

owl : onProperty : ha sAnu l u sP i s ca t o r i s ;
owl : minCard ina l i t y 1] .

: h a sAnu l u sP i s ca t o r i s a owl : I n v e r s eFunc t i ona lPrope r t y .

The F-Logic programme contains the following default inheritance atom:

” h t t p :// example . org#Human” [
” h t t p :// example . org#hasAnu l u sP i s ca t o r i s ” ∗−> t r u e] .

The property :hasAnulusPiscatoris is an inverse functional property, i.e. only one
:Human can be subject to that property (and therefore be owner of the ring).
If the extension is computed using GD+

caut (see the definition on page 30) it
is possible to apply the default to all instances separately, which leads to the
situation where either :Peter or :Paul will be the ring bearer.

Translated into common-sense knowledge the default together with the on-
tology reads like the person that first catches the fisherring, thrown into the air,
will be the next pope4.

The main characteristics of the hybrid reasoning process in Swan have been
described. For better performance, this process is optimised in several ways.

4Of course this is not likely to be a new strategy for the Vatican, although it would be a
considerably faster method compared to the current election procedure.

124 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

9.4.4 Optimisations

As the coupling of the reasoning engines involves data shipping via HTTP, the
amount of transferred data has to be as small as possible. There are several
optimisations for that purpose.

Optimised Fact Base Export. The first improvement concerns the export
of the OWL knowledge base to the Florid server. It is necessary to recreate
the F-Logic knowledge base at the beginning of each iteration of the hybrid
reasoning process because Florid might have created temporary resources. In
Florid, there is no possibility to remove any object from the object base, thus
the temporary resources remain in the F-Logic knowledge base and potentially
interfere with evaluations in subsequent iterations. In order to get rid of the
temporary resources it is necessary to drop the whole F-Logic knowledge base.
Consequently, the F-Logic knowledge base has to be built again in each iteration
of the hybrid reasoning process.

However, this process is optimised such that not the whole OWL knowledge
base has to transferred to the Florid server. Rather, only the additions in
the OWL knowledge base after incorporating the F-Logic facts from the last
iteration are sent.

For this, all F-Logic programmes sent to Florid consist of three parts: a
prologue, the main part, and an epilogue. Consider the following programme
structure:

Example 9.13 (F-Logic programme for optimised fact base shipping)
1 %%% −−−− t h e programme pro l o gue
2 ?− s y s . consu l t@ (
3 ”/tmp/ f l o r i d { $ s e s s i onID } { $ f l o r i dCoun t e r } . f l p ”) .
4 ?− s y s . e v a l .
5 %%% −−−− OWL fa c t s , t r a n s l a t e d to F−Logic , are i n s e r t e d here

7 %%% −−−− t h e programme ep i l o g u e
8 ?− s y s . e v a l .
9 ?− s y s . prn . s t y l e@ (” i n s t anc e ”) .

10 ?− s y s [output−>s y s . open@(
11 ”/tmp/ f l o r i d { $ s e s s i onID } { $ f l o r i dCoun t e r +1}. f l p ”)] .
12 ?− s y s . answerChannel . setStream@ (ou tpu t) [] .
13 ?− X : Y, X: ur l , Y: u r l .
14 ?− X [Y −> Z] , X: ur l , Y: ur l , Z : u r l .
15 ?− X [Y −>> Z] , X: ur l , Y: ur l , Z : u r l .
16 ?− X: ur l , X : : Y, Y: u r l .
17 ?− s y s . prn . s t y l e@ (” bound ”) .
18 ?− s y s . answerChannel . setStream@ (wout) [] .

The variables sessionID and floridCounter in lines 1 and 11 become substituted
with the http-session id and the iteration counter, respectively. The first line
of the programme tells Florid to read from the temporary file that contains
a dump of the fact base stored after the last iteration. After that, the new
facts from the DL fact base are given, already translated into F-Logic. Now the
programme is evaluated and all facts are written to a new temporary file (lines
9,10,17,18 are commands to the Florid server in order to redirect the output
stream and change the style of the output). Lines 13 to 16 correspond exactly
to those queries that are used by the OWL part for the retrieval of the F-Logic
facts from the Florid server. 2

9.4. HYBRID REASONING IN SWAN 125

In this respect, the hybrid reasoning process consists of the following steps:

- In the first iteration, the hybrid reasoning core sends the whole translated
OWL knowledge base to Florid.

- After Florid evaluated the inference rules the contents of the F-Logic
knowledge base are stored in a temporary file.

- The hybrid reasoning core queries the F-Logic fact base. The retrieved
facts are added to the OWL knowledge base.

- If any new facts can be derived from these additions then a new iteration
of the hybrid reasoning process begins. In this and all following iterations,
only the new facts from the OWL knowledge base are sent to the Florid

server.

- Florid creates a new F-Logic knowledge base from the received facts and
the facts from the temporary file.

Optimised Property Export. Another optimisation concerns the individuals
and their properties, which are exported from the OWL knowledge base to the
Florid server. Primarily, individuals with their class membership have to be
exported. Beyond that it is sufficient to export only those statements where
the property name can be matched with an attribute in the rule body of an
F-Logic rule. For instance, the statement (:Peter family:hasMother :Susan) has
to be exported only in case that there is any rule where the family:hasMother
attribute is used in the rule body, like

Y[” http :// example . org / fami ly#hasChi ld ” −>> X] :−
X[” http :// example . org / fami ly#hasMother” −> Y] .

If there are no F-Logic rules that potentially target an OWL statement in
this respect the statement can safely be ignored, thus reducing the costs for
data transmissions between the reasoning engines. This optimisation is realised
by building a list of method names which occur in the F-Logic programme.
During the export of the OWL knowledge base all properties are tested whether
they appear in that list. As the translation procedure has to iterate over all
statements anyway, this causes only little extra costs.

Filtering statements about OWL axioms. While it is necessary to export
statements containing OWL axioms to Florid it is not desirable to re-import
derived knowledge about OWL axioms. Derivations about OWL notions are
trivial and can safely be ignored. Hence, statements where the subject belongs
to the OWL namespace are filtered during re-import.

Despite the optimisation of the hybrid reasoning process, there are still some
limitations to it. These will be discussed in the next section.

9.4.5 Limitations

As already pointed out in Section 3.7, there are limitations to the usage of
hybrid reasoning.

DL expressions can be translated easily into FOL. Figure 9.4.5 shows how
the semantics of some basic DL expressions is defined by a mapping to FOL.

126 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

π(C ⊑ D) = (∀x)(πx(C)→ πx(D))

π(C ≡ D) = (∀x)(πx(C)↔ πx(D))

πx(C) = C(x)

πx(¬C) = ¬πx(C)

πx(C ⊓D) = πx(C) ∧ πx(D)

πx(C ⊔D) = πx(C) ∨ πx(D)

πx(∀R.C) = (∀y)(R(x, y)→ πy(C))

πx(∃R.C) = (∃y)(R(x, y) ∧ πy(C))

πy(C) = C(y)

πy(¬C) = ¬πy(C)

πy(C ⊓D) = πy(C) ∧ πy(D)

πy(C ⊔D) = πy(C) ∨ πy(D)

πy(∀R.C) = (∀x)(R(y, x)→ πx(C))

πy(∃R.C) = (∃x)(R(y, x) ∧ πx(C))

Figure 9.3: Mapping from DL to FOL

As such mappings exist for both F-Logic and DL, it is possible to map DL
expressions to F-Logic and vice versa. However, not all DL expressions can also
be expressed in F-Logic. For example, it is not possible in F-Logic to express
existential quantification. Consider the following example:

Example 9.14

The TBox of a knowledge base contains an existential quantification

∃family:Parent.family:hasChild

Moreover, the ABox contains the assertion that :Peter is a family:Parent but it
does not contain a family:hasChild relationship for :Peter. In DL such existential
quantifications are actually assertions: there has to be child of :Peter but it might
not be known yet. In a closed world, a quantification is a restriction: if :Peter
is a family:Parent and does not have a family:hasChild relationship, the data is
considered to be inconsistent. 2

In a situation when hybrid reasoning combines both paradigms of open- and
closed world there is a semantic gap in the translation of the knowledge between
the formalisms. As it is not possible to translate, for example, the assertion of
the existence of a family:Child directly to F-Logic, this information has to be
given indirectly. This can be achieved by a temporary completion of those indi-
viduals that are in the domain of existentially quantified properties (but have no
such property yet). For instance, :Peter would have to be completed with respect
to the family:hasChild relationship by a temporary resource (e.g. tmpres0815).
These temporary resources are created by the hybrid reasoning core for the ex-
port to Florid. Neither will they be added to the OWL knowledge base nor

9.4. HYBRID REASONING IN SWAN 127

be retrieved by the queries to the Florid server5. Hence, the name temporary
resource. With the temporarily completed fact base it is possible for the F-Logic
rule engine to draw conclusions about not-existent resources, e.g. about parents,
even if their children are not known yet.

Example 9.15

An F-Logic programme consists of the rule

X : ” h t t p :// example . org / f am i l y#Father ” }
:−
X[” h t t p :// example . org / f am i l y#hasCh i l d }−> Y] ,
X : ” h t t p :// example . org / f am i l y#Male ” .

Deducing that a resource is a family:Father is only possible if a family:hasChild at-
tribute is known. Hence, :Peter who is a family:Parent but has no family:hasChild
relationship cannot be found to be a family:Father. 2

Amongst others, owl:allValuesFrom, owl:someValuesFrom, and owl:minCardinality
can be used to express existential quantification in OWL. When the knowledge
base becomes translated into an F-Logic programme, all individuals that belong
to classes that are specified by such concept restrictions have to be identified.
This can be achieved by the use of a simple SPARQL query:

Example 9.16 (SPARQL query for existentially quantified individuals)
p r e f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>

p r e f i x r d f s : <h t t p ://www. w3 . org /2000/01/ rd f−schema#>

SELECT ?X ? I ?P
WHERE { ?X a owl : R e s t r i c t i o n .

?X owl : onProperty ?P.
{?X owl : minCard ina l i t y [] } UNION
{?X owl : someValuesFrom [] } UNION
{?X owl : a l lVa luesFrom [] }
? I a ?X.
OPTIONAL{? I ?P ?C.}
FILTER(! bound (?C))

}

All individuals that are returned by this query have to be completed with a
temporary statement, e.g. (:Peter family:hasChild tmpres0815).

This approach, however, introduces a new problem. Consider the following
(cyclic) concept definition:

Example 9.17 (Infinite relationships)

family:Child ≡ ∃family:hasParent.family:Child

If all individuals that are instances of family:Child are completed such that they
have at least one relationship with the family:hasParent property, there will be
an infinite expansion of (newly created) individuals, because every newly created
family:Parent is again a family:Child. 2

5These temporary resources are no instances of url in Florid. Therefore they are not
retrieved by the queries of the hybrid reasoning core.

128 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

Hence, reasoning about individuals in presence of cyclic TBoxes demands
for blocking mechanisms that terminate the building of completion trees when
cycles are detected. Blocking is implemented only to a limited degree in the
hybrid reasoning engine. See Chapter 12.6 for an outlook about further work
blocking mechanisms in Swan.

The principles of hybrid reasoning in Swan are now known. Next, an ex-
ample is supplied which illustrates the interaction of F-Logic rules and OWL
ontologies.

9.5 Application

In Swan, hybrid reasoning is used only as a supplementary reasoning process
that is activated on demand (in contrast to OWL reasoning which is applied
continuously). Only when the additional deductive power of F-Logic is needed
the additional inference mechanism is used.

Consider a railway company that uses a knowledge base containing a number
of interconnected railway stations. Moreover, the fact base defines connections
between neighbouring stations (”direct-connections” along with their ”distances”
and ”durations”). The rules in the F-Logic programme calculate all possible
”connections” between reachable rail stations.

Note that for ease of reading, the whole example is given in F-Logic. In
Swan, usually the facts are given as RDF statements and only the derivation
rules are given in F-Logic.

Example 9.18 (Railway facts)
”Goet t ingen ” : ” s t a t i o n ” [”name” −>> ”Goet t ingen ”] .
”Hannover” : ” s t a t i o n ” [”name” −>> ”Hannover”] .
”Braunschweig ” : ” s t a t i o n ” [”name” −>> ”Braunschweig ”] .
”Hamburg Hbf” : ” s t a t i o n ” [”name” −>> ”Hamburg Hbf”] .
” Be r l i n Zoo l o g i s c h e rGar t en ” :” s t a t i o n ”

[”name” −>> ” Be r l i n Zoo l o g i s c h e rGar t en ”] .
”Magdeburg” : ” s t a t i o n ” [”name” −>> ”Magdeburg”] .

”Goet t ingen−Hannover ” :” d i r e c t −connec t ion ” .
”Goet t ingen−Hannover ” [” dura t i on ”−>54;” d i s t a n c e ”−>100].
”Goet t ingen−Hannover ” [” from”−>”Goet t ingen ” ;” to”−>”Hannover ”] .

”Goet t ingen−Braunschweig ” :” d i r e c t −connec t ion ” .
”Goet t ingen−Braunschweig ” [” dura t i on ”−>54;” d i s t a n c e ”−>110].
”Goet t ingen−Braunschweig ”

[” from”−>”Goet t ingen ” ;” to”−>”Braunschweig ”] .

” Ber l i n Zoo l o g i s ch e rGar t en−Hamburg Hbf ” :” d i r e c t −connec t ion ” .
” Ber l i n Zoo l o g i s ch e rGar t en−Hamburg Hbf”

[” dura t i on ”−>96;” d i s t a n c e ”−>175].
” Ber l i n Zoo l o g i s ch e rGar t en−Hamburg Hbf”

[” from”−>”Be r l i n Zoo l o g i s c h e rGar t en ” ;” to”−>”Hamburg Hbf ”] .

”Hannover−Hamburg Hbf ” :” d i r e c t −connec t ion ” .
”Hannover−Hamburg Hbf ” [” dura t i on ”−>68;” d i s t a n c e ”−>175].
”Hannover−Hamburg Hbf ” [” from”−>”Hannover ” ;” to”−>”Hamburg Hbf ”] .

”Braunschweig−Ber l i n Zoo l o g i s c h e rGar t en ” :” d i r e c t −connec t ion ” .
”Braunschweig−Ber l i n Zoo l o g i s c h e rGar t en ”

9.5. APPLICATION 129

[” dura t i on ”−>96;” d i s t a n c e ”−>240].
”Braunschweig−Ber l i n Zoo l o g i s c h e rGar t en ”

[” from”−>”Braunschweig ” ;” to”−>”Be r l i n Zoo l o g i s c h e rGar t en ”] .

”Braunschweig−Magdeburg ” :” d i r e c t −connec t ion ” .
”Braunschweig−Magdeburg ” [” dura t i on ”−>49;” d i s t a n c e ”−>85].
”Braunschweig−Magdeburg”

[” from”−>”Braunschweig ” ;” to”−>”Magdeburg ”] .

”Braunschweig−Hannover ” :” d i r e c t −connec t ion ” .
”Braunschweig−Hannover ” [” dura t i on ”−>33;” d i s t a n c e ”−>60].
”Braunschweig−Hannover ” [” from”−>”Braunschweig ” ;” to”−>”Hannover ”] .

”Magdeburg−Ber l i n Zoo l o g i s c h e rGar t en ” :” d i r e c t −connec t ion ” .
”Magdeburg−Ber l i n Zoo l o g i s c h e rGar t en ”

[” dura t i on ”−>90;” d i s t a n c e ”−>147].
”Magdeburg−Ber l i n Zoo l o g i s c h e rGar t en ”

[” from”−>”Magdeburg ” ;” to”−>”Be r l i n Zoo l o g i s c h e rGar t en ”] .

Example 9.19 (Computing new railway connections)
X:” connec t ion ” :− X:” d i r e c t −connec t ion ” .
U:” connec t ion ” [” from”−>X ;” to”−>Z] ,U: u r l :−
C1:” connec t ion ” [” from”−>X ; ” to”−>Y] ,
C2 :” connec t ion ” [” from”−>Y ; ” to”−>Z] ,
s t r c a t (X,”−” ,TMP) , s t r c a t (TMP,Z ,U) .

New connections can be found from the facts by computing the transitive closure
using the F-Logic rules from Example 9.19. The new resource names are created
by a concatenation of the names of the railway stations. Hereby, all newly
created connection objects are added to the OWL knowledge base. With little
extra effort the Florid railway example can be extended such that only those
connections for pairs of stations are added which have the shortest duration.

Example 9.20 (Computing fastest railway connections)
%% 1. Symmetry o f connec t i ons
NewU:” d i r e c t −connec t ion ” [” d i s t a n c e”−>D;” from”−>T;” to”−>F;

” d i s t a n c e”−>DI ;” dura t i on”−>DU]
:− U:” d i r e c t −connec t ion ” [” d i s t a n c e”−>D;” from”−>F;” to”−>T;

” d i s t a n c e”−>DI ;” dura t i on”−>DU] ,
s t r c a t (T,”−” ,PT) , s t r c a t (PT,F,NewU) .

%% 2. c r e a t e a new d i s t i n c t term f o r p a i r s o f F/T wi th
%% tmpdurat ion p r o p e r t i e s
c (F ,T) : connec t ion [from−>F; to−>T; tmpduration−>D ; path−> F] ,
U[” path”−>F]
:− U:” d i r e c t −connec t ion ” [” dura t i on”−>D; ” from”−>F; ” to”−>T] .

%% 3. c r e a t e new connec t i ons f o r terms o f p a i r s
%% PATH/DESTINATION (i n i t i a l i s a t i o n)
c (P,Z) : connec t ion [from−>X; to−>Z ; tmpduration−>D; path−>P]
:− C1 : connec t ion [from−>X; to−>Y; tmpduration−>D1; path−>P1] ,

C2 : connec t ion [from−>Y; to−>Z ; tmpduration−>D2; path−>P2] ,
not X=Z , D = D1 + D2 , s t r c a t (P1,”−” ,PT) , s t r c a t (PT,P2 ,P) ,
not : connec t ion [from−>X; to−>Z] .

%% 4. add new term f o r e x i s t i n g connec t ion X/Z i f t h e new
%% path P has s h o r t e r dura t i on than e x i s t i n g ones
c (P,Z) : connec t ion [from−>X; to−>Z ; tmpduration−>D; path−>P]
:− C1 : connec t ion [from−>X; to−>Y; tmpduration−>D1; path−>P1] ,

130 CHAPTER 9. HYBRID DL-F-LOGIC REASONING

C2 : connec t ion [from−>Y; to−>Z ; tmpduration−>D2; path−>P2] ,
not X=Z ,
D = D1 + D2, s t r c a t (P1,”−” ,PT) , s t r c a t (PT,P2 ,P) ,
D <= min{ S1 [X,Z] ;

C : connec t ion [from−>X; to−>Z ; tmpduration−>S1] } .

%% 5 . Create a new connec t ion s e l e c t i n g from a l l new
%% connec t i ons t h a t one wi th s h o r t e s t dura t i on
U:” connec t ion ” [” from”−>X; ” to”−>Y; ” dura t i on”−>D; ” path”−>P] ,
U: u r l :−

C: connec t ion [from−>X; to−>Y; tmpduration−>D; path −>P] ,
D = min{ DX[X,Y] ;

C : connec t ion [from−>X; to−>Y; tmpduration−>DX]} ,
X[” name”−>>XN] , Y[” name”−>>YN] ,
s t r c a t (XN,”−” ,TMP) , s t r c a t (TMP,YN,U) .

These rules create temporary connection objects for all pairs (A,B) of railway
stations where B is reachable from A and where the duration of the new connec-
tion is shorter than any existing one for the same pair of stations. The last rule
creates ”connection” objects for all pairs (A,B) choosing from the temporary
connection objects the one with the shortest duration. Only these ”connection”
objects become instances of url, therefore they are the only resources that will
be added to the OWL knowledge base.

The hybrid reasoning process, which calculates new connections along with
their durations has to be performed only once when the knowledge base becomes
initialised . The results from Florid are returned to the hybrid reasoning core
where they are translated into RDF statements and added to the knowledge
base. A new hybrid reasoning process is only necessary in case that there are
changes in the knowledge base that would allow to derive new facts by the
hybrid reasoning process (e.g. insertion of new stations). This behaviour can be
defined and initiated by the use of triggers:

Example 9.21 (Hybrid reasoning activated by a trigger)
ON CREATION OF INSTANCE OF CLASS

h t t p :// example . org / r a i l#Ra i l S t a t i o n
WHEN

s e l e c t ? connec t ed
where {? connec t ion ? connec t ed <$new . s u b j e c t > .

? connec t ion a <h t t p :// example . org / r a i l#Connection >.}
DO BEGIN

s t a r t − f l o g i c −reason ing () ;
END;

The trigger condition is not intended to bind any values to variables (actually,
connected is a don’t-care variable). Rather it ensures that the trigger fires only
in case of the insertion of a new station which is also part of a connection
(connected either by the from or to property). The action part in the trigger
definition (start-flogic-reasoning()) is a domain node action which initiates the
hybrid reasoning process.

The last chapters described all features of the SWAN architecture. Know-
ledge base triggers, ACA rule wrapping, and hybrid reasoning have been pre-
sented. In the concluding chapter about Swan the behaviour of the domain
node is given a logical characterisation.

Chapter 10

Logical Characterisation of

Domain Node Behaviour

10.1 Integration into MARS

Rule formalisms play a central role in both the MARS and the Swan archi-
tecture. Hereby, Swan domain nodes can be integrated easily into the MARS
architecture. ACA rules enable domain nodes to react on actions of the appli-
cation domain (see Chapter 8) whereas knowledge base triggers allow to make
changes within the domain node visible to other parts of the event-driven net-
work (see Chapter 7). Basically, both of these formalisms are ECA rules and
specify the behaviour not only of the domain node but also of global issues. In
the event-driven architecture Mars where all behaviour is specified by rules, it
is possible to reason about the dynamic aspects of a domain. Such reasoning
can be, for example, the testing of the satisfiability of an action or proving of
the validity of rules with regard to knowledge base updates. A prerequisite for
reasoning tasks like this is the characterisation of the dynamic aspects of the
domain node. This characterisation is given in the following for Swan, covering
ACA rules and triggers.

10.1.1 Characterisation of Events

The communication between the service components of the Mars framework
and the domain nodes is mainly realised by events. Actions are discriminated
from events with regard to operational aspects: actions actually are the activities
that happen whereas events inform the rest of the application domain about
these changes (see Section 4.3.4). In this respect it makes sense to speak of a
“signaling of events”.

On a conceptual level, however, the notion of an event is different. Basically,
an event does not exist and is never communicated. An event occurs instan-
taneously and has no duration. It simply happens and becomes visible. The
visibility depends on the agent. Every agent has different knowledge and there-
fore a different point of view. Events are not necessarily visible to all agents
but can be distributed globally.

131

132 CHAPTER 10. LOGICAL CHARACTERISATION

Definition 10.1 (Visibility)
Visibility of events is defined by a predicate visible(E ,N) where E is a set of
events, which is visible to a set of agents N . 2

The set of agents defines the range of visibility. Local actions (e.g. updates
to the knowledge base) are always visible locally. From the point of view of the
agent (the domain node) they are considered at the same time as events, e.g.
when a statement (x, y, z) becomes inserted into the knowledge base then the
event insertion(x, y, z) becomes visible to the agent itself. The local node is the
only agent that is able to see such an event unless it is explicitly made visible
to the outside. Knowledge base triggers are ECA rules that are activated upon
the detection of events, but as events directly correspond to actions (knowledge
base updates) they actually fire upon actions. As a consequence it is possible
to use triggers in order to make events visible (as realised by the domain-node
action raise-event).

The operation of raising an event makes the event visible to other nodes,
e.g. a domain broker, formally specified by

visible({e}, {localhost}), e ∈ DomainEvents

visible({e}, {localhost,DomainBroker})

DomainEvents are events that are specified as the consequence of a trigger. If an
event is visible locally and is a DomainEvent it becomes visible to the domain,
too (here to the domain broker as an intermediate distributor).

Events and the Aspect of Time
Events have no duration, which makes it more difficult to describe ongoing
changes. Depending on the domain of interest it might be necessary to con-
tinously talk about changes (e.g. a metereological station) or to have events
which indicate only starting and ending points of periods of interest. In the
latter case intermediate events might be necessary if the changes do not evolve
monotonically.

Example 10.1
Again, a flight reservation system is considered. The availability of new flights is
announced with new-flight events. The end of the reservation period is naturally
limited by either the departure of the plain or when it is fully booked. The latter
needs to be made visible with a fully-booked event whereas the first can be derived
from the flight schedule. Intermediate events can be used to indicate the booking
status (e.g. half-booked). 2

Events are well suited for the implementation of the notion of time in the
MARS framework. Time passes synchronously in discrete steps at all nodes
which can be realised by time-events that are globally visible.

visible({time-passes-1sec}, {timenode})

visible({time-passes-1sec}, {global})

There has to be a coordinating node (named timenode in the definition
above) which originates such events. Like any other event, global events are
distributed by the domain broker. The term global does not denote a specific
node but the set of all known nodes.

10.1. INTEGRATION INTO MARS 133

10.1.2 Events and Rules

The relationship of events and actions can be expressed by ECA rules. Similarly,
ACE rules define, from the point of view of the agent, how actions (that the
agent is able to fulfill) correspond to one or more events.

Example 10.2
The booking of a seat for flight LH458 at the airline company is a local action.
The action is, locally, also seen as an insertion event. This event, in turn, can
be made visible by a trigger:

ON INSERTION OF
http://www.semwebtech.org/domains/2006/travel#bookedFor

DO BEGIN
raise event(
<travel:flightBooked xmlns:travel=

”http://www.semwebtech.org/domains/2006/travel#”>

<travel:flightNo>$flightNo</travel:flightNo >

<travel:date>$date</travel:date>

<travel:passenger>$pas</travel:passenger>

</travel:flightBooked>

);
END;

The following trigger raises, upon the same flight booking, an event in case that
half of the seats of the airplane are booked:

ON INSERTION OF
http://www.semwebtech.org/domains/2006/travel#bookedFor

WHEN SELECT ?flight WHERE {
<$old.subject>

<http://www.semwebtech.org/domains/2006/travel#hasBookings>

?bookings .
<$old.subject>

<http://www.semwebtech.org/domains/2006/travel#hasFlightNo>

?flight.
<$old.subject>

<http://www.semwebtech.org/domains/2006/travel#hasFlightNo> ?con.
?con <http://www.semwebtech.org/domains/2006/travel#withType>

?type .
?type

<http://www.semwebtech.org/domains/2006/travel/iata/meta#capacity>

?cap .
FILTER(?bookings = ?cap/2) }

DO BEGIN
raise event(

<travel:halfBooked
xmlns:travel=”http://www.semwebtech.org/domains/2006/travel#”>

<travel:flightNo>$old.subject</travel:flightNo>

</travel:halfBooked>);
END;

2

134 CHAPTER 10. LOGICAL CHARACTERISATION

In fact, local ECA rules can be used as if they were ACE rules for the raising
of events to the application domain.

Whereas ECA rules express the relationships between events and actions,
ECE rules allow for the definition of the relationship between events (see also
Section 5.2.2). In this respect ECE rules can also be regarded as rewriting
rules for events. Mostly, the correspondence of events expresses different points
of view of agents. For example, the flight-booking event with destination New
York can also be rewritten as a flight-booking-to-USA event.

More importantly, with regard to the domain application nodes, are ACA
rules which have been presented in Section 8. The following section gives a
logical characterisation for ACA rules.

10.2 Logical Characterisation of ACA Rules

ACA rules map a high-level action to a (sequence of) knowledge base update(s).
High-level means that the action itself does not specify how to execute an action
but what the action is about. The ACA rule closes the gap between abstract
action specifications and concrete knowledge base updates.

The action is usually received by a domain node in form of an XML fragment,
but could as well be, with regard to this logical characterisation, an RDF graph
fragment. The parameters of the action are bound to variables and passed on
to the corresponding (as specified by the ACA rule) knowledge base updates.
Following the ECA paradigm, an ACA rule can be described by ON action a IF
condition c DO knowledge base update u.

10.2.1 Axiomatising Knowledge Base Updates

The general characterisation of an ACA rule is an axiomatisation using a know-
ledge base K (see again Definition 2.4) and a set of knowledge base update
operations A e.g. assert, insert, retract, delete, delete-resource, update-subject,
update-property, update-object1:

ON a IF c DO u :
u(r1, . . . , rn) ∈ A

K |= c→ (assertions about K′ , visible({u}, {local}))

The effects of an update operation on a knowledge base K are described
by the conclusions that can be drawn about K

′

(the knowledge base after the
update operation) with regard to a set of resources r1, . . . , rn. These conclusions
include entailment (K

′

|= s , K
′

6|= s) and containment (s ∈ K
′

, s /∈ K
′

) of
statements s2.

In addition to the assertions given with regard to the state of the knowledge
base K, every update is also guaranteed to be a visible event locally.

The resources r1, . . . , rn are given as parameters of the action (that has to
be mapped to update operations by the ACA rule) or they are defined in the
ACA rule itself.

1 Maintenance operations rename and rename-property-of-class are not characterised here
because they are not meant to be called by external actions.

2 Recall that a statement consists of three resources (subject, predicate, and object) and
does not need to exist physically in the knowledge base ((x, y, z) 6∈ K) but may hold in K
through entailment (K |= (x, y, z)), see again Definition 6.2 in Section 6.4.2.

10.2. LOGICAL CHARACTERISATION OF ACA RULES 135

The knowledge base K
′

results from K by minimal changes, which are char-
acterised for all possible u ∈ A as follows:

Definition 10.2 (Axiomatisation of knowledge base update operations)

assert ⇒
assert(s, p, o)

K′ |= (s, p, o)
retract ⇒

retract(s, p, o)

K′ 6|= (s, p, o)

insert ⇒
insert(s, p, o)

(s, p, o) ∈ K′
delete ⇒

delete(s, p, o)

(s, p, o) 6∈ K′

update-subject ⇒
update-subject(s, p, o, ns), (s, p, o) ∈ K

(ns, p, o) ∈ K′ , (s, p, o) 6∈ K′

update-property ⇒
update-property(s, p, o, np), (s, p, o)

(s, np, o) ∈ K′ , (s, p, o) 6∈ K′

update-object ⇒
update-object(s, p, o, no), (s, p, o)

(s, p, no) ∈ K′ , (s, p, o) 6∈ K′

delete-resource⇒
delete(r)

K′ |r = ∅
2

After a delete-resource(r) operation the assertion K
′

|r = ∅ holds where K|r
denotes a restriction to a knowledge base K such that a resource r appears in
all statements in K.

Parallel Execution of Updates.

From a set of update operations U = {u1, . . . , un} on a knowledge base K there
follows a set of assertions about K

′

:

u1

a1(K
′)

, . . . ,
un

an(K′)

where ai(K) is an assertion about the knowledge base K (see Definition 10.2). If
u1, . . . , un can be executed consistently in parallel, resulting in K

′

, obviously K
′

satisfies all a1, . . . , an. A set U of updates is consistent if the consequences are
not contradictory. Therefore, if e.g. U contains delete-resource(r) there must
not be an insert(r, s, o) operation in U at the same time whereas the opera-
tion retract(r, p, o) could be part of U without contradicting the other opera-
tion3. Similarly, a delete(s, p, o) cannot be consistently executed together with
an update-subject(s, p, o, ns) operation.

10.2.2 Reasoning About ACA Rules

Abstract actions of the application domain and update operations of the know-
ledge bases are correlated by the ACA rules at the domain nodes. These rules

3Recall that a retract operation ensures that a statement will not hold afterwards. Nothing
has to be deleted if the statement did not hold.

136 CHAPTER 10. LOGICAL CHARACTERISATION

combine actions and updates with an additional condition. If more than one
ACA rule is defined to react upon an action, different update operations might
be executed in the cause of a received abstract action specification, depending
on the conditions:

Example 10.3
ON flight booking IF

1) (¬ half-booked
︸ ︷︷ ︸

:=ch

and ¬ fully-booked
︸ ︷︷ ︸

:=cf

︸ ︷︷ ︸

:=c1

) DO ”sell ticket for price a”

2) (half-booked
︸ ︷︷ ︸

:=ch

and ¬ fully-booked
︸ ︷︷ ︸

:=cf

︸ ︷︷ ︸

:=c2

) DO ”sell ticket for price a*1.2”

3) fully-booked
︸ ︷︷ ︸

:=cf=c3

DO ”notify failure-of-bookin”

For the sake of simplicity, the consequences of these rules are only given by a
description of what should be done. The condition half-booked is denoted by
ch, and fully-booked by cf , furthermore the condition part of rules 1 to 3 are
denoted by c1, c2 and c3. Hereby, the conditions of all ACA rules that react
upon the abstract action flight booking can be given as

c1 = (¬ch ∧ ¬cf), c2 = (ch ∧ ¬cf), c3 = cf

At least one of the rule conditions will hold:

c1 ∨ c2 ∨ c3 ↔ (¬ch ∧ ¬cf) ∨ (ch ∧ ¬cf) ∨ cf ↔ true

The following truth table proves, logically, that for every possible combination
of conditions ch and cf at least one rule condition is true.

ch cf c1 c2 c3 c1 ∨ c2 ∨ c3

0 0 1 0 0 1
1 0 0 1 0 1
0 1 0 0 1 1
1 1 0 0 1 1

Note that the conjunction ¬ch ∧ cf will never occur because ch follows from cf .
Nevertheless, c3 ↔ ¬ch ∧ cf .

Moreover, for every combination of ch and cf exactly one of the rule conditions
will hold:

(c1 ∧ ¬c2 ∧ ¬c3) ∨ (¬c1 ∧ c2 ∧ ¬c3) ∨ (¬c1 ∧ ¬c2 ∧ c3)↔ true

Hence, upon a flight booking action, exactly one of the three ACA rules will
be executed. 2

10.2. LOGICAL CHARACTERISATION OF ACA RULES 137

If two ACA rules that have the same abstract action definition a1 are given

a1

c1 → u1
,

a1

c2 → u2

and it can be derived that either c1 or c2 will hold, it can be derived, that either
u1 or u2 follow from a1:

true

c1 ∨ c2
→

a1

u1 ∨ u2

Discussion

The characterisation of updates from Definition 10.2 shows what assertions can
be made about the knowledge base K

′

after the execution of an update with
regard to the set of resources r1, . . . , rn. Effects on other resources in K are not
considered here, although the state of the knowledge base is not only affected
by the update but also by further (intensional) updates by the reasoning engine.
Whereas any calculus for dynamic worlds has to deal with the frame problem
(that is how to specify what resources do not change, see e.g. [GL93]), the
characterisation of ACA rules can be restricted to the direct effects of updates.

For proving properties of knowledge base updates, guarantees are of special
interest. Such guarantees about effects of (combinations of) actions can be
derived from pre- and postconditions as expressed in this characterisation. In
a similar fashion such guarantess can be given in temporal logic with a formula
like

insert(s, p, o)→ ◦(s, p, o) ∧ (s, p, o) W u

where W is the temporal logic unless operator (see e.g. [MA92]) and u is the
conjunction of all update operations which change the state of K with regard
to (s, p, o) (e.g. delete(s, p, o) or update-subject(s, p, o, ns)). The above formula
expresses a frame axiom that defines that this particular resource does not
change until u happens. This, however, is only possible as long as no implicit
knowledge is used in the formula. Consider a temporal logic formula expressing
an assert operation:

assert(s, p, o)→ ◦(s, p, o)

Here it is not possible to give further guarantees about (s, p, o) after an assert
because it is only known that K |= (s, p, o), whereas (s, p, o) ∈ K cannot be
guaranteed. Given that there is no formalisation of the reasoning mechanism it
is not possible to specify, which operations affect the asserted statement. The
guarantees towards the implicit update operations assert and retract are much
weaker compared to the insert and delete operations.

Nevertheless, all of the assertions can be used for the verification of updates
(and hereby also of ACA rules) and reasoning about the effects of actions.

Similar to the characterisation of ACA rules, also trigger evaluation is logi-
cally characterised.

138 CHAPTER 10. LOGICAL CHARACTERISATION

10.3 Logical Characterisation of Knowledge Base

Triggers

Triggers can be described (like ACA rules) using the ECA formalism: ON event
e IF condition c DO triggeraction a. The action part of a trigger is either a
knowledge base update (see again Section 10.2.1) or the raising of events (which
means sending the event to a domain-broker which handles the further distribu-
tion of the event). For the formal specification of the trigger evaluation process
see again Section 7.3.

The general characterisation of a trigger definition (in the abstract form as
an ECA rule) can be given as follows:

ON e IF t DO a :
e

(K |= t)→ (assertions about K′ , visible({a}, {local}))

where t is a condition that is evaluated on the knowledge base and visible ex-
presses that the action a (as executed by the trigger) is visible locally and
therefore available for other triggers to react upon. e is the occurence of an
update operation expressed by an event definition whereas a is an update oper-
ation which is executed in reaction to e. Both e and a are defined in A (the set
of possible update operations in K). Events, however, are not directly given in
form of update operations but as update descriptions. Essentially, these event
definitions are about insert, delete or modify operations (see Section 7.2.4) plus
conditional expressions with regard to the concepts affected by the event. For ex-
ample, ON INSERTION OF property p OF INSTANCE OF class c can be expressed
in form of an ECA rule as:

ON insert(x, y, z) IF (x : c ∧ y = p) DO . . .

and similarly the trigger definition ON NEW CLASS c can be expressed as

ON insert(c, y, z) IF (y = rdf:type ∧ z = owl:Class) DO . . .

In the same manner all trigger definitions can be expressed as ECA rules such
that the event specifications of the triggers are expressed only in terms of update
operations in A. Hereby the set of update operations which cause a trigger to
fire can explicitly be given.

A single update u can cause a set of updates u, u1, . . . , un, which are con-
sidered to be executed in parallel. Like in Section 10.2.1 such a set of updates
can be expressed by a set of guarantees:

u

a(K′)
,

u1

a1(K
′)

, . . . ,
un

an(K′)

There are some differences between ACA rules and trigger rules, though:

a) The action part of a trigger can also be the raising of an event which is
not specified as an update operation in A. But as the raising of an event
has no side effects, the raise-event operation can be specified simply as

raise-event⇒
raise-event(e)

K, visible({e}, {N})

10.3. LOGICAL CHARACTERISATION OF TRIGGERS 139

where N is the set of agents to which the event e is made visible which
normally includes the domain-broker and all other nodes that will receive e
from the domain-broker. Although the raising of events has no side effects
on the knowledge base it might well have consequences on the domain
level.

b) Triggers may cause further updates (which may in turn cause further
triggers to fire). Trigger evaluation therefore is a fixpoint computation
process. Nevertheless, the update process reacting on a single initial action
can be considered being atomic, or, in other words, a transaction resulting
in a set of changes ∆ (for the definition of ∆ see again Section 7.3).

c) Trigger evaluation has two stages: before and after the actual update. This
discrimination is only relevant in an operational sense. The operator TUω

(see again Definition 7.3) computes from the initial update u (causing the
event e) by an alternating application of pre- and post-reasoning triggers
the final model M (or K

′

respectively).

In order to give assertions about K
′

after an update u it is not possible
to simply use the set of changes ∆. ∆ consists, on the one hand, of explicit
knowledge which is the initial update u plus subsequent updates u1, . . . , un

caused by further trigger activation. On the other hand, ∆ may contain implicit
knowledge added by the reasoning engine. The reasoning engine, however, is
used as a black box. Without a formal specification of the reasoning process,
guarantees can be given only for the explicit changes in the knowledge base,
which makes ∆ unsuitable for this characterisation.

Hence, the guarantees towards K after an update u in presence of triggers is
the set of assertions about each update in ∆explicit = {u, u1, . . . , un}. Consider

u

a(K′)
,

u1

a1(K
′)

, . . . ,
un

an(K′)

where the assertions a, a1, . . . , an (which correspond to the updates u, u1, . . . , un)
are described by the axiomatisation given in Definition 10.2.

The set {u, u1, . . . , un} = ∆explicit is specified by the operator TRT,G (see
Definition 7.2), where T is the set of all triggers (both pre- and postreason-
ing triggers) defined on the knowledge base K, and G is the underlying graph
structure (the explicit knowledge in K).

For that, the assertions about the consequences of an initial update u are
the set of assertions about each single update in ∆explicit:

u

a(K′), a1(K
′), . . . , an(K′), visible(E , {N})

where E is the set of all events accumulated during trigger evaluation (see again
Sections 7.3 and 10.1.1 for details on event raising) and N is the set of agents
to whom E will be visible.

Example 10.4
Given are the trigger definitions t1 =(ON u1 IF c1 DO u2) and t2 =
(ON u1 IF ¬c1 DO u3) with u1 =insert(x, y, z), u2 = insert(x′, y′, z′) and u2 =
insert(x′′, y′′, z′′).

140 CHAPTER 10. LOGICAL CHARACTERISATION

For an initial update u1, the following guarantees can be made with regard
to K

′

after the knowledge base update is completed:

u1

((x, y, z) ∈ K′ ∧ ((x′, y′, z′) ∈ K′ ∨ (x′′, y′′, z′′) ∈ K′)) 2

Trigger evaluation as transactions. As already mentioned, all updates
(here ∆explicit) are considered to be executed in parallel, starting with the initial
update u plus all further updates u1, . . . , un due to trigger evaluation. Therefore,
the situation for ∆explicit is the same as in Section 10.2.1 for U : the set of
updates is consistent, if the consequences are not contradictory. In this respect
∆explicit is treated as a uniform knowledge base update which can be regarded
as a transaction. Such a transaction can be executed successfully only if all
atomic updates can be applied consistently. Otherwise a roll-back has to be
done, reverting all changes.

The conclusions, which follow from the characterisation of ACA rules and
triggers, are stated in the following.

10.4 Conclusion

The differences between implicit and explicit updates have already been men-
tioned in Section 10.2. As the consequences of an insert operation are different
from those of an assert operation the guarantees have to be different likewise.
Inserting knowledge is an explicit operation which gives the guarantee that the
knowledge base indeed contains the statement afterwards.

Consider the following insert operation:

i n s e r t (http :// example . org#Katrin ,
http :// fami ly . org#marriedTo ,
http :// example . org#John) .

The knowledge base now contains the resources :Katrin and :John plus the pred-
icate family:marriedTo which connects both other resources. Therefore it is pos-
sible to guarantee at the same time that, after the insert operation, the deletion
of the same statement would succeed.

The situation is different if an assert operation with the same statement
was executed instead of the insert operation. Although both operations ensure
that the knowledge base will entail the given statement afterwards only the insert
ensures that the statement is actually contained. Consider a situation where the
knowledge base already contains the same statement through entailment:
: John f ami l y : marriedTo : Katr in .
f am i l y : marriedTo a owl : SymmetricProperty .

Because family:marriedTo is a symmetric property it can be derived that also
:Katrin is married to :John. The insert operation from above would nevertheless
add the (now redundant) statement and so it could also be deleted again.

In contrast, the assert operation would cause no changes in the knowledge
base (though committing successfully) as the intention of the update is already

10.4. CONCLUSION 141

fulfilled. A consecutive delete operation on the same statement, however, would
fail because a non-existent statement cannot be deleted.

From this considerations follows that the consequences of an assert operation
depend heavily on the existing data (both assertional and terminological) and
the inference mechanism. As the reasoning process itself is treated as a black
box it cannot be told alone from the success of an assert operation what actually
happened within the knowledge base. Hence, the only guarantee towards the
assert operation can be given with regard to the entailment of the statement by
the model.

A similar situation can be found with the relationship of the delete and the
retract operations. Both operations ensure that the statement, as specified with
the operation, cannot be entailed afterwards. But it cannot be told whether the
retract operation performed any changes to the knowledge base at all. Other
than with insert and assert, here is no difference with regard to future operations
because both delete and retract lead to a situation where the statement is not
contained in the knowledge base.

The logical characterisations that have been presented, complete the main
part of this work. In the next part, the results are discussed.

142 CHAPTER 10. LOGICAL CHARACTERISATION

Part III

Results

143

Chapter 11

Applicability

This chapter gives a motivating example scenario by which the capabilities of
the Swan architecture are demonstrated. The scenario consists of an applica-
tion domain with two domain application nodes. These domain nodes use the
components of an existing Mars implementation for ECA rule evaluation. The
description of the scenario involves

- concepts of the application domain defined in the domain ontology,

- ECA rule definitions for event processing,

- ACA rules for a mapping of domain actions to knowledge base updates,

- local ECE rules in form of knowledge base triggers for the raising of events,

- local ECA rules, again as knowledge base triggers, for the completion of
knowledge base updates,

- F-Logic programmes for hybrid reasoning,

- event definitions which initiate activities in the domain (simulating user
interaction).

The chapter comprises a short description of the technical details, the rule
specifications, and some conclusions.

11.1 Technical Details

Two domain nodes are integrated into a Mars infrastructure using virtual ma-
chines (VM). Each node runs in its own VM with the same technical setup.
By the use of a VM for hosting a domain application node the scenario can be
extended easily by an arbitrary number of additional nodes that are completely
independent. The nodes differ only in the way that they become initialised by a
startup script. This script loads all ontological data (the contents of the know-
ledge base), triggers, and ACA rules. Furthermore, the application domain node
registers at the domain broker in order to receive actions. ECA rule definitions
are sent to the ECA engine. Each node can be administrated seperately by its
own frontend which is accessible via a web browser. Additionally, there is a do-
main frontend, which allows for the sending of commands to one or more nodes

145

146 CHAPTER 11. APPLICABILITY

plus the sending of pre-defined domain actions (see the screenshot in Figure
11.1).

Figure 11.1: Domain Frontend (Screenshot of the Browser Interface)

The application domain nodes make use of an implementation of the Mars

framework, which resides on a separate machine (note that the place where
the components are located is not important, all services can be distributed
amongst many different servers). The Mars framework can be administrated
via a browser interface that offers several options for managing the Mars in-
frastructure: rule (de-)registration, event raising (also by choosing from a set of
pre-defined events), and framework logging facilities.

For the demonstration of the interaction of the components, an example
scenario about travel planning and booking is presented.

11.2 Scenario Description

There are two different nodes that participate in the application domain: one is
an airline company (Onto-Flight) which serves flights between airports world-
wide. The flight plan of Onto-Flight is shown schematically in Figure 11.2. The
other domain node represents a car rental company (Onto-Rent) which offers
car rental services at certain cities (airports). Booking a flight from city A to
city B consists of a booking for each flight that is part of the fastest connec-
tion. For instance, the fastest flight connection from San Francisco (SFO) to
Frankfurt (FRA) consists of flights 9159 and 446.

11.2. SCENARIO DESCRIPTION 147

Additionally, a car will be reserved at the destination city. That car will be
the least expensive one chosen from a set of available cars all being in the same
class, which the customer usually drives.

FRA

YEG YYC

DEN

MUC

9639

9609

446

447
9159

458

459

96
8

480

481

SFO

3204

SVX

Figure 11.2: Flight plan of Onto-Flight. Airport names are given by the three-
letter IATA codes, flight connections are identified by a flight number.

The travel domain nodes make use of the same domain ontology which has
already been presented in Example 5.1. That ontology is extended by the do-
main nodes by their own concepts. For instance, the airline company adds the
following concept definitions:

Example 11.1 (Airline Company Ontology, Concepts)
@pre f i x mars : <h t t p ://www. semwebtech . org /mars /2006/mars#>.
@pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>.
@pre f i x r d f s : <h t t p ://www. w3 . org /2000/01/ rd f−schema#>.
@pre f i x r d f : <h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#>.
@pre f i x : <h t t p ://www. semwebtech . org /nodes /2007/ onto− f l i g h t >.
@pre f i x t r a v e l : <h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#>.
@pre f i x i a t a :

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a /meta#>.

: a mars : App l i ca t ionNode ;
a mars : DomainService ;
mars : name ”MARS Worldwide A i r l i n e S e r v i c e s ” ;
mars : s uppo r t s t r a v e l : from ,

t r a v e l : t o ,
t r a v e l : dura t i on ,
t r a v e l : a r r i v a l ,
t r a v e l : d epar tu r e ,
t r a v e l : Connec t edF l i gh t ,
t r a v e l : s e r v e d f l i g h t ,
t r a v e l : f l i g h t −book ing ,
t r a v e l : cance l− f l i g h t −book ing ,
t r a v e l : cance l− f l i g h t ,
i a t a : A i rpor t ;

mars : uses−domain t r a v e l : , i a t a : .

t r a v e l : f l i g h t −book ing
a owl : C las s ;
r d f s : subClassOf t r a v e l : Act ion ;
mars : be l ongs−to−domain t r a v e l : .

t r a v e l : cance l− f l i g h t −book ing

148 CHAPTER 11. APPLICABILITY

a owl : C las s ;
r d f s : subClassOf t r a v e l : Act ion ;
mars : be l ongs−to−domain t r a v e l : .

t r a v e l : cance l− f l i g h t
a owl : C las s ;
r d f s : subClassOf t r a v e l : Act ion ;
mars : be l ongs−to−domain t r a v e l : .

The knowledge base of the airline company contains facts about airports,
airplanes, and flight connections. The flight plan, which is used for the scenario
consists of seven airports and eleven connecting flights. Although there is a flight
plan available with many more airports and flight connections the amount of
data is reduced for this scenario to a small fraction in order to achieve faster
computations. As the intention is to demonstrate the behaviour of the applica-
tion domain node this simplification can be applied without loss of generality.
The example scenario for the application domain nodes could be used with much
larger datasets, but then the limitations of DL reasoning will have severe effects
on the performance of the application (see the discussion in Section 12.1).

In the next example a small excerpt is presented which contains all resources
that are involved in a flight booking between the airports ”Denver” and ”Frank-
furt”.

Example 11.2 (Airline Company Ontology, Facts)
@pre f i x i a t a : <h t t p ://www. semwebtech . org /domains /\

2006/ t r a v e l / i a t a /meta#>.
@pre f i x r d f s : <h t t p ://www.w3 . org /2000/01/ rd f−schema#> .
@pre f i x r d f : <h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#> .
@pre f i x owl : <h t t p ://www.w3 . org /2002/07/ owl#> .
@pre f i x t r a v e l : <h t t p ://www. semwebtech . org /\

domains /2006/ t r a v e l#> .

<h t t p ://www. semwebtech . org /domains /2006/\
t r a v e l / i a t a / c r a f t s /Airbus /A340−300>

a i a t a : Cra f t ;
i a t a : code ”343”ˆˆ< h t t p ://www.w3 . org /2001/XMLSchema#s t r i n g > ;
i a t a : hasManufacturer <h t t p ://www. semwebtech . org /domains /2006/\

t r a v e l / i a t a /manufac turers /Airbus >;
i a t a : p e r s on capa c i t y 247 .

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a / a i r p o r t s /\
S t a p l e t o n A i r p o r t / Un i t e d S t a t e s /Denver /\
Denve r In t e rna t i ona l A i r po r t >

i a t a : name ”Denver” ;
a i a t a : Ai rpor t ;
t r a v e l : t imezone −0700 ;
i a t a : n ea r e s tC i t y
<h t t p ://www. semwebtech . org /mondial /10/\

c oun t r i e s /USA/ prov in c e s / Colorado / c i t i e s /Denver/> ;
i a t a : code ”DEN” .

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a /\
a i r p o r t s /Germany/ Frank fur t / F r an k f u r t I n t e r n a t i o n a l A i r p o r t >

i a t a : name ” Frank fur t ” ;
a i a t a : A i rpor t ;
i a t a : n ea r e s tC i t y
<h t t p ://www. semwebtech . org /mondial /10/ c oun t r i e s /D/ prov in c e s /\

Hessen/ c i t i e s /Wiesbaden/> ;

11.2. SCENARIO DESCRIPTION 149

t r a v e l : t imezone 0100 ;
i a t a : code ”FRA” .

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a / a i r l i n e s /\
Luf thansa / F l i g h t#LH447>
a t r a v e l : F l i g h t ;
t r a v e l : a r r i v a l ”11.00+1” ;
t r a v e l : d epar tu r e

”17.25”ˆˆ< h t t p ://www. w3 . org /2001/XMLSchema#decimal> ;
t r a v e l : dura t i on 625 ;
t r a v e l : f l i g h tN o ”LH447” ;
t r a v e l : from

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l /\
i a t a / a i r p o r t s / S t a p l e t o n A i r p o r t / Un i t e d S t a t e s /Denver /\
Denve r In t e rna t i ona l A i r po r t > ;

t r a v e l : operatedBy <h t t p ://www. semwebtech . org /domains /\
2006/ t r a v e l / i a t a / a i r l i n e s /Lufthansa> ;

t r a v e l : t o
<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a /\

a i r p o r t s /Germany/ Frank fur t / F r an k f u r t I n t e r n a t i o n a l A i r p o r t >;
t r a v e l : withType

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a /\
c r a f t s /Airbus /A340−300> .

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a / a i r l i n e s /\
Luf thansa / F l i g h t#LH447−20081010> a
<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#s e r v e d f l i g h t >;
t r a v e l : hasDate 20081010;
t r a v e l : hasF l i gh tNo

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a /\
a i r l i n e s / Luf thansa / F l i g h t#LH447>;

t r a v e l : hasBookings
”0”ˆˆ< h t t p ://www. w3 . org /2001/XMLSchema#in t e g e r > .

A fragment of the ontology of the car rental domain node is shown in the
next example. It also contains information about its customer ”John Doe”.

Example 11.3 (Car Rental Company)
@pre f i x r d f : <h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#>.
@pre f i x r d f s : <h t t p ://www. w3 . org /2000/01/ rd f−schema#>.
@pre f i x owl : <h t t p ://www. w3 . org /2002/07/ owl#>.
@pre f i x car s :

<h t t p ://www. semwebtech . org /domains /2006/ i ndu s t r y / cars#>.
@pre f i x vw :

<h t t p ://www. semwebtech . org /domains /2006/ i ndu s t r y / cars /vw/>.
@pre f i x audi :

<h t t p ://www. semwebtech . org /domains /2006/ i ndu s t r y / cars / audi />.
@pre f i x f o a f : <h t t p :// xmlns . com/ f o a f /0.1/ > .
@pre f i x : <f oo :// b l a />.

: Branch a owl : C las s .
: O f f e r a owl : C las s .
: has−branch r d f s : range : Branch .
: has−o f f e r r d f s : domain : Branch ; r d f s : range : O f f e r .
: currentContractNumber

a owl : Data typeProper ty ;
r d f s : range <h t t p ://www. w3 . org /2001/XMLSchema#in t e g e r > .

: model r d f s : range car s : Model .
[a t r a v e l : car−r e n t a l ;

: has−branch : f r an k f u r t , : munich , : par i s , : london , : l i s b o n] .

150 CHAPTER 11. APPLICABILITY

: wiesbaden
t r a v e l : l o c a t e d
<h t t p ://www. semwebtech . org /mondial /10/ c oun t r i e s /D/ prov in c e s /\

Hessen/ c i t i e s /Wiesbaden/> ;
: has−o f f e r

[: model vw : g o l f ; : p r i c e 60] ,
[: model audi :A4 ; : p r i c e 80] ,
[: model audi :A6 ; : p r i c e 1 0 0] .

vw : g o l f car s : c l a s s car s :B.
vw : pa s s a t car s : c l a s s car s :C.
audi :A4 cars : c l a s s car s :C.
audi :A6 cars : c l a s s car s :D.

[a f o a f : Person ; f o a f : name ”John Doe” ;
f o a f : mbox <mai l t o : john@doe . nop>;
: name <h t t p :// example . org#JohnDoe> ;
: r en t a l −car−max−p r i c e 60 ;
: owns−car vw : g o l f , vw : pa s s a t] .

Besides the ontologies, which have been presented, the rule definitions are
the most important component in the specification of the scenario.

11.3 Rule Specifications

From the existing direct flight connections (which are given as facts to the know-
ledge base) all possible connected flights between the airports are calculated in
a hybrid reasoning process using an F-Logic programme (see Example 11.15).
Now the node can be queried for connections between arbitrary cities which are
served by the airline company. The connection which is returned is always the
fastest (the calculation of the duration of a flight includes the waiting time be-
tween two flights at an airport). In case that a flight is fully booked, information
about alternative flights is also available.

In the following the rules of the application domain are described. Figure
11.3 gives an overview on how these rules interact by use of actions and events.

The booking of a flight can be achieved by sending an action (travel:flight-
booking) to the domain node which becomes mapped by the following ACA rule
to a knowledge base update:

Example 11.4 (ACA rule: flight-booking)
import module namespace

t r a v e l = ” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”
at ” h t t p :// l o c a l h o s t :8080/ domain−node/aca/modules / t r a v e l ” ;

f o r $book ing in // t r a v e l : f l i g h t −book ing
l e t $ f l i g h t := $book ing / t r a v e l : f l i g h t
l e t $person := $book ing / t r a v e l : pa s senger
r e tu rn
<rd fu : c ond i t i on

xmlns : rd fu=”h t t p ://www. semwebtech . org / l anguage s /2006/ rd f upda t e#”
xmlns : r d f=”h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#”
xmlns : t r a v e l=”h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”
rd fu : ask=”& l t ;{ $ f l i g h t }&g t ; a t r a v e l : s e r v e d f l i g h t .

& l t ;{ $ f l i g h t }&g t ; t r a v e l : hasBookings ? book ing .
& l t ;{ $ f l i g h t }&g t ; t r a v e l : hasF l i gh tNo ?con .

11.3. RULE SPECIFICATIONS 151

ECA Engine

eca-flight-booking

eca-car-preres.

eca-choose-car

eca-cancel-preres.

Airline Domain Node

aca-add-flight-booking

trigger-raise-event

OntoRent Domain Node

aca-prereserve-car

trigger-start-decision-period

aca-confirm-prereservation

aca-cancel-prereservation

Event

book-flight

Action

flightBooking

Event

flightBooked

Action

prereserve

car

Event

car-preres.

Action

confirm

car-preres.

Event

Decision

Required

Action

cancel

preres.

Figure 11.3: Interaction of Rules, Actions and Events in the Travel Scenario

?con r d f : t ype t r a v e l : F l i g h t .
?con t r a v e l : withType ? typ .
? typ i a t a : p e r s on capa c i t y ? cap .
FILTER (? book ing & l t ; ? cap) .

”>

<rd fu : i n s e r t
xmlns : r d f=”h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#”
xmlns : rd fu=”h t t p ://www. semwebtech . org / l anguage s /2006/ rd f upda t e#”>

<r d f : s u b j e c t r d f : about=”{ $ f l i g h t }”/>

<r d f : p r e d i c a t e r d f : about=
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#hasBooking”/>

<r d f : o b j e c t r d f : about=”{$person}”/>

</rd fu : i n s e r t >

</rd fu : cond i t i on >

The condition of this ACA rule evaluates a test whether the requested flight
still has available seats (by comparing the amount of bookings so far to the
capacity of the airplane that is used for that flight). If there are any spare seats
a travel:hasBooking statement is inserted for the combination of that flight and

152 CHAPTER 11. APPLICABILITY

passenger.
In addition to that ACA rule there are two triggers which react on insertions

of travel:hasBooking (the insert operation is seen as an event on the level of the
application). The first trigger (Example 11.5) refreshes the travel:hasBookings
counter for each flight that received a new booking:

Example 11.5 (Trigger: add-booking)
CREATE TRIGGER add− f l i g h t −book ing
ON INSERTION OF

h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#hasBooking
WHEN SELECT (count ($b) as $book ing s) $o l d b oo k i n g s

WHERE {
<$new . s u b j e c t >

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#hasBooking> $b .
<$new . s u b j e c t >

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#hasBookings>

$o l d b oo k i n g s .
} group by $o l d b oo k i n g s

DO
BEGIN
update ($new . s u b j e c t ,

h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#hasBookings ,
$o l d b oo k i n g s)
s e t o b j e c t = $book ing s ;

END;

The second trigger (Example 11.6) raises an event for every single booked flight:

Example 11.6 (Trigger: raise booked-seat event)
CREATE TRIGGER ra i s e−booked−sea t−even t
ON INSERTION OF
h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#hasBooking
WHEN SELECT ? f l i g h tN o ? da te
WHERE {
<$new . s u b j e c t > a
<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#s e r v e d f l i g h t >.
<$new . s u b j e c t >

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#hasFl igh tNo> ?con .
<$new . s u b j e c t >

<h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#hasDate> ? da te .
?con <h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#f l i g h tNo >

? f l i g h tN o . }
DO
BEGIN
r a i s e even t (
< t r a v e l : f l i g h tBo o k e d xmlns : t r a v e l=

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”>
< t r a v e l : f l i g h tNo >? f l i g h tNo </ t r a v e l : f l i g h tNo >

< t r a v e l : passenger>$new . o b j e c t </ t r a v e l : passenger>

< t r a v e l : date >?date </ t r a v e l : date>

</ t r a v e l : f l i g h tBook ed >

) ;
END;

In order to allow for the booking of a flight between two airports an ECA rule
is registered at the ECA engine:

11.3. RULE SPECIFICATIONS 153

Example 11.7 (ECA-rule: book flight)
<eca : Rule xmlns : eca=

” h t t p ://www. semwebtech . org / l anguage s /2006/ eca−ml#”>
<eca : Event bind−to−v a r i a b l e=”book ing”>

<xqm : Event xmlns : xqm=
” h t t p ://www. semwebtech . org / l anguage s /2006/ xmlq l#”>
< t r a v e l : book− f l i g h t xmlns : t r a v e l

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”>
< t r a v e l : person >{$Person}</ t r a v e l : person>

< t r a v e l : from>{$From}</ t r a v e l : from>

< t r a v e l : to >{$To}</ t r a v e l : to>

< t r a v e l : date >{$Date}</ t r a v e l : date>

</ t r a v e l : book− f l i g h t >

</xqm : Event>
</eca : Event>
<eca : Query>

<eca : Opaque
u r i=”h t t p :// swan01 . i n f o rma t i k . uni−g o e t t i n g e n . de :8080/ domain\

−node/ r d f s e r v e r / a c t i o n s ” eca : method=”pos t”>
<eca : has−input−v a r i a b l e name=”From” use=”$From”/>

<eca : has−input−v a r i a b l e name=”To” use=”$To”/>

<eca : has−input−v a r i a b l e name=”Date” use=”$Date”/>

< ! [CDATA[
<app lnode : query xmlns : app lnode=

” h t t p ://www. semwebtech . org /2006/ app l i c a t i o n −node#”
spar q l−query=
”PREFIX xsd : & l t ; h t t p ://www. w3 . org /2001/XMLSchema#&g t ;
SELECT ? connec t ion ? fdep ? f a r r ? f f rom ? f t o

?dep ? arr ? dura t i on
WHERE {

? f l i g h t a t r a v e l : Connec t edF l i gh t .
? f l i g h t t r a v e l : from ?from .
? f l i g h t t r a v e l : from ? fromuri .
? f romuri i a t a : code $From .
? f l i g h t t r a v e l : t o ? t o u r i .
? t o u r i i a t a : code $To .
? f l i g h t t r a v e l : d epar tu r e ?dep .
? f l i g h t t r a v e l : a r r i v a l ? arr .
? f l i g h t t r a v e l : h a sF l i g h t ? f l i g h tN o .
? f l i g h t t r a v e l : dura t i on ? dura t i on .
? f l i g h tN o t r a v e l : d epar tu r e ? fdep .
? f l i g h tN o t r a v e l : a r r i v a l ? f a r r .
? f l i g h tN o t r a v e l : from ? f from .
? f l i g h tN o t r a v e l : t o ? f t o .
? connec t ion a t r a v e l : s e r v e d f l i g h t .
? connec t ion t r a v e l : hasF l i gh tNo ? f l i g h tN o .
? connec t ion t r a v e l : hasDate $Date .

}”/>]]>
</eca : Opaque>

</eca : Query>

<eca : Action>

<xqm : Action xmlns : xqm=
” h t t p ://www. semwebtech . org / l anguage s /2006/ xmlq l#”>

<eca : has−input−v a r i a b l e name=”Person”/>

<eca : has−input−v a r i a b l e name=”Date”/>

<eca : has−input−v a r i a b l e name=”connec t ion”/>

<eca : has−input−v a r i a b l e name=”fdep”/>

<eca : has−input−v a r i a b l e name=” f a r r ”/>

<eca : has−input−v a r i a b l e name=”f from”/>

<eca : has−input−v a r i a b l e name=” f t o ”/>

< t r a v e l : f l i g h t −book ing xmlns : t r a v e l=
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”>

154 CHAPTER 11. APPLICABILITY

< t r a v e l : passenger >{$Person}</ t r a v e l : passenger>

< t r a v e l : date >{$Date}</ t r a v e l : date>

< t r a v e l : f l i g h t >{$connec t ion}</ t r a v e l : f l i g h t >

< t r a v e l : depar ture >{$ f d ep}</ t r a v e l : depar ture>

< t r a v e l : a r r i v a l >{$ f a r r }</ t r a v e l : a r r i v a l >

< t r a v e l : from>{$ f f rom}</ t r a v e l : from>

< t r a v e l : to >{ $ f t o }</ t r a v e l : to>

</ t r a v e l : f l i g h t −booking>

</xqm : Action>

</eca : Action>

</eca : Rule>

This rule fires upon receiving an event of the following kind:

Example 11.8 (book-flight event)
< t r a v e l : book− f l i g h t

xmlns : t r a v e l=”h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”>
< t r a v e l : person ><![CDATA[h t t p :// example . org#JohnDoe]] >

</ t r a v e l : person>

< t r a v e l : from ><![CDATA[& quot ;SFO" ;]]> </ t r a v e l : from>

< t r a v e l : to ><![CDATA[& quot ;FRA" ;]]> </ t r a v e l : to>

< t r a v e l : date ><![CDATA[& quot ;20081010& quot ;ˆˆ xsd : i n t e g e r]] >

</ t r a v e l : date>

</ t r a v e l : book− f l i g h t >

The condition part of the ECA rule sends a query to the airline domain node
asking for a travel:ConnectedFlight between the two airports that are given in
the event. If there is such a flight connection, the domain node will return a
result tuple for each necessary flight (from San Francisco to Frankfurt, there
are two flights necessary: San Francisco-Denver, Denver-Frankfurt). The action
part of the ECA rule sends a travel:flight-booking action to the airline domain
node for every result tuple.

The ACA rule in Example 11.4 translates the travel:flight-booking action into
a knowledge base update: a seat for the flight is booked, causing the trigger from
Example 11.6 to raise a travel:flightBooked event.

There is another ECA rule which serves the purpose of a car pre-reservation:

Example 11.9 (ECA-rule: car pre-reservation)
<eca : Rule

xmlns : eca=”h t t p ://www. semwebtech . org / l anguage s /2006/ eca−ml#”>
<eca : Event bind−to−v a r i a b l e=”book ing”>

<xqm : Event
xmlns : xqm=”h t t p ://www. semwebtech . org / l anguage s /2006/ xmlq l#”>
< t r a v e l : f l i g h tBo o k e d xmlns : t r a v e l=

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”>
< t r a v e l : passenger >{$Person}</ t r a v e l : passenger>

< t r a v e l : to >{$To}</ t r a v e l : to>

< t r a v e l : date >{$Date}</ t r a v e l : date>

</ t r a v e l : f l i g h tBook ed >

</xqm : Event>
</eca : Event>

<eca : Query>

<eca : Opaque eca : method=”pos t ”
u r i=”h t t p :// swan02 . i n f o rma t i k . uni−g o e t t i n g e n . de :8080/\

domain−node/ r d f s e r v e r / a c t i o n s”>

11.3. RULE SPECIFICATIONS 155

<eca : has−input−v a r i a b l e name=”To” use=”$To”/>

<eca : has−input−v a r i a b l e name=”Person” use=”$Person”/>

< ! [CDATA[
<app lnode : query xmlns : app lnode=

” h t t p ://www. semwebtech . org /2006/ app l i c a t i o n −node#”
spar q l−query=”

PREFIX ontoren t :
& l t ; h t t p ://www. semwebtech . org /domains /2006/ t r a v e l /\

onto−r en t/&g t ;
s e l e c t (? model as ? Ava i l a b l eCar) ? p r i c e ? t o c i t y ?cn

where {
?p a f o a f : Person .
?p & l t ; f oo :// b l a /name&g t ; & l t ; $Person&g t ; .
?p & l t ; f oo :// b l a /owns−car&g t ; ? car .
? car car s : c l a s s ? c l a s s .
?x a on to ren t : Branch .
?x on to ren t : has−o f f e r : o .
?x t r a v e l : l o c a t e d ? t o c i t y .
& l t ; $To&g t ; i a t a : n ea r e s tC i t y ? t o c i t y .

: o on to ren t : model ?model .
?model car s : c l a s s ? c l a s s .
: o on to ren t : p r i c e ? p r i c e .

on to ren t : s t a t i s t i c s on to ren t : currentContractNumber
?cn .}” />

]] >

</eca : Opaque>

</eca : Query>

<eca : Query eca : bind−to−v a r i a b l e=”newcn”>

<eca : Opaque eca : l anguage=”h t t p ://www. w3 . org /XQuery”>

<eca : has−input−v a r i a b l e eca : name=”cn”/>

l e t $c := fn : sum(($cn , 1))
r e tu rn $c c a s t as xs : i n t

</eca : Opaque>

</eca : Query>

<eca : Action>

<xqm : Action xmlns : xqm=”h t t p ://www. semwebtech . org / l anguage s /\
2006/ xmlq l#”>

<eca : has−input−v a r i a b l e name=”Person”/>

<eca : has−input−v a r i a b l e name=”Ava i l a b l eCar”/>

<eca : has−input−v a r i a b l e name=”cn”/>

<eca : has−input−v a r i a b l e name=”Date”/>

< t r a v e l : p r e r e s e r v e−car xmlns : t r a v e l=
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”>

< t r a v e l : person >{$Person}</ t r a v e l : person>

< t r a v e l : car>{$Ava i l a b l eCar}</ t r a v e l : car>

< t r a v e l : c i t y >{ $ t o c i t y }</ t r a v e l : c i t y >

< t r a v e l : p r i ce >{$p r i c e }</ t r a v e l : p r i ce >

< t r a v e l : date >{$Date}</ t r a v e l : date>

< t r a v e l : cn>{$newcn}</ t r a v e l : cn>

</ t r a v e l : p r e r e s e r v e−car>

</xqm : Action>

</eca : Action>

</eca : Rule>

As soon as the ECA engine receives a travel:flightBooked event the second
domain node is needed: the car-rental domain node. This domain node repre-
sents a car-rental company with several branches at selected airports or nearby
cities. Each branch has a set of available cars at specific prices. The purpose
of this node is, similar as with the airline domain node, to demonstrate the

156 CHAPTER 11. APPLICABILITY

capabilities of the rule driven architecture of Swan and Mars rather than to
implement a real-world business application (although it can easily be extended
for such a purpose). The domain node does not store information about single
cars that are being booked or pre-reserved. Instead, all reservations are realised
by adding a statement for the types of cars being reserved for a certain contract
number. As there is no limit to such statements about a car type, there is also
no limit to the availability of cars. In a more sophisticated application, there
would be a booking object with information about contract, car-number, price,
and date.

The car-rental company shares part of the domain knowledge with the air-
line domain node as both make use of the travel ontology. The domain node
also knows about existing airports and where they are located at. Hereby corre-
sponding branch offices of the OntoRent company and airports can be matched
(e.g. the airport in Frankfurt and the car-rental branch in Wiesbaden).

Once the ECA engine receives a travel:flightBooked event, the car-rental do-
main node is queried for suitable cars. In this scenario the car rental domain
node has access to details about registered customers with regard to their prefer-
ences. It is known, for example that John Doe owns a vw:Golf and a vw:Passat.
It is assumed that a customer wants to rent a car of the same kind that he
owns. Therefore, the query asks for cars belonging to the same class as the one
that the customer owns, available in the car-rental branch of the city that is
next to the destination airport1. If John Doe travels to Frankfurt there would
be two types of cars suitable for him: a VW Golf and an Audi A4. For both
of them a pre-reservation would be made from which he can choose. These
pre-reservations are, again, realised by an ACA rule:

Example 11.10 (ACA-rule: Car pre-reservation)
import module namespace
t r a v e l = ” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”

at ” h t t p :// l o c a l h o s t :8080/ domain−node/aca/modules / t r a v e l ” ;
f o r $ r e s e r v a t i o n in // t r a v e l : p r e r e s e r v e−car
l e t $car := $ r e s e r v a t i o n / t r a v e l : car
l e t $person := $ r e s e r v a t i o n / t r a v e l : person
l e t $from := $ r e s e r v a t i o n / t r a v e l : c i t y
l e t $p r i c e := $ r e s e r v a t i o n / t r a v e l : p r i c e
l e t $cn := $ r e s e r v a t i o n / t r a v e l : cn
l e t $date := $ r e s e r v a t i o n / t r a v e l : da te
r e tu rn
<rd fu : c ond i t i on xmlns : rd fu=

” h t t p ://www. semwebtech . org / l anguage s /2006/ rd f upda t e#”
xmlns : r d f=”h t t p ://www.w3 . org /1999/02/22− rd f−syntax−ns#”
xmlns : t r a v e l=”h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”
xmlns : on to ren t=”h t t p ://www. semwebtech . org /domains /2006/ t r a v e l /\

onto−r en t#”
rd fu : ask=
” p r e f i x on to ren t :
& l t ; h t t p ://www. semwebtech . org /domains /2006/ t r a v e l /\

onto−r en t/&g t ;
ASK{{

?x t r a v e l : l o c a t e d & l t ;{ $from}&g t ; .
?x on to ren t : has−o f f e r : o .
: o on to ren t : model & l t ;{ $car}&g t ;

1Actually, the car pre-reservation is done for every intermediate airport on a connected
flight, but only at the destination airport there will be a confirmation of a pre-reservation.

11.3. RULE SPECIFICATIONS 157

}}”>

<rd fu : i n s e r t
xmlns : r d f=”h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#”
xmlns : rd fu=

” h t t p ://www. semwebtech . org / l anguage s /2006/ rd f upda t e#”>
<r d f : s u b j e c t r d f : about=”{$car / t e x t ()}”/>

<r d f : p r e d i c a t e
r d f : about=”h t t p ://www. semwebtech . org /domains /\

2006/ t r a v e l /onto−r en t / p r e r e s e r v e d f o r ”/>

<r d f : o b j e c t r d f : about=”{$cn/ t e x t ()}”/>

</rd fu : i n s e r t >

<app lnode : ra i s e−event>

< t r a v e l : c a r p r e r e s e r v a t i o n >

< t r a v e l : person >{$person / t e x t ()}</ t r a v e l : person>

< t r a v e l : l o c a t i on >{$from/ t e x t ()}</ t r a v e l : l o c a t i on >

< t r a v e l : ca r t ype >{$car / t e x t ()}</ t r a v e l : ca r t ype >

< t r a v e l : p r i ce >{$p r i c e / t e x t ()}</ t r a v e l : p r i ce >

< t r a v e l : date >{$date / t e x t ()}</ t r a v e l : date>

< t r a v e l : contractNumber >{$cn/ t e x t ()}</ t r a v e l : contractNumber>

</ t r a v e l : c a r p r e r e s e r v a t i o n >

</app lnode : ra i s e−event>

</rd fu : cond i t i on >

This ACA rule has two actions as consequences: firstly, the pre-reservation
is inserted into the knowledge base. Secondly, a travel:car prereservation event
is raised. Besides the raising of the event by the ACA rule there is another
reaction in the knowledge base: a trigger fires upon the event of an insertion of
a statement with the predicate ontorent:prereserved for:

Example 11.11 (Trigger: Car pre-reservation)
CREATE TRIGGER t e s t t r i g g e r 0 0 7
ON INSERTION OF h t t p ://www. semwebtech . org /domains /\

2006/ t r a v e l /onto−r en t / p r e r e s e r v e d f o r
DO
BEGIN
r a i s e even t (
< t r a v e l : Dec i s ionRequ i red

xmlns : t r a v e l=”h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”
ca r t y p e=”$new . s u b j e c t ”
contractNumber=”$new . o b j e c t ” />

) ;
END;

As it was shown with the rules above, a car-pre-reservation has, as a con-
sequence, two events: the travel:car prereservation event and the travel:decision-
Required event. This ECA rule causes all pre-reservations to be cancelled after
a specified time (here 24h):

Example 11.12 (ECA-rule: Cancel car-pre-reservation)
<eca : Event>
<xqm : Event xmlns : xqm=

” h t t p ://www. semwebtech . org / l anguage s /2006/ xmlq l#”
xmlns : t r a v e l=”h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”>
< t r a v e l : Dec i s ionRequ i red

contractNumber=”{$Cn}” c a r t y p e=”{$Car}” />

</xqm : Event>
</eca : Event>
<eca : Act ion xmlns : xqm=

” h t t p ://www. semwebtech . org / l anguage s /2006/ xmlq l#”>

158 CHAPTER 11. APPLICABILITY

<eca : has−input−v a r i a b l e name=”Cn” />

<eca : has−input−v a r i a b l e name=”Car” />

<xqm : Action xmlns : t r a v e l=
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”>

<ccs : Sequence xmlns : ccs=
” h t t p ://www. semwebtech . org / l anguage s /2006/ ccs#”>

<ccs : S l e ep ccs : hours=”24”/>

< t r a v e l : cance l−car−p r e r e s e r v a t i o n
contractNumber=”{$Cn}” car=”{$Car}”/>

</ccs : Sequence>

</xqm : Action>

</eca : Action>

</eca : Rule>

All pre-reservations that have not been confirmed before the timeout will be
cancelled by a travel:cancel-car-prereservation action that is sent to the domain
node. This ECA rule is registered at the ECA engine by the car-rental domain-
node itself. Additionally, there is another ECA rule, which becomes registered
by the customer:

Example 11.13 (ECA-rule: Choose car)
<eca : Rule xmlns : eca=

” h t t p ://www. semwebtech . org / l anguage s /2006/ eca−ml#”
xmlns : t r a v e l=”h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”>
<eca : i n i t i a l i z e −v a r i a b l e eca : name=”d e s t i n a t i o n”>

h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a / a i r p o r t s /\
Germany/ Frank fur t / F r an k f u r t I n t e r n a t i o n a l A i r p o r t

</eca : i n i t i a l i z e −v a r i a b l e >

<eca : i n i t i a l i z e −v a r i a b l e eca : name=”name”>

h t t p :// example . org#JohnDoe
</eca : i n i t i a l i z e −v a r i a b l e >

<eca : Event>
<xqm : Event xmlns : xqm=

” h t t p ://www. semwebtech . org / l anguage s /2006/ xmlq l#”>
< t r a v e l : f l i g h tBook ed >

< t r a v e l : f l i g h tNo >{$ f l i g h tNo }</ t r a v e l : f l i g h tNo >

< t r a v e l : passenger >{$name}</ t r a v e l : passenger>

< t r a v e l : date >{$date}</ t r a v e l : date>

< t r a v e l : to >{$ d e s t i n a t i o n }</ t r a v e l : to>

</ t r a v e l : f l i g h tBook ed >

</xqm : Event>
</eca : Event>
<eca : Action>

<ccs : Sequence xmlns : ccs=
” h t t p ://www. semwebtech . org / l anguage s /2006/ ccs#”>

<ccs :TopK ccs : topk=”1” ccs : t h r e s h o l d =”1000”
ccs : con t inue=” f a l s e ” ccs : wa i t =”3600000”
ccs : t ype=”xsd : i n t e g e r ” ccs : order=”asc”>

<ccs : mapfunction>

<ccs : Query>

<eca : Opaque eca : l anguage=”h t t p ://www.w3 . org /XPath”>

<eca : has−input−v a r i a b l e eca : name=”p r i c e ”/>

< ! [CDATA[$p r i c e]] >

</eca : Opaque>

</ccs : Query>

</ccs : mapfunction>

<ccs : Event ccs : con t inuous=”t rue”>

<xqm : Event xmlns : xqm=
” h t t p ://www. semwebtech . org / l anguage s /2006/ xmlq l#”>

< t r a v e l : c a r p r e r e s e r v a t i o n >

< t r a v e l : person >{$name}</ t r a v e l : person>

11.3. RULE SPECIFICATIONS 159

< t r a v e l : l o c a t i on >{ $ c i t y }</ t r a v e l : l o c a t i on >

< t r a v e l : ca r t ype >{$car}</ t r a v e l : ca r t ype >

< t r a v e l : p r i ce >{$p r i c e }</ t r a v e l : p r i ce >

< t r a v e l : contractNumber >{$contractNumber }
</ t r a v e l : contractNumber>

< t r a v e l : date >{$date}</ t r a v e l : date>

</ t r a v e l : c a r p r e r e s e r v a t i o n >

</xqm : Event>
</ccs : Event>

</ccs :TopK>

<xqm : Action xmlns : xqm=
” h t t p ://www. semwebtech . org / l anguage s /2006/ xmlq l#”>

<ccs : has−input−v a r i a b l e ccs : name=”car”/>

<ccs : has−input−v a r i a b l e ccs : name=”contractNumber”/>

< t r a v e l : confirm−car−p r e r e s e r v a t i o n
contractNumber=”{$contractNumber }” c a r t y p e=”{$car}”/>

</xqm : Action>

</ccs : Sequence>

</eca : Action>

</eca : Rule>

This rule automises the decision procedure and should be registered by the
customer before sending the travel:book-flight event at the beginning of the book-
ing process. The rule is triggered by a travel:flightBooking event where name
and destination match the values given in the initialisation variables of the rule.
The action part consists of a CCS process which collects, after the detection
of the travel:flightBooked event, for the duration of one hour (specified with
the ccs:wait attribute) all travel:car prereservation events and chooses that one
with the lowest price. Finally a travel:confirm-car-prereservation action is sent to
the car-rental domain-node, which is mapped by the following ACA rule to a
knowledge base update:

Example 11.14 (ACA: Confirm car pre-reservation)
import module namespace t r a v e l =

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#”
at ” h t t p :// l o c a l h o s t :8080/ domain−node/aca/modules / t r a v e l ” ;

f o r $conf irm in // t r a v e l : confirm−car−p r e r e s e r v a t i o n
l e t $contractNumber := $conf irm/@contractNumber
l e t $car := $conf irm/@car type
re tu rn
<rd fu : update

xmlns : r d f=”h t t p ://www. w3 . org /1999/02/22− rd f−syntax−ns#”
xmlns : rd fu=

” h t t p ://www. semwebtech . org / l anguage s /2006/ rd f upda t e#”>
<r d f : s u b j e c t r d f : about=”{$car}”/>

<r d f : p r e d i c a t e r d f : about=”h t t p ://www. semwebtech . org /domains /\
2006/ t r a v e l /onto−r en t / p r e r e s e r v e d f o r ”/>

<r d f : o b j e c t r d f : about=”{$contractNumber}”/>

<rd fu : se t >

<r d f : p r e d i c a t e r d f : about=”h t t p ://www. semwebtech . org /domains /\
2006/ t r a v e l /onto−r en t / r e s e r v e d f o r ”/>

</rd fu : se t >

</rd fu : update>

This ACA rule simply updates the predicate of the pre-reservation-statement
such that it is now a reservation statement.

160 CHAPTER 11. APPLICABILITY

F-Logic Programme
The domain node representing the airline company uses a flight plan in

which direct flight connections between airports are defined, e.g. San Francisco
→ Denver. By use of hybrid reasoning all possible connections between pairs
of airports can be calculated, e.g. San Francisco → Denver → Frankfurt. The
F-Logic programme creates connected flight objects by concatenating the names
of the departure and destination airports of two flights (either simple or con-
nected flights). By appending further simple flights to a connected flight, longer
connected flights are created until eventually all possible connections between
airports are constructed. If two airports are to be connected by more than one
connected flight only the one with the shorter flight duration is chosen. The du-
ration of a connected flight is calculated by adding the time of the constituting
flights plus the waiting time at the intermediate airports.

Note that this construction of new flights (or new objects in general) would
not be possible in OWL or by the use of the built-in rule engines of Jena.
Although the owl:transitiveProperty allows to deduce that San Francisco is con-
nected with Frankfurt it is not possible to assign properties to such connec-
tions. Furthermore, F-Logic reasoning allows for stratification. For operations
on cyclic graphs a fixpoint computation is necessary. This, however, is not pos-
sible with the in-built rule engines that come with the programming framework
Jena. Hence, the built-in reasoning engines of Jena would fail because of the
cycles in the flight plan (see Figure 11.2).

Example 11.15 (F-Logic: connected flights)
%% −−
%% Rule 1 : connect s imp l e f l i g h t s
%% −−

Z : c onne c t e dF l i g h t [
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#from”−>> A ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#to”−>> C ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#ha sF l i g h t”−>> X ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#ha sF l i g h t”−>> Y ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#depar tu r e”−>> S ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#a r r i v a l ” −>> T ;

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#dura t i on ” −>> DZ ;
i sFa s t e s t −>>”t rue ”] ,
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#ha sF l i g h t ” : ur l ,
Z : u r l
:−
X:” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#F l i g h t ” ,
Y:” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#F l i g h t ” ,
X[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#from”−>>A] ,
X[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#to”−>>B] ,
X[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#depar tu r e”−>>S] ,
Y[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#from”−>>B] ,
Y[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#to”−>>C] ,
Y[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#a r r i v a l”−>>T] ,
A[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a /meta#name”

−>>AN] ,
B[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a /meta#name”

−>>BN] ,
C[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a /meta#name”

−>>CN] ,
not A = C,
X[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#dura t i on”−>>DX] ,
Y[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#dura t i on”−>>DY] ,

11.3. RULE SPECIFICATIONS 161

pause (X,Y,DP) ,
DZ = DX + DY + DP,
s t r c a t (” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l #”,AN, Z1) ,
s t r c a t (Z1 ,”/” , Z2) , s t r c a t (Z2 ,BN, Z3) ,
s t r c a t (Z3 ,”/” , Z4) , s t r c a t (Z4 ,CN,Z) .

%% −−
%% Rule 2 : append s imp l e f l i g h t s to e x i s t i n g connected f l i g h t s
%% −−

Z : c onne c t e dF l i g h t
[
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#from”−>> A ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#to”−>> C ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#ha sF l i g h t”−>> XF ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#ha sF l i g h t”−>> Y ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#depar tu r e”−>> S ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#dura t i on ” −>> DZ ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#a r r i v a l ” −>> T ;
i sFa s t e s t −>>”t rue ”
] ,
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#ha sF l i g h t ” : ur l ,
Z : u r l
:−
X: conne c t e dF l i g h t ,
not X[i sFa s t e s t −>>” f a l s e ”] ,
Y:” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#F l i g h t ” ,
X[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#from”−>>A] ,
X[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#ha sF l i g h t ”

−>> XF] ,
X[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#to”−>>B] ,
X[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#depar tu r e”−>>S] ,
Y[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#from”−>>B] ,
Y[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#to”−>>C] ,
Y[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#a r r i v a l”−>>T] ,
C[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l / i a t a /meta#name”

−>>CN] ,
not s u b s t r (CN,X) ,
X[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#dura t i on”−>>DX] ,
Y[” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#dura t i on”−>>DY] ,
pause (X,Y,DP) ,
DZ = DX + DY + DP,
s t r c a t (X,”/” , Z1) , s t r c a t (Z1 ,CN,Z) .

%% −−
%% Rule 3 : a l l connected f l i g h t s w i th l on g e r du ra t i on s are
%% marked as not b e ing f a s t e s t
%% −−

A[i sFa s t e s t −>>” f a l s e ”]
:−
A: conne c t e dF l i g h t
[
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#dura t i on”−>> DA;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#from”−>>F;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#to”−>>T
]
,
B : c onne c t e dF l i g h t
[
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#dura t i on”−>> DB ;
” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#from”−>>F;

162 CHAPTER 11. APPLICABILITY

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#to”−>>T
] ,
DA > DB .

%% −−
%% Rules 4−8 : g e t t h e hour and minute pa r t s o f t ime va l u e s
%% (which are g i v en as dec ima l s as one o f
%% #HH.MM, #HH.M or ”HH.MM+1”
%% −−

hour (X,Y,H):−
X[Y−>>D] ,
not s t r i n g (D) ,
s t r c a t (”\”” ,D,D1) , s t r c a t (D1,”\”” ,DD) ,
pmatch (DD, ”/([0 −9]∗)\ . /” , ”$1 ” , DH) ,
s t r i n g 2 i n t e g e r (DH,H) .

hour (X,Y,H):−
X[Y−>> D] ,
s t r i n g (D) ,
Y=”h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#a r r i v a l ” ,
pmatch (D , ”/([0 −9]∗)\ . /” , ”$1 ” , DH) ,
s t r i n g 2 i n t e g e r (DH,H) .

minute (X,Y,M):−
X[Y−>>D] ,
not s t r i n g (D) ,
s t r c a t (”\”” ,D,D1) , s t r c a t (D1,”\”” ,DD) ,
pmatch (DD, ”/\ . ([0 −9]{2})/” , ”$1 ” , DH) ,
s t r i n g 2 i n t e g e r (DH,M) .

minute (X,Y,M):−
X[Y−>>D] ,
not s t r i n g (D) ,
s t r c a t (”\”” ,D,D1) , s t r c a t (D1,”\”” ,DD) ,
pmatch (DD, ”/\ . ([0 −9]{1}\D)/” , ”$1 ” , DH) ,
s t r i n g 2 i n t e g e r (DH,MT) ,
M = MT ∗ 10 .

minute (X,Y,M):−
X[Y−>> D] ,
s t r i n g (D) ,
Y=”h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#a r r i v a l ” ,
pmatch (D , ”/\ . ([0 −9]∗)/” , ”$1 ” , DH) ,
s t r i n g 2 i n t e g e r (DH,M) .

%% −−
%% Rules 9+10 : Ca l c u l a t e t he amount o f t ime between a r r i v a l o f
%% f l i g h t X and depar tu r e o f f l i g h t Y
%% −−

pause (X,Y,HH) :−
hour (X,

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#a r r i v a l ” ,XAH) ,
hour (Y,

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#depar tu r e ” ,YDH) ,
minute (X,

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#a r r i v a l ” ,XAM) ,
minute (Y,

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#depar tu r e ” ,YDM) ,
YDH < XAH,
MM = YDM − XAM,

11.4. SUMMARY 163

HH = (YDH − XAH + 24) ∗ 60 + MM .

pause (X,Y,HH) :−
hour (X,

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#a r r i v a l ” ,XAH) ,
hour (Y,

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#depar tu r e ” ,YDH) ,
minute (X,

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#a r r i v a l ” ,XAM) ,
minute (Y,

” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#depar tu r e ” ,YDM) ,
YDH >= XAH,
MM = YDM − XAM,
HH = (YDH − XAH) ∗ 60 + MM.

%% −−
?− s y s . e v a l .
?− s y s . s t r a t . d o I t .
%% −−

%% −−
%% Rule 11 : Export on ly t ho s e connec t i ons t h a t are f a s t e s t
%% −−

X:” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#Connec t edF l i gh t ”
,” h t t p ://www. semwebtech . org /domains /2006/ t r a v e l#Connec t edF l i gh t ”
: u r l

:−
X: conne c t e dF l i g h t ,
not X[i sFa s t e s t −>>” f a l s e ”] .

%% −−
?− s y s . e v a l .
%% −−

The hybrid reasoning process has to be run only once during the initialisation
of the domain node. Florid then delivers instances of the newly introduced
concept travel:ConnectedFlight (which is also created and added to the concept
definitions in the DL TBox). Only in case that, at a later stage, new flight
connections are added to the knowledge base (which can be assumed to happen
very seldom) the hybrid reasoning process has to be started again. This can be
realised by use of a trigger like

ON CREATION OF INSTANCE OF CLASS t r a v e l : F l i gh t
DO BEGIN sta r t−f l o g i c −r ea son ing () ;
END;

11.4 Summary

The scenario shows how the Mars and Swan architectures interact by the use of
actions and events. Different types of rules are presented: ECA rules, ACA rules
and triggers. The overall concept is the event driven architecture. Interacting
with the framework is strictly different from usual web services. Instead of
calling a remote procedure of a web service, abstract definitions can be given.
Once the rules are defined and registered, the abstract action definitions can be
sent to the domain nodes. The vocabulary for these actions is defined by the
ontology of the application domain. For the user it is not necessary to know

164 CHAPTER 11. APPLICABILITY

how these actions are realised. Using the abstract vocabulary of the common
domain ontology it is possible to say what should be done (for example sending
an event travel:book-flight to the domain broker).

The application domain nodes as presented in the example have very limited
capabilities, as it was not the intention to demonstrate a fully-fledged application
node. Rather the idea is to show how the communication between Mars and
Swan using events and actions works and how abstract actions translate into
knowledge base updates. This approach can be extended to more complex
situations very easily, e.g. by defining behaviour for flight cancellations. This
ease of extensibility is one of the strong points of this architecture. Furthermore,
all process logic is put into rules. Along with a logical characterisation of the
rules it is possible to reason about the effects of events in the application domain.
This is a broad field for further investigations.

In the following chapter, the concepts that were presented in this work are
discussed and put into the context of related work.

Chapter 12

Discussion

12.1 Limitations of DL Reasoning

Some of the limits of Description Logics have already been discussed in the
context of OWL in Section 3.7. In the following the limits of DL reasoning in
real world applications are investigated.

The application domain that Description Logics were originally intended for
was ontology engineering, that is to design, construct, and maintain large con-
ceptual schemas [Hor98]. Later, with the advent of the Semantic Web, Descrip-
tion Logics were chosen for the logical foundation of the ontology description
language OWL DL. OWL provides the designer of an ontology with axioms
for the modelling of concepts, roles, and the relationships of individuals. The
constructors and axioms of DLs were widely explored at that time. With the
application of DL reasoning for the Semantic Web the power of that formalism
could be tested with very heterogeneous applications. With regard to ontologies
consisting of large TBoxes, DL reasoners indeed seem to be well suited [HO01].
But often applications have to handle queries over knowledge bases that are built
from small and simple TBoxes, but also include large ABoxes. This is where DL
reasoners reach their limits. The problem with ABox reasoning seems to arise
not so much from the computational complexity of ABox reasoning, but from
the fact that the number of individuals might be extremely large [HLTB04].

Many of the proposals that try to deal with the scalability problem of DL
ontologies are (re-)using techniques from database research. Here, the problem
of very large data sets was already explored intensively. But these findings
cannot be reused in the world of DL without certain restrictions. It must not
be forgotten that there is a gap between deductive databases and classical logical
inference. Furthermore, the handling of individuals is strictly different: Equality
of individuals can be inferred easily in DLs whereas the unique name assumption
in databases prevents it. As individuals with multiple given names are a typical
situation in the World Wide Web this is an important feature in DLs.

In [HLTB04] the authors use a relational database for the storage of ABox
data in combination with a DL reasoner for TBox data. However, they had to
put restrictions on the ABox such that only role-free instance data can be stored
(e.g. A isa B). Hereby, the system is capable of dealing with very large ABoxes
and allows for sound and complete answers to instance retrieval queries.

165

166 CHAPTER 12. DISCUSSION

Another solution has been proposed with the Kaon2 project [MS06]. The
authors refer to research in the field of deductive databases. They present an
algorithm that reduces a SHIQ knowledge base KB to a disjunctive datalog
programme DD(KB). This system turned out to perform well on knowledge
bases with simple TBoxes and large ABoxes whereas the performance for com-
plex TBox reasoning was in general worse compared to the performance of
sophisticated DL reasoners like Pellet, Racer, or FaCT++. Also the pres-
ence of equality expressions significantly influences the performance of Kaon2

badly.
In [MB08] a promising method for improved ABox reasoning was presented.

The authors completely separate ABox and TBox, the DL reasoner is used on
the TBox exclusively. OWL axioms expressing knowledge about ABox data
are translated into rules that are given, together with the ABox instances, to
a rule engine. The authors claim that the rule engine is able to achieve the
same deductions as the DL reasoner in considerably less time. Although the
application of rule systems as a supplement to DL reasoning is not novel at all,
the strict separation of DL reasoning for TBox and rule-based reasoning for the
ABox is new.

There are no ABox optimisations so far in Swan. Therefore the aforemen-
tioned restrictions have to be considered when ontologies with very large ABoxes
are used. See also the discussion in Section 12.4.

12.2 Application of Hybrid Reasoning

The Swan architecture integrates F-Logic reasoning in order to add some fea-
tures that are missing from DL reasoning. Some remarks towards these re-
strictions have already been made in Section 3.7 in reference to OWL. The
integration of F-Logic accomplishes to create new objects, to perform algebraic
calculations, to evaluate rules with fixpoint computation, and to apply default
inheritance. Although these supplementary deductions are very useful they do
not come for free. The computation of a fixpoint in alternating DL and F-Logic
reasoning can take some time, depending on the size of the ontology and the
complexity of the F-Logic programme. This is a tolerable restriction in a static
environment, where the hybrid ontology has to be computed only once. As long
as no further updates are to be expected and the (hybrid) knowledge base is
only used for answering queries, the duration of one run of the hybrid reasoning
process is not critical. The situation is different, though, if the knowledge base
is integrated dynamically and is subject to change. Depending on the frequency
of the updates, a hybrid reasoning process can become a bottleneck.

On this account, hybrid reasoning in Swan is not intended to be applied
continuously. Rather, it is designed to be run once in a while, e.g. during initial-
isation or upon critical updates. The hybrid reasoning engine integrates F-Logic
reasoning by translating the OWL knowledge base into an F-Logic programme
followed by a translation of the F-Logic programme (now including all F-Logic
deductions) back to OWL. A continuous hybrid reasoning process would have
to apply such a procedure once after each update to the knowledge base. As
long as updates are not expected frequently, this is no problem. But, the more
frequent updates are, the more likely it will be that the hybrid reasoning process
will limit the performance of the whole knowledge base.

12.3. PROBLEMS WITH DATATYPES 167

Often, however, it is sufficient to apply hybrid reasoning only from time
to time, depending on what parts of the knowledge base become updated. In
some situations it is possible to divide the assertional knowledge into dynamic
facts and static facts. This distinction can be arbitrary and depends strongly
on the ontology. Static facts are expected to change only scarcely whereas
dynamic facts change more often. Typically, static facts express knowledge
about dynamic facts. The ontology of the airline company, for example, consists
of terminological knowledge (concept and role definitions like airplane, flight-
connection) and instances to these concepts (e.g. simple flights, flight bookings).
F-Logic rules define how to derive further knowledge from existing facts (con-
nected flights from simple flights). Here, simple flights are considered static
facts: they change only once in a while, for example when the airline company
introduces a new flight connection between two cities. Flight bookings, however,
are dynamic facts and are updated more frequently.

Initially, a hybrid reasoning process is necessary. Unless no further updates
to the knowledge base perform any changes to the meta-facts (e.g. to the time
table or the flight base) there is no need for further hybrid reasoning. Updates
to normal facts (e.g. booking of a flight) are regular knowledge base updates
that do not need hybrid reasoning capabilities. Hybrid-reasoning on demand
can be realised with triggers as proposed with Example 9.21.

Hybrid reasoning in Swan offers no solution to the problems that have been
discussed in Section 12.1. It does not accelerate the DL reasoning process, rather
it is intended to be a supplement to DL reasoning.

As the F-Logic reasoner is only loosely integrated and every hybrid reasoning
process is a fixpoint computation on the whole knowledge base it is very likely
that this approach will be outperformed by many of the other hybrid reasoning
systems. Nevertheless, Swan offers a unique integration of rule-based reasoning
into a DL knowledge base. The concept of on-demand-reasoning depends on
the rules (triggers) that are loaded into the application domain node. Hereby
it is possible to specify precisely when the additional features of F-Logic shall
be applied.

12.3 Problems with Datatypes

The reasoning engines for OWL and F-Logic support a different range of data-
types. In Florid integers, strings, and decimals are supported. In OWL,
there are numerous propositions for datatypes, often the use of XSD datatypes
is suggested. In a hybrid reasoning system like Swan this has to be taken
into account when typed literals are translated from one formalism into the
other. Especially when the built-in predicates for arithmetic operations in F-
Logic are intended to be used, the literals have to be typed properly. In case
that an ontology originates from an external source some literals have to be
cast to datatypes that are supported in Swan. Here, the range of supported
datatypes depends on the Jena framework which allows for the representation
of all main XSD datatypes. Reasoning with datatypes, however, is limited by
the capabilities of the OWL reasoning engine. For example, datatype reasoning
in Pellet is still incomplete (though the developers claim to support all built-in
dataypes of XSD).

This problem is aggravated by the fact that XSD datatypes do not seem to

168 CHAPTER 12. DISCUSSION

be related in an intuitive subsumption hierarchy. Some datatypes can be related
easily, for example xsd:int is subsumed by xsd:integer, xsd:integer is subsumed
by xsd:decimal. On the other hand, xsd:decimal and xsd:float are not related
in a subsumption relationship, the same is true (but even less intuitive) for
xsd:double and xsd:float. For instance, it is not possible, when reasoning with
XSD datatypes, to equate 13.1̂ x̂sd:decimal with 13.1̂ x̂sd:float, for none of both
values entails the other.

Furthermore, the handling of datatypes depends on the way how the RDF
data is stored. In the Swan architecture, PostgreSQL is used for the persistent
storage of RDF data. All database operations for storing and retrieving data
are carried out by Jena automatically. But storing typed literals in this way
can cause the loss of type information. The reason for this is that datatype
information is interpreted by the intermediate JDBC driver instead of storing
the typed literal natively as a string. This has inconvenient concequences. For
example, it is not possible to equate the values 13̂ x̂sd:int and 13̂ x̂sd:integer
when they are stored as described in a database. When the model is kept in
main memory, however, this equation can be easily done.

In real world applications the limitations concerning typed literals become
a severe restriction. Ontologies have to be checked carefully in consideration
of the datatypes in use, problematic datatypes should be cast to a safe choice.
As a consequence, the import of ontologies from external sources becomes more
difficult. Instead of simply being added to the knowledge base (which is one
of the catching concepts of RDF) the data has to be examined and modified
beforehand.

12.4 Practicability

Taking the aforementioned limitations into consideration one might ask the
question whether it is possible at all to use the Swan architecture in real world
scenarios.

For instance, it is very likely that a knowledge base contains large numbers of
individuals. Also the use of nominals is a feature of OWL DL which is supported
by Pellet and is frequently used in ontologies. But both large numbers of
individuals and even more so the use of nominals slow down the performance
of the reasoning engine considerably. Furthermore, the unsatisfactory situation
with regard to datatypes is a real handicap. If data from different sources
have to be integrated, chances are very high that different datatypes are used.
Often literal values have to be compared, sorted, added or manipulated. Also,
triggers or ACA-rules may rely on datatype properties (see Example 11.4). If
the condition part of a rule relies on the comparison of two literals it must be
ensured that this operation is supported for all types of literal values in the
knowledge base.

To date, there are no ABox optimisations in Swan. For this reason, ontolo-
gies have to be chosen carefully, especially nominals have a considerable impact
on the overall performance of an application domain node. The use case as
presented in Chapter 11 clearly showed that computational time and system
memory become a limiting factor. For the mere demonstration of the capabil-
ities of the Swan architecture, the data set of the travel booking scenario was
reduced to a minimum of only seven airports, eleven simple flight connections,

12.5. RELATED WORK 169

a car rental company with three branches and four different kinds of cars. By
using this small data set it was possbile to achieve very fast response times when
updating or querying the application domain nodes.

But the use of larger data sets (full flight plan with hundreds of airports
and flight connections, a car rental company with dozens of different types of
cars) made the limitations of this architecture obvious. For example, one flight
booking consists of the insertion of a booking statement plus the update of a
booking counter for the respective flight. Each of these operations requires the
calculation of the difference of two theories which consumes a lot of resources
(system memory). In the test scenario each domain node was hosted in a sepa-
rate virtual machine with 512MB main memory available. If a connected flight
is to be booked there are at least two such single flight bookings. Using the
described setup, such an update takes more than a minute.

In a realistic airline application, updates will occur very frequently. Other
application nodes might even have to deal with continuous updates.

Hence, it has to be considered in what way the domain node should be used.
Is it necessary to give fast responses and if yes, how many updates are to be
expected at a time? If a large number of single updates have to be performed
with short response times, the knowledge base updates are likely to become
a performance bottleneck for the whole network. Otherwise, these limitations
have only little significance. If, for example, the services of an application
domain node are needed only once in a while (planning of a time table or
scheduling of processes) and the results are not needed at once, this domain
node architecture is perfectly suitable.

It is now examined how the concepts that are central to the Swan architec-
ture can be related to other work.

12.5 Related Work

Event-Driven Architectures

The Mars framework is an event-driven architecture where ECA rules are used
to define the reactive behaviour of an application domain. These rules are con-
ceptually on an abstract level where no implementation details of the application
domain have to be provided. This is different from conventional web services,
which are invoked by procedure calls or application-specific commands for data
storage or data manipulation. In Mars, the concepts of domain ontologies are
used in order to specify the meaning of an action or an event. It is left to the
application how to translate and execute these specifications.

A similar level of abstraction can be found in the object-oriented program-
ming language Smalltalk [GR89]. A central concept in Smalltalk is the message.
Messages are sent to target objects instead of directly calling functions. The
receiving object decides what to do with the message by comparing the selector
(identifier) of the message with the methods in its own method namespace (a
very simple ontology in form of a dictionary). This binding of message and
method is done at runtime. The idea behind the message passing system is
quite similar to the way that abstract actions and events are used in Mars:
the message only specifies the logical function that should be computed by the

170 CHAPTER 12. DISCUSSION

object whereas the object itself decides for the best way to physically achieve
the desired result.

A further example with a similar level of abstraction can be found with the
Unified Modeling Language (UML) [OMG]. One of the purposes of UML is to
describe programmes or workflows without giving details about the implemen-
tation in a programming language. Static concepts like objects, attributes and
relationships can be defined, but also dynamic aspects can be modelled using
UML state charts, object collaboration or message sequence diagrams.

Mars, however, gives not only the necessary model for specifying the reac-
tive behaviour of a domain but also a run-time environment for the execution
of these rules. Actually there are various approaches to the same aim for UML
[MEMS, RFBLO01, MB02], being called virtual machine for UML or executable
UML. All of them try to achieve the direct execution of UML models without
an intermediate compilation step. Therefore a proper semantics is needed for
UML models, which comprises UML class diagrams for the specifications of
concepts, UML statechart diagrams for the specification of behaviour, and an
action language for the specification of actions. Hereby, programme develop-
ment can be reduced to conceptual design, all implementation details are left
to the underlying mapping mechanism.

Another form of event-based application-independent infrastructures can be
found with Event-Notification-Services (ENS) and Publish-Subscribe systems
[CRW01, HV02]. Generators of events publish event notifications to the in-
frastructure whereas consumers of events subscribe with the infrastructure to
receive relevant notifications.

These approaches try to tackle the technical problems of event processing
which is also a matter of interest in Mars. In Mars there exist two classes
of infrastructural components (AEM and CED, see Section 4.2) that deal with
event detection and event processing.

But this situation is transcended in Mars insofar as the conceptual model
is not limited to (syntactic) event handling but is a semantic treatment of the
reactive behaviour of an application domain. Such abstract concepts are sel-
domly found in research on ENS. In [JH04], for example, the authors propose
a meta-service for event notification. Instead of subscribing at many different
ENSs which each use different event specification languages, a meta-language
for event specification is suggested.

The meta-service employs transformation rules which translate the abstract
event specification into the languages that are used by the ENSs. Hereby, the
events can be specified completely independent from the application domain
services that will eventually process the subscriptions. This can be compared
to the use of ACA rules in Mars where abstract action specifications are trans-
formed into knowledge base updates of the application. The mapping, though,
is realised by the application domain node and not by a meta-service.

Knowledge Base Updates

RDF is expected to be the standard data model for the Semantic Web. The
RDF model is more than a simple relational structure. The built-in vocabulary
of RDF Schema adds transitivity of predicates and inheritance axioms, thus
making this data model resemble a fragment of binary first order logic (i.e. only

12.5. RELATED WORK 171

binary predicates). Due to the increasing popularity of RDF there has been a lot
of interest in the questions of RDF data management and processing. There are
many resemblances between RDF and graph databases. That is why the survey
on graph databases in [AG08] is also a valuable contribution to the research on
RDF databases.

There is quite a number of works that have addressed the important prob-
lem of updates to RDF data. However, some of these efforts merely propose
update languages for RDF data [ACK+01, MSCK05] which completely neglect
the semantic problems resulting from the presence of blank nodes and built-in
semantics of RDFS.

The semantic problems in RDF are similar to the problems that have been
examined in research about belief revision. One of the classical examples can
be given in RDF:

: a r d f s : subClassOf : b ,
: b r d f s : subClassOf : c ,
:A rd f : type : a .

If the knowledge (: A rdf:type : c) should be deleted, there is no unambiguous
way to achieve this: the removal of any one of the three statements could lead
to the desired result.

The theoretical background for updates to RDF data in this respect was
prepared by a large body of research on updates in knowledge bases. A standard
approach in knowledge bases is to ensure that, after the deletion of a statement
t from a RDF graph G, t should not be derivable from G, and that the deletion
should be minimal. The concept of minimal changes demands for a measure of
closeness.

A number of different proposals to that end are classified in [EG92]. One
approach rests upon the distinction between updates and revisions as different
kinds of modifications to a knowledge base [KM91]. An update brings a know-
ledge base up to date when the world, as decribed by it, changes (for example
the action of some agent), whereas a revision incorporates new, more precise,
or more reliable information obtained about a static world. The choice of which
of these types of change is more suitable depends on the application at hand.
They define a model-theoretic point of view for an update: for each model M of
the theory to be changed, a set of models closest to M has to be found which in-
corporate the changes. This can be compared to the notion of minimal-changes
semantics for intensional updates in Swan (see Section 6.4.2).

With regard to belief revision the AGM postulates (named after the authors
Alchourron, Gärdenfors, and Makinson) [AGM85] have gained a prominent po-
sition. They propose three main operations of change for belief sets: contraction
(retraction of a belief), expansion (expanding a belief set without a guarantee
to consistency), and revision (expansion with guaranteed consistency). A belief
base is considered to contain the basic beliefs from which the belief set results by
deduction of additional beliefs. The AGM postulates cannot be applied without
drastic modifications to updates [KM91].

In [GHV06] the claim is made that revisions are trivial in the context of the
RDF data model. On the other hand, updates pose new problems when treating
an RDF database as a knowledge base. For example, a solution to the deletion

172 CHAPTER 12. DISCUSSION

of (: A rdf:type : c) is

(: a rdfs:subClassOf : b ∧ ¬ : b rdfs:subClassOf : c) ∨

(¬ : a rdfs:subClassOf : b∧ : b rdfs:subClassOf : c)

This cannot be expressed in RDF as neither negation nor disjunction are avail-
able. This is the motivation for the authors to propose an approximation of the
Katsuno-Mendelzon postulates [KM91] tailored to RDF plus an algorithm for
calculating the update and erase operations.

Although it can be assumed that knowledge bases for the Semantic Web will
use RDF as the data model, it is arguable whether the semantics will depend
on RDF Schema. Rather, it is commonly anticipated that the reasoning layer in
the Semantic Web will be based on OWL and hereby on Description Logics. It
is a bit surprising in this respect that research on updates to Description Logics
emerged only in recent years.

The problem of updates is first brought out for Description Logics in [RSS02]
and [LLMW06]. The first relates the semantic problems of updates in DLs to
view management in relational databases. The latter proposes a formal seman-
tics for updates and shows for unrestricted updates that a Description Logic L
is not closed in the sense that the set of models corresponding to an update ap-
plied to a knowledge base in a DL L may not be expressible by ABoxes in L. In
[LPR07] these findings are extended such that the authors could show that DLs
are also not closed with respect to erasure operations also following the Katsuno-
Mendelzon approach. Moreover, this work provides for a best-approximation for
update and erasure operations and gives a polynomial algorithm for computing
these best-approximations for a Description Logic DL− LiteF .

In [FPA05] it was shown that OWL DL is non-AGM-compliant for the con-
traction and the revision operation. In order to to find a computationally
tractable solution, only belief base revisions are considered in [HWKP06] in-
stead of belief set revision. Because of the limited set of considered formulae,
this approach is called semi-revision which is compliant to SHOIN (which cor-
responds to OWL DL).

The problem of updates to an OWL-DL knowledge base has been addressed
in Swan with the introduction of the retract and assert operations (see Sec-
tion 6.3). They provide an inference-sensitive update mechanism for an OWL
knowledge base. Both operations are limited to updates on the ABox, which is
comparable to the semi-revision approach.

This handling of updates belongs to the category of belief revisions although
the discrimination between updates and revisions is a bit ambiguous. Whether
a deletion is due to changes in the world or a revision of previous believes is
not always clear. Nevertheless, the retract and assert operations offer a way for
intensional updates. The completion of intensional updates is possible by the
use of triggers which implement the intended behaviour.

Active Knowledge Bases

A number of systems exist that are specialised in the storage of RDF data.
Amongst many others there can be named Jena [Jen], Sesame [Ses], Redland
[Red], Brahms [Bra] or RDFDB [RDF]. All of these are capable to store, update,
and query RDF data. RDF-Schema support is offered by Sesame and Brahms,

12.5. RELATED WORK 173

of which the latter keeps all base facts and deductions in system memory in con-
trast to Sesame where both base facts and deductions are stored in a relational
database. Jena comes with a built-in reasoning engine which can be configured
to support a variety of schema languages like RDF-Schema, DAML+OIL or
OWL. Moreover other DL reasoners (like Pellet) can be used by Jena.

With one exception, none of the above-mentioned systems allows for the
specification of reactive behaviour. Only Jena has a very basic mechanism for
the detection of change (event detection) which can be used to implement a
trigger mechanism. The lack of reactive behaviour in nearly all of these RDF
storage systems is surprising as RDF is expected to build the foundation of
the Semantic Web where data sources and applications are highly distributed
and subject to continuous change. Consequently, dynamic contents make it
necessary that the changes become distributed, for example with the help of
ECA rules.

Stemming from the area of active database research [Pat99] there have been
numerous works in the recent years that incorporate the Event-Condition-Action
paradigm in dynamic, highly-distributed data-driven application domains. In
the context of this work, especially the question regarding the detection of simple
events in knowledge bases is of interest. Although there is a large body of
results about ECA rules from several research areas (e.g. Publish-Subscribe
Systems, Sensor Networks or Event-Notification Systems) the majority of them
are concerned with algorithmical aspects of complex event processing [Hin03,
TSG+06, CRW01] rather than how simple events are detected.

Apart from the many contributions by the (active) database community
there is little research on active RDF knowledge bases. In [PPW04] the authors
propose RDFTL as trigger definition language for RDF data which follows the
ECA paradigm. RDFTL is designed for an active wrapper around a passive
RDF repository (RDFSuite [ACK+01]). The design of RDFTL follows both in
syntax and rule execution semantics the standards of SQL3. Although RDF-
Suite also stores RDF-Schema metadata, the semantic problem of knowledge
base updates remains unmentioned. The purpose of RDFTL is to enable reac-
tive behaviour in a distributed environment in order to exchange information
about the evolution of metadata. One drawback, however, is the local nature of
the ECA rules as specified by RDFTL. For this reason it is impossible to detect
distributed events, only local events can be detected. The notion of distributed
execution of ECA rules is only true with regard to the action part, which can
be executed at different peers.

In this respect the Swan architecture benefits greatly from the tight integra-
tion into the Mars framework: events can be detected either locally by means
of knowledge base triggers (local ECA rules) or at arbitrary (also distributed)
places by the use of higher level ECA rules, which are executed by the Mars

ECA engine.

To the best of the authors knowledge no other implementation exists that
is offering active rules with support for intentional updates in RDF knowledge
bases. The work at hand offers a rule-based trigger mechanism with a syntax
comparable to SQL triggers. With regard to the distinction between explicit
and implicit updates also the trigger mechanism is twofold: one class of triggers
reacts on explicit updates before reasoning on the data is performed. The other
class of triggers reacts on changes to the model including the deductions.

174 CHAPTER 12. DISCUSSION

The uniqueness of the trigger mechanism in Swan makes it a novel contri-
bution to knowledge base research in the Semantic Web.

Hybrid Reasoning

A short and comprehensive introduction to hybrid reasoning can be found in
Section 3.7. The integration of different layers of inference has become a central
issue for the architecture of the Semantic Web. This is reflected in the large
number of investigations that deal with the integration of rules with ontologies.
In the following some of those approaches in the field of knowledge bases and
the Semantic Web are presented. A survey can also be found in [ADG+05].

There have been several approaches for the integration of rule languages with
conceptual languages, e.g. AL-Log [DLNS91], and Carin[LR96], where hybrid
reasoning is realised by putting DL terms in logical rules. These systems have in
common that the DL part of the knowledge base shares its individual constants
with the Datalog programme (which adds the logic programming capabilities).
But there is no hybridity in reasoning about the predicates (or other parts of the
TBox). Consequently, there are strong limits to these reasoning systems, like in
Carin, where the occurence of DL terms in the rules is limited, (especially in
the head of the rule), and therefore no new knowledge can be added to the DL
part of the knowledge base.

Another hybrid reasoning system has been proposed with DLP [GHVD03].
One of its strong points is (compared to the aforementioned approaches) that it
overcomes the separation of components and allows for bidirectional translation
of premises and inferences. The DL part is limited to DHL (Description Horn
Logic), an intersection of a decidable DL with Horn logic programmes. The
combination of logic programmes and DHL works in both directions: rules can
be layered on top of the knowledge base and have access to both individual
constants and predicates or the other way round, the knowledge base is sup-
plemented by access to the rules. The drawback is that DHL uses a severely
restricted DL that has no cardinalities and no existential quantification. But it
is still more expressive than RDFS, and it is tractable.

With regard to the ontology part of the hybrid rules systems, the extent of
expressiveness that is supported is very different. Some of the systems support
RDF and partly RDF-Schema. These are mostly approaches where the RDF
data model and some of the RDF-Schema axioms are emulated by a rule en-
gine. Examples are TRIPLE [TRI] where an XSB Prolog engine is used, or the
Semantic Web Library of SWI-Prolog [SWI] which uses SWI-Prolog. The latter
supports full RDF and RDF-Schema whereas TRIPLE has only limited support
for RDF-Schema axioms. Both can hardly be compared to more sophisticated
hybrid reasoning tools where two fully-fledged deductive systems are combined.

Jena [Jen] is a Semantic Web framework for managing ontologies which offers
a highly modular access to its reasoning capabilities. Either external reasoning
engines or one of several built-in rule engines can be chosen. While most of the
built-in engines support a different range of axioms from RDF-Schema or OWL
there is also a so-called generic rule reasoner, which can be used in a backward-
or forward-chaining manner. The built-in engines for RDF-Schema and OWL
make use of the same engine with a predefined set of rules. In case that the rule

12.5. RELATED WORK 175

engine is used for both OWL and custom rules, the different engines become
cascaded which means that only one of the engines is able to see the results
of the other. The generic rules reasoner offers a number of built-in predicates.
Object creation (BNodes) is only supported to a limited degree. Forward rules
have no fixpoint check and hence sometimes do not terminate on data containing
cycles. In backward rules there is no possibility for the removal of previously
found derivations. The overall performance, especially in presence of cylic data
and transitive rules is rather poor. For example, the calculation of composite
railway connections as it was shown for F-Logic rules in Example 9.18 is not
possible using the generic rules reasoner in Jena.

Another project aiming at the extension of OWL with rules is called the
Semantic Web Rule Language (SWRL) [HPSB+04]. The central idea in SWRL
is to overcome restrictions of OWL by adding rules as a new kind of axioms
within OWL. The integration is hereby easy, syntactically, and also the seman-
tics of SWRL are a straightforward extension to the semantics of OWL-DL.
SWRL offers a rule mechanism that is comparable in expressiveness to basic
Horn clauses. Rule head and body may consist of a conjunction of the atoms
C(x), P (x, y), sameAs(x, y) and differentFrom(x, y). Hereby, for example,
the uncle-relationship can be modelled. The simplicity of SWRL, which makes
it so easy to be integrated into OWL, has also its downside. Many features leave
to be desired, amongst them are disjunction, negation of atoms, non-monotonic
features as negation as failure or defaults, and furthermore, there are no built-in
predicates and therefore no arithmetics.

In HD-rules [DHM07] a XSD Prolog engine is coupled with a DL reasoner.
The integration of the two deductive systems is realised by prolog-like rules that
incorporate queries to the DL part by special predicates in the rule body. These
rules are neither pure prolog rules nor OWL expressions. The hybrid rules are
compiled into Prolog programmes and executed by a run-time system which
interfaces the DL reasoner via the DIG interface. One of the advantages of this
architecture is the exchangeability of reasoning engines: any Prolog engine with
a standard interface to Java can be used, the same is true for any DIG-compliant
DL reasoning engine. One major drawback, however, is that the expressiveness
of an OWL ontology is severely limited by the DIG interface which supports, in
its current specification, only a small subset of OWL DL.

The combination of rules and ontologies in Swan is a typical hybrid solution
in the sense of the definition that was given in Section 3.7. It is a combination
of F-Logic and OWL DL, using Florid for the rule part and Pellet for the
ontology part. Since F-Logic is an extension of FOL, some subsets of DLs can
be expressed in F-Logic. This aspect has already been studied in [Bal95] and
[Bor96]. Hence, ontologies can be translated into F-Logic programmes and vice
versa, hereby augmenting the DL part of the hybrid reasoning system with F-
Logic features like default inheritance, basic arithmetics and object creation.
F-Logic and OWL reasoning systems are kept separated in Swan, each of them
delivering further deductions in a process of an alternating fixpoint computation.

Compared to the aforementioned hybrid reasoning systems, the Swan archi-
tecture allows for a more flexible usage of the rule component. As it was already
described in Section 12.2, the rule part becomes activated by user-defined trig-
gers instead of a continuous application of hybrid reasoning. As long as no

176 CHAPTER 12. DISCUSSION

critical updates (with regard to static facts) have been detected there is no
need for the additional F-Logic reasoning capabilities, consequently leading to
a faster execution of knowledge base updates. If, however, the discrimination
between static facts and dynamic facts is not possible in an ontology, it is still
possible to continuously apply hybrid reasoning upon every update (or not at
all).

The discussion about the Swan architecture is now concluded with an out-
look to further work.

12.6 Further Work

Detection Of State Change

Trigger activation depends on the detection of state changes in the knowledge
base. The trigger mechanism of the Swan architecture (see Section 7) is based
on the calculation of the difference of two specialised theories (called an Ont-
Model in Jena). On every update a copy of the specialised theory is created
before the update. After the execution the difference between those theories
is calculated. The set of differences reflects the changes caused by the update.
Again, triggers may react upon these changes which might cause further up-
dates. Each update makes it necessary to repeat the calculation of the difference
of two specialised theories.

The copying of a specialised theory is merely a copy of the ABox and TBox
contents. Derivations that have been made for the original specialised theory
are not copied. It is the computation of the difference of two specialised theories
which is an expensive operation. Each specialised theory has to be grounded (see
Section 7.3), that is all possible conclusions from the theory have to be drawn
resulting in a simple graph structure consisting of positive ground atomic facts.
This grounding operation can be, depending on the size of the knowledge base
and the complexity of the ontology, quite expensive.

Although usually only a small fragment of the knowledge base is changed
the grounding of the whole theory is necessary in each of the copies.

Incremental reasoning is a feature for reasoning engines that tries to re-use
previous calculations in later steps of the reasoning process. Considering that
in DL an addition can never cause the retraction of some previous entailment,
many of the previous calculations can be used again. In the same way an axiom
that becomes deleted cannot cause a subsumption that did not hold before to
become true.

It is easy to see how incremental reasoning could contribute to a faster
update mechanism in Swan. Most of the computational time during the update
is consumed by the reasoning engine. The preservation of previous deductions
in the copy of a theory would have a considerable effect on the performance of
the knowledge base updates.

There is ongoing work on incremental reasoning for the Pellet reasoning
engine [PHWS06]. As this is only an internal optimisation in Pellet it is not
clear whether and how this implementation could be used for the aforementio-
nend purposes in Swan. Future investigations will have to show how this can
be used to improve the performance of updates in Swan.

12.6. FURTHER WORK 177

Translations Between Open and Closed Worlds

In Section 9 a description is given for those features in DLs that cannot be
expressed in F-Logic. One important characteristic of some DLs in this respect
is existential quantification which cannot be expressed in F-Logic. Therefore,
rule reasoning cannot be used to draw conclusions about knowledge that is
known to exist but not yet available. This is a collison of open and closed
world assumptions which make it impossible to translate this aspect between
the different formalisms.

How hybrid reasoning is affected by the differences between the reasoning
formalisms is depicted in Section 9.4.5. Moreover, a short description of the tem-
poral expansion of existentially quantified expressions in Swan is given there.
This expansion creates temporary objects for all relationships that are asserted
by the OWL ontology but that are not known yet. These temporary objects are
only given to Florid but not to the OWL knowledge base.

Although it is hereby possible for F-Logic programmes to draw conclusions
about those objects that are asserted by the ontology but do not exist as state-
ments, this solution introduces new problems in connection with infinite struc-
tures. Infinite structures occur when the TBox contains cyclic concept defini-
tions. Consider the following concept definition:

Child ≡ ∃hasParent.Child

The completion procedure needs to be blocked because the cyclic definition of
the concept Child would not allow the procedure to terminate. In the hybrid
reasoning engine of Swan the completion procedure becomes blocked in case
that an recursion of object completion is detected. This is, however, only a
partial detection as only direct recursions are identified (like the one that is
caused by the definition of Child). Compare this definition to the following
example:

A ≡ ∃a.C

C ≡ ∃c.A

Here, A and C are also cyclic concept definitions, but an instance of A
will be completed by a relationship a to a temporary object being an instance
of C. In turn, instances of C have to be completed by the relationship c to
temporary objects being instances of A (and so on). In order to detect the
recursive pattern in the resulting completion tree it is necessary to apply more
sophisticated blocking algorithms. The present solution in Swan allows only
for the detection of very simple patterns where the concept on the left-hand
side of a concept definition is the same (and only) concept as on the right
hand side. Although all cyclic definitions in the TBox are best avoided a more
mature blocking procedure is feasible. Related work on blocking mechanisms
can be found in various publications, e.g. about conjunctive queries for DL
[HST00, HT00, OCE06], epistemic queries for DL [CLLR06] or hybrid reasoning
with rules and DL [MSS05].

178 CHAPTER 12. DISCUSSION

ACA Meta-Service

In Mars, the handling of abstract actions is left to the application domain
nodes. On the rule level, only abstract action definitions are used. On the
one hand, this ensures the modularity of the architecture, and service compo-
nents can be integrated easily. On the other hand, domain services have to
provide an infrastructure for the mapping of the abstract actions to knowledge
base updates. While the Swan architecture offers an ACA rule mapping (see
Chapter 8) this will not be the case for ordinary Web Services.

Although it is possible to integrate arbitrary Web Services by the use of
opaque rule component definitions (see Section 4.3.2) this is not a satisfactory
solution. Opaque components limit the generality of ECA rules, therefore they
are best avoided if possible.

In [JH04] a meta-service for event notification is proposed. Although event-
notification is different from action forwarding there are similarities. The prob-
lem in both cases is how to integrate heterogeneous services. A meta-service
as proposed is expected to accomplish mappings from abstract specifications to
application-specific formalisms. This would be an additional service component
in Mars. Any service could be integrated given that an appropriate mapping
rule is registered at the ACA meta-service.

The advantage of this approach is that the meta-service provides for a uni-
form mapping infrastructure (which otherwise would have to be implemented
at every service) reducing the task of service integration to the development of
rule mappings. There would be no need for implementing a mapping infrastruc-
ture for every new service. Also, in the majority of cases it is not possible to
modify an external service. Here, the integration would greatly benefit from a
meta-service infrastructure.

Chapter 13

Conclusions

In this work, the architecture of an application node for the Semantic Web was
presentend. The architecture realises an active OWL knowledge base, which ex-
hibits a number of distinct features novel to this kind of knowledge management
applications.

The knowledge base uses RDF as a data model and OWL DL for the de-
scription of the domain ontology. The concepts and relationships that are used
in the domain are defined in this ontology. It was shown how reasoning allows
to derive new information from given facts and also, what limitations have to
be kept in mind with respect to OWL reasoning. These considerations led to
the conclusion that a supplementary inference mechanism is desirable. For this
purpose, the Swan architecture was extended to a hybrid reasoning engine. In
addition to the OWL reasoner, which is integrated into the knowledge base, an
F-Logic reasoner is utilised for supplementary deductions. The problems and
benefits of this approach were analysed in detail. It was demonstrated that this
implementation of hybrid reasoning is able to overcome some of the restrictions
that are intrinsic to OWL.

Furthermore, the knowledge base offers sophisticated update operations.
The presence of intensional knowledge requires the distinction between implicit
and explicit updates. The differences were described and a formal characterisa-
tion of knowledge base updates was given. In short, the update operations insert,
delete, and modify can be used for the specification of explicit updates, whereas
assert and retract can be used for the specification of intensional updates.

It was shown how the trigger mechanism in Swan complements the feature
of intensional updates. The specification of triggers realises the idea of an active
OWL knowledge base which is a novel contribution to knowledge management
in the Semantic Web. Knowledge base triggers can be used not only for the
completion of intensional updates, but also for maintaining the integrity of the
knowledge base.

Another feature of the architecure of this domain node is the ease of integra-
tion into the event-driven environment of Mars. The Swan architecture enables
the execution of abstract actions that are given in terms of the domain ontology
instead of explicit update commands to the knowledge base. The execution of
abstract actions relies on the definition of translation rules, called ACA rules.
These rules, together with the knowledge base triggers, define the behaviour of
the domain node. There is a logical characterisation of this behaviour, which

179

180 CHAPTER 13. CONCLUSIONS

allows for reasoning about the behaviour of the knowledge base.
A prototype of this architecture was implemented. In this work it was

demonstrated by an example scenario how the concepts of Swan and Mars

can be used for the modelling of an application domain.

The Swan architecture integrates all these features: Knowledge base triggers
for an OWL knowledge base, hybrid reasoning combining F-Logic and OWL,
and the execution of ACA rules for the translation of abstract actions. This is a
unique combination of components which makes Swan a valuable contribution
to the Semantic Web.

List of Figures

3.1 René Magritte: “Ceci n’est pas une pipe” 39
3.2 Simple Graph Structure . 43
3.3 Graph Structure of an RDF/RDFS Knowledge Base 46

4.1 MARS Infrastructure . 62
4.2 ECA Rule Components and Corresponding Languages 63

5.1 Types of Rules. 71

6.1 Architecture of the Domain Application Node 80

7.1 Evaluation of Triggers and Updates 100

8.1 Architecture of the Domain Application Node 104

9.1 Hybrid Reasoning Architecture 117
9.2 Handling of Default Inheritance Atoms 121
9.3 Mapping from DL to FOL . 126

11.1 Domain Frontend . 146
11.2 Flight Plan of Onto-Flight . 147
11.3 Interaction of Rules, Actions and Events in the Travel Scenario . 151

181

182 LIST OF FIGURES

Bibliography

[ACK+01] So Alexaki, Vassilis Christophides, Greg Karvounarakis, Dimitris
Plexousakis, and Karsten Tolle. The ICS-FORTH RDFSuite: Man-
aging Voluminous RDF Description Bases. pages 1–13, 2001.

[ADG+05] Grigoris Antoniou, Carlos V. Damásio, Benjamin Grosof, Ian
Horrocks, Michael Kifer, Jan Maluszynski, and Peter F. Patel-
Schneider. Combining Rules and Ontologies. A survey., 2005.

[AF94] J.F. Allen and G. Ferguson. Actions and Events in Interval Tem-
poral Logic. Technical Report 521, University of Rochester, 1994.

[AG08] Renzo Angles and Claudio Gutiérrez. Survey of Graph Database
Models. ACM Comput. Surv., 40(1), 2008.

[AGM85] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On
the Logic of Theory Change: Partial Meet Contraction and Revi-
sion Functions. J. Symb. Log., 50(2):510–530, 1985.

[Bal95] Mira Balaban. The F-Logic Approach for Description Languages.
Annals of Mathematics and Artificial Intelligence, 15:15–19, 1995.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele
Nardi, and Peter Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2003.

[BFK+07] Erik Behrends, Oliver Fritzen, Tobias Knabke, Wolfgang May, and
Franz Schenk. Rule-Based Active Domain Brokering for the Se-
mantic Web. Number 4524, pages 250–268. LNCS, 2007.

[BFMS06] Erik Behrends, Oliver Fritzen, Wolfgang May, and Franz Schenk.
Combining ECA Rules with Process Algebras for the Semantic
Web. In Rule Markup Languages (RuleML), pages 29–38. IEEE,
2006.

[BFMS08] Erik Behrends, Oliver Fritzen, Wolfgang May, and Franz Schenk.
Embedding Event Algebras and Process for ECA Rules for the
Semantic Web. Fundamenta Informaticae, (82):237–263, 2008.

[BH95] Franz Baader and Bernhard Hollunder. Embedding defaults into
terminological knowledge representation formalisms. Journal of
Automated Reasoning, 14:149–180, 1995.

183

184 BIBLIOGRAPHY

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic
Web. Scientific American Magazine, 2001.

[Bor96] Alex Borgida. On the Relative Expressiveness of Description Logics
and Predicate Logics. Artificial Intelligence, 82:353–367, 1996.

[Bra] Brahms: Main-memory storage for RDF/S.
http://lsdis.cs.uga.edu/projects/semdis/brahms/.

[BS85] Ronald J. Brachman and James G. Schmolze. An overview of
the KL-ONE knowledge representation system. Cognitive Science,
9(2):171–216, 1985.

[CKW93] Weidong Chen, Michael Kifer, and David S. Warren. HiLog: A
Foundation for Higher-Order Logic Programming. Journal of Logic
Programming, 15:187–230, 1993.

[CLLR06] Diego Calvanese, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Epistemic First-Order Queries over Description Logic
Knowledge Bases. In Description Logics, 2006.

[CM94] Sharma Chakravarthy and D. Mishra. Snoop: An Expressive Event
Specification Language for Active Databases. Data Knowledge En-
gineering, 14(1):1–26, 1994.

[Cod70] E.F. Codd. A Relational Model of Data for Large Shared Data
Banks. Communications of the ACM, 13(6):377–387, 1970.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf.
Design and Evaluation of a Wide-Area Event Notification Service.
ACM Transactions on Computer Systems, 19:332–383, 2001.

[CS98] Jan Chomicki and Gunter Saake, editors. Logics for Databases and
Information Systems. Kluwer, 1998.

[DFF+99] Alin Deutsch, Mary F. Fernández, Daniela Florescu, Alon Y. Levy,
and Dan Suciu. A Query Language for XML. Computer Networks,
31(11-16):1155–1169, 1999.

[DHM07] Wlodzimierz Drabent, Jakob Henriksson, and Jan Maluszynski.
HD-rules: a hybrid system interfacing Prolog with DL-reasoners.
In Proceedings of 2nd International Workshop on Applications
of Logic Programming to the Web, Semantic Web and Semantic
Web Services, Porto, Portugal (13th September 2007), volume 287,
pages 76–90, 2007.

[DIG] Description Logic Implementation Group (DIG).
http://dl.kr.org/dig/.

[DLNS91] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and An-
drea Schaerf. A hybrid system with datalog and concept lan-
guages. In Trends in Artificial Intelligence; AI*IA’91, number 549
in LNCS, pages 88–97. Springer, 1991.

http://lsdis.cs.uga.edu/projects/semdis/brahms/
http://dl.kr.org/dig/

BIBLIOGRAPHY 185

[DLNS98] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and An-
drea Schaerf. AL-log: Integrating Datalog and Description Logics.
Journal of Intelligent Information Systems, 10(3):227–252, 1998.

[DOS03] M.C. Daconta, L.J. Obrst, and K.T. Smith. The Semantic Web: A
Guide to the Future of XML, Web Services, and Knowledge Man-
agement. John Wiley and Sons., 2003.

[EG92] Thomas Eiter and Georg Gottlob. On the Complexity of Propo-
sitional Knowledge Base Revision, Updates, and Counterfactuals.
Artificial Intelligence, 57:227–270, 1992.

[EIST06] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and
Hans Tompits. Effective Integration of Declarative Rules with Ex-
ternal Evaluations for Semantic Web Reasoning. In Proceedings
of 3rd European Semantic Web Conference, Budva, Montenegro
(11th–14th June 2006), volume 4011 of LNCS, pages 273–287, 2006.

[FaC] FaCT++: OWL DL Reasoner.
http://owl.man.ac.uk/factplusplus/.

[FAD+99] Dieter Fensel, Jürgen Angele, Stefan Decker, Michael Erdmann,
Hans-Peter Schnurr, Steffen Staab, Rudi Studer, and Andreas
Witt. On2broker: Semantic-Based Access to Information Sources
at the WWW. In Proceedings of the World Conference on the
WWW and Internet (WebNet 99), 1999.

[FLB+06] Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis,
and Georg Gottlob. RDF Querying: Language Constructs and
Evaluation Methods Compared. In Proceedings of Summer School
Reasoning Web 2006, Lisbon, Portugal (4th–8th September 2006),
volume 4126 of LNCS, pages 1–52. REWERSE, 2006.

[FLO98] Florid homepage.
http://www.informatik.uni-freiburg.de/∼dbis/florid/,
1998.

[FPA05] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. On
Applying the AGM Theory to DLs and OWL. In In Proc. of Int.
Semantic Web Conf, pages 216–231, 2005.

[GHV06] Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. The
Meaning of Erasing in RDF under the Katsuno-Mendelzon Ap-
proach. In Workshop on the Web and Databases, 2006.

[GHVD03] Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.
Description Logic Programs: Combining Logic Programs with De-
scription Logic. In 12th. WWW Conference, pages 48–57, 2003.

[GJS92] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite Event
Specification in Active Databases: Model & Implementation. In
Proceedings of the 18th International Conference on Very Large
Databases, 1992.

http://owl.man.ac.uk/factplusplus/
http://www.informatik.uni-freiburg.de/~dbis/florid/

186 BIBLIOGRAPHY

[GL93] M. Gelfond and V. Lifschitz. Representing Action and Change by
Logic Programs. Journal of Logic Programming, 1993.

[GR89] Adele Goldberg and David Robson, editors. Smalltalk: The Lan-
guage. Addison-Wesley, 1989.

[Gru93] T.R. Gruber. A Translation Approach to Portable Ontologies.
Knowledge Acquisition, 5(2):199–220, 1993.

[Hay79] P.J. Hayes. The Naive Physics Manifesto. 1979.

[HFB+00] I. Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erd-
mann, C. Goble, F. van Harmelen, M. Klein, S. Staab,
R. Studer, and E.Motta. The ontology inference layer
OIL. Technical report, On-To-Knowledge, 2000. Available at
http://www.ontoknowledge.org/oil.

[Hin03] Annika Hinze. Efficient Filtering of Composite Events. In Proceed-
ings of the 20th British National Database Conference, 2003.

[HLTB04] I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The Instance Store:
Description Logic Reasoning with Large Numbers of Individuals,
2004.

[HM01] Volker Haarslev and Ralf Möller. Racer system descrip-
tion. In Int. Joint Conf. on Automated Reasoning (IJ-
CAR), number 2083 in LNAI, pages 701–705. Springer, 2001.
http://www.racer-systems.com.

[HO01] Volker Haarslev and Ralf M Oller. High Performance Reasoning
With Very Large Knowledge Bases: A Practical Case Study. pages
161–168, 2001.

[Hor] John F. Horty. Some Direct Theories of Nonmonotonic Inheritance.
In Handbook of Logic in Artificial Intelligence and Logic Program-
ming, volume 3.

[Hor98] Ian Horrocks. Using an expressive description logic:
Fact or fiction? In Principles of Knowledge Repre-
sentation and Reasoning (KR), pages 636–647, 1998.
http://www.ca.man.ac.uk/∼horrocks/FaCT.

[HPS04] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entail-
ment to description logic satisfiability. Journal of Web Semantics,
1(4):345–357, 2004.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof, and Mike Dean. SWRL: Se-
mantic Web Rules Language Combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/, 2004.

[HPSvH04] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.
From SHIQ and RDF to OWL: The making of a web ontology
language. Journal of Web Semantics, 1(1):7–26, 2004.

http://www.ontoknowledge.org/oil
http://www.racer-systems.com
http://www.ca.man.ac.uk/~horrocks/FaCT
http://www.w3.org/Submission/SWRL/

BIBLIOGRAPHY 187

[HS07] Ian Horrocks and Ulrike Sattler. A tableau decision procedure for
SHOIQ(D). In J. of Automated Reasoning, 2007.

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with
Individuals for the Description Logic SHIQ. In Intl. Conf. on Auto-
mated Deduction (CADE), number 1831 in LNCS, pages 482–496,
2000.

[HT00] Ian Horrocks and Sergio Tessaris. A Conjunctive Query Language
for Description Logic Aboxes. In Nat. Conf. on Artificial Intelli-
gence (AAAI), pages 399–404, 2000.

[HV02] Annika Hinze and Agnès Voisard. A Parameterized Algebra for
Event Notification Services. In TIME ’02: Proceedings of the Ninth
International Symposium on Temporal Representation and Reason-
ing (TIME’02), page 61, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[HWKP06] Christian Halaschek-Wiener, Yarden Katz, and Bijan Parsia. Belief
Base Revision For Expressive Description Logics. In In Proc. of
Workshop on OWL Experiences and Directions, 2006.

[Jen] Jena: A Java Framework for Semantic Web Applications.
http://jena.sourceforge.net.

[JH04] Doris Jung and Annika Hinze. A Meta-service for Event Notifi-
cation. In Proceedings of Summer School Reasoning Web 2006,
Lisbon, Portugal (4th–8th September 2006), volume 3290 of LNCS,
pages 283–300, 2004.

[Kat07] Heiko Kattenstroth. Knowledge Management with OWL and F-
Logic: A Combination of Description Logic Reasoning with F-Logic
Rules. Diploma Thesis, Univ. Göttingen, 2007.

[Kem01] C. Kemke. About the Ontology of Actions. Technical Report
MCCS-01-328, Computing Research Laboratory, New Mexico State
University, 2001.

[KL89] Michael Kifer and Georg Lausen. F-Logic: A higher-order language
for reasoning about objects, inheritance and scheme. In SIGMOD,
pages 134–146, 1989.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations
of object-oriented and frame-based languages. Journal of the ACM,
42(4):741–843, 1995.

[KM91] Hirofumi Katsuno and Alberto O. Mendelzon. On the Difference
Between Updating a Knowledge Base and Revising it. pages 387–
394. Morgan Kaufmann, 1991.

[LLMW06] Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. Up-
dating Description Logic ABoxes. In KR, pages 46–56, 2006.

http://jena.sourceforge.net

188 BIBLIOGRAPHY

[LPR07] Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati. On the
Approximation of Instance Level Update and Erasure in Descrip-
tion Logics. In In Proc. of AAAI 2007, 2007.

[LR96] Alon Y. Levy and Marie-Christine Rousset. Carin: A representa-
tion language combining horn rules and description logics. In Eu-
rop. Conf. on Artificial Intelligence (ECAI), pages 328–334, 1996.

[MA92] Z. Manna and A.Pnueli. The Temporal Logic of Reactive and Con-
current Systems. Springer Verlag, 1992.

[MAB04] Wolfgang May, José Júlio Alferes, and François Bry. Towards
Generic Query, Update, and Event Languages for the Semantic
Web, 2004.

[Mak94] David Makinson. General Patterns in Nonmonotonic Reasoning.
pages 35–110, 1994.

[MB02] Steven J. Mellor and Marc J. Balcer. Executable UML: Model-
Driven Architecture. Addison-Wesley, 2002.

[MB08] Georgios Meditskos and Nick Bassiliades. Combining a DL Rea-
soner and a Rule Engine for Improving Entailment-based OWL
Reasoning. In ISWC. ACM, to be published 2008.

[McC80] John McCarthy. Circumscription—A Form of Non-Monotonic Rea-
soning. Artificial Intelligence, 13:27–39, 1980.

[MEMS] Manikya Madhu, Babu Eadara, Adam Malinowski, and Junichi
Suzuki. Matilda: A Distributed UML Virtual Machine for Model-
Driven Software Development.

[MF02] Deborah L. McGuiness and Richard Fikes. DAML+OIL: An On-
tology Language for the Semantic Web. IEEE Intelligent Systems,
17(5):72–80, 2002.

[Mil83] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical
Computer Science, pages 267–310, 1983.

[MK01] Wolfgang May and Paul-Th. Kandzia. Nonmonotonic Inheritance
in Object-Oriented Deductive Database Languages. Journal of
Logic and Computation, 11(4), July 2001.

[MS06] Boris Motik and Ulrike Sattler. A Comparison of Reasoning Tech-
niques for Querying Large Description Logic ABoxes. In Miki Her-
mann and Andrei Voronkov, editors, Proc. of the 13th Int. Confer-
ence on Logic for Programming Artificial Intelligence and Reason-
ing (LPAR 2006), volume 4246 of LNCS, pages 227–241, Phnom
Penh, Cambodia, November 13–17 2006. Springer.

[MSCK05] M. Magiridou, S. Sahtouris, V. Christophides, and M. Koubarakis.
RUL: A Declarative Update Language for RDF. In In Procs. 4th
Intern. Conf. on the Semantic Web (ISWC-2005, pages 506–521,
2005.

BIBLIOGRAPHY 189

[MSK07] Wolfgang May, Franz Schenk, and Heiko Kattenstroth. Combining
OWL with F-Logic Rules and Defaults. In ALPSWS, number 287,
pages 60–75, 2007.

[MSS05] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for
OWL-DL with Rules. J. Web Sem., 3(1):41–60, 2005.

[MST93] V. Wiktor Marek, Grigori F. Schwarz, and Miroslaw Truszczynski.
Modal Nonmonotonic Logics: Ranges, Characterization, Compu-
tation. J. ACM, 40(4):961–988, 1993.

[MSvL06] Wolfgang May, Franz Schenk, and Elke von Lienen. Extending
an OWL Web Node with Reactive Behavior. In PPSWR, pages
134–148, 2006.

[OCE06] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Charac-
terizing Data Complexity for Conjunctive Query Answering in Ex-
pressive Description Logics. In Nat. Conf. on Artificial Intelligence
(AAAI), 2006.

[OMG] OMG Unified Modeling Language Specification. www.omg.org.

[OWL] OWL reference: Datatypes.
http://www.w3.org/TR/owl-ref/#rdf-datatype.

[OWL04] OWL Web Ontology Language.
http://www.w3.org/TR/owl-features/, 2004.

[Pat99] Norman W. Paton, editor. Active Rules in Database Systems.
Springer, New York, 1999.

[Pel] Pellet: An OWL DL reasoner. Maryland Information and Network
Dynamics Lab, http://www.mindswap.org/2003/pellet.

[PHWS06] Bijan Parsia, Christian Halaschek-Wiener, and Evren Sirin. To-
wards Incremental Reasoning Through Updates in OWL DL. In
Reasoning on the Web, RoW 2006, 2006.

[Poo94] David Poole. Default Logic. In Dov Gabbay, Christopher J. Hogger,
and J. A. Robinson, editors, Handbook of Logic in Artificial Intelli-
gence and Logic Programming, Volume 3: Nonmonotonic Reason-
ing and Uncertain Reasoning, pages 189–215. Oxford University
Press, Oxford, 1994.

[PPW04] George Papamarkos, Ra Poulovassilis, and Peter T. Wood.
RDFTL: An Event-Condition-Action Language for RDF. In In
Proc. 3rd Int. Workshop on Web Dynamics (in conjunction with
WWW2004, 2004.

[RDF] RDFDB: An RDF Database. http://www.guha.com/rdfdb/.

[RDF00a] Resource Description Framework (RDF).
http://www.w3.org/RDF, 2000.

www.omg.org
http://www.w3.org/TR/owl-ref/#rdf-datatype
http://www.w3.org/TR/owl-features/
http://www.mindswap.org/2003/pellet
http://www.guha.com/rdfdb/
http://www.w3.org/RDF

190 BIBLIOGRAPHY

[RDF00b] Resource Description Framework (RDF) Schema specification.
http://www.w3.org/TR/rdf-schema/, 2000.

[Red] Redland RDF Libraries. http://librdf.org/.

[Rei80] Raymond Reiter. A Logic for Default Reasoning. Arificial Intelli-
gence, 12:81–123, 1980.

[RFBLO01] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lasen, and Nosa
Omorogbe. The Architecture of a UML Virtual Machine. In Con-
ference on Object-Oriented Programming Systems, Languages and
Applications. ACM Press, 2001.

[Ros06] Riccardo Rosati. DL+log: Tight Integration of Description Logics
and Disjunctive Datalog. In KR, pages 68–78, 2006.

[RSS02] Mathieu Roger, Ana Simonet, and Michel Simonet. Toward Up-
dates in Description Logics. In Description Logics, 2002.

[Ses] Sesame: A Framework for storing, querying
and reasoning with RDF and RDF Schema.
http://www.openrdf.org/doc/sesame/users/index.html.

[Smi] Barry Smith. Ontology and Information Systems.
http://ontology.buffalo.edu/ontology(PIC).pdf.

[Sow] John Sowa. Agents.
http://www.jfsowa.com/ontology/agents.htm.

[Sow00] John Sowa. Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Brooks/Cole Publishing Co., Pacific
Grove, CA., 2000.

[SPQ06] SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2006.

[SWI] SWI-Prolog Semantic Web Library.
http://www.swi-prolog.org/packages/semweb.html.

[TRI] TRIPLE. A RDF Query, Inference, and Transformation Language
for the Semantic Web. http://triple.semanticweb.org/.

[TSG+06] Goce Trajcevski, Peter Scheuermann, Oliviu Ghica, Annika Hinze,
and Agnes Voisard. Evolving Triggers for Dynamic Environments.
In In Proc. Int. Conf. on Extending Database Technology (EDBT,
pages 1039–1048, 2006.

[Wel03] Christopher Welty. Ontology Research. AI Magazine, 24(3):11–12,
2003.

[ZU99] D. Zimmer and R. Unland. On the Semantics of Complex Events
in Active Database Management Systems. In Proceedings of the
15th International Conference on Data Engineering, pages 392–
399. IEEE Computer Society Press, 1999.

http://www.w3.org/TR/rdf-schema/
http://librdf.org/
http://www.openrdf.org/doc/sesame/users/index.html
http://ontology.buffalo.edu/ontology(PIC).pdf
http://www.jfsowa.com/ontology/agents.htm
http://www.w3.org/TR/rdf-sparql-query/
http://www.swi-prolog.org/packages/semweb.html
http://triple.semanticweb.org/

Acknowledgements

The writing of this thesis was not always an easy task. But there are
people who made this journey easier with words of encouragement
and more intellectually satisfying by offering different points of view.

In this respect, I would like to express my gratitude to Professor
Wolfgang May, who supervised this thesis. I am deeply indebted to
you for your constant help, for the constructive criticism, and for all
the stimulating discussions which helped me to weed out the weak
points in my argumentation.

Also I want to acknowledge the support that I received from partner,
Anke. You were a permanent source of motivation and gave me
great support. Moreover, I dare not imagine what this work would
look like without your invaluable advice on questions of style and
language.

Although not being mentioned, all other helpful hands and minds
have not been forgotten. I am deeply grateful to everyone who helped
in the completion of this work.

191

192

Curriculum Vitae

Franz Schenk
born 03.06.1971 in Tegernsee

12/2003 - Research Assistant, Universität Göttingen
07/2002 - 11/2003 Research Assistant, Universität Kassel
11/2001 - 02/2002 Scientific Programming

NovelScience, Göttingen
04/1997 - 10/2001 Georg-August-Universität Göttingen

Degree in Biology (Dipl.Biol.)
04/1995 - 04/1997 FU Berlin: Biology
10/1993 - 12/1994 Civil Service
09/1991 - 07/1993 Gymnasium Tegernsee (Abitur)
10/1990 - 03/1991 FH Weihenstephan: Biotechnology
10/1989 - 09/1990 FH München: Technische Physik
1987-1989 Fachoberschule Bad Tölz (Fachabitur)
1983-1987 Realschule Miesbach (Mittlere Reife)
1977-1983 Elementary School, Holzkirchen

193

	Abstract
	I Introduction and Conceptual Background
	Introduction
	Formal Preliminaries
	First-Order Logic
	Description Logics
	OWL and DL
	F-Logic
	Default Inheritance

	Towards the Semantic Web
	What is an Ontology?
	Knowledge in the Web
	Managing Knowledge
	RDF: A Data Model for the Semantic Web
	Querying Semantic Web Data: SPARQL
	OWL and Friends
	Hybrid Reasoning
	ECA Rules

	MARS
	Overview
	MARS Components
	ECA Rules in MARS
	ECA Rule Markup
	Opaque Rule Components
	Complex Actions
	Composite Events

	MARS Ontologies

	Domain Ontologies
	Events and Actions in Domain Ontologies
	Rule-Based Definitions
	Derivation Rules
	ECE Rules
	ACA Rules
	Dynamic Aspects of Actions and Events

	II SWAN
	Introduction
	SWAN Architecture
	RDF Storage
	User Interface

	Intensional Data: The Reasoning Layer
	Limitations of the DIG Interface
	Pellet

	Updates to the Knowledge Base
	Retract
	Assert

	Formal Specification of Updates
	Graph Updates
	Updates to Intensional and Derived Knowledge

	RDF Triggers
	Motivation
	Classification of Triggers
	Trigger Basics
	Notions of Change
	Pre-Reasoning Triggers
	Post-Reasoning Triggers
	Trigger Evaluation and Redundancy
	Actions in Trigger Definitions

	Formal Specification of Triggers
	Computing Changes
	Trigger Evaluation

	ACA Rules
	Wrapper Components
	An Application Domain Example
	Translating Actions into Updates
	Conditions in ACA rules

	Hybrid DL-F-Logic Reasoning
	Introduction
	F-Logic
	Basic Concepts
	Default Inheritance
	Comparison of F-Logic with DLs

	Florid
	Handling of URIs
	Built-In Predicates and Object Creation
	Architecture
	Florid Server

	Hybrid Reasoning in SWAN
	Evaluation Strategy
	Translation
	Handling of Default Inheritance Atoms
	Optimisations
	Limitations

	Application

	Logical Characterisation
	Integration into MARS
	Characterisation of Events
	Events and Rules

	Logical Characterisation of ACA Rules
	Axiomatising Knowledge Base Updates
	Reasoning About ACA Rules

	Logical Characterisation of Triggers
	Conclusion

	III Results
	Applicability
	Technical Details
	Scenario Description
	Rule Specifications
	Summary

	Discussion
	Limitations of DL Reasoning
	Application of Hybrid Reasoning
	Problems with Datatypes
	Practicability
	Related Work
	Further Work

	Conclusions
	List of Figures
	Bibliography
	Acknowledgements
	Curriculum Vitae

