Skip to main content

Machine Learning Techniques for Prostate Ultrasound Image Diagnosis

  • Chapter
Advances in Machine Learning I

Part of the book series: Studies in Computational Intelligence ((SCI,volume 262))

Abstract

Estimation of prostate location and volume is essential in determining a dose plan for ultrasound-guided brachytherapy, a common prostate cancer treatment. However, manual segmentation is difficult, time consuming and prone to variability. In this chapter, we present a machine learning scheme, employing a combination of fuzzy sets, wavelets and rough sets, for analyzing prostrate ultrasound images in order diagnose prostate cancer. To address the image noise problem we first utilize an algorithm based on type-II fuzzy sets to enhance the contrast of the ultrasound image. This is followed by performing a modified fuzzy c-mean clustering algorithm in order to detect the boundary of the prostate pattern. Then, a wavelet features are extracted and normalized, followed by application of a rough set analysis for discrimination of different regions of interest to determine whether they represent cancer or not. The experimental results obtained, show that the overall classification accuracy offered by the employed rough set approach is high compared with other machine learning techniques including decision trees, discriminant analysis, rough neural networks, and neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hassanien, A.E., Abraham, A., Peters, J.F., Schaefer, G., Henry, C.: Rough Sets and Near Sets in Medical Imaging: A Review. IEEE Trans. on Information Technology in Biomedicine (in press, 2009)

    Google Scholar 

  2. Hassanien, A.E., Abdelhafez, M.E., Own, H.S.: Rough Sets Data Analysis in Knowledge Discovery: A Case of Kuwaiti Diabetic Children Patients. Advances in Fuzzy System (2008)

    Google Scholar 

  3. Hassanien, A.E.: Fuzzy-rough hybrid scheme for breast cancer detection. Image and Computer Vision Journal 25(2), 172–183 (2007)

    Article  Google Scholar 

  4. Hassanien, A.E., Abraham, A.: Rough Morphology Hybrid Approach for Mammography Image Classification and Prediction. International Journal of Computational Intelligence and Applications 7(1), 17–42 (2008)

    Article  Google Scholar 

  5. Hassanien, A.E., Selzak, D.: Rough Neural Intelligent Approach for Image Classification: A Case of Patients with Suspected Breast Cancer. International Journal of Hybrid Intelligent Systems 3(4), 205–218 (2006)

    MATH  Google Scholar 

  6. Saad, A.S.: Visual enhancement of digital ultrasound images: wavelet versus Gauss-Laplace contrast pyramid. Int. J. CARS 2, 117–125 (2007)

    Article  Google Scholar 

  7. Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough Set Algorithms in Classification Problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica Verlag (2000)

    Google Scholar 

  8. Pous, C., Caballero, D., Lopez, B.: Diagnosing patients with a combination of principal component analysis and case based reasoning. International Journal of Hybrid Intelligent Systems 6(2), 111–122 (2009)

    Google Scholar 

  9. Ensafi, P., Tizhoosh, H.R.: Type-2 Fuzzy Image Enhancement. In: Kamel, M.S., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 159–166. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Magoulas, G.D., Prentza, A.: Machine learning in medical applications. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.) ACAI 1999. LNCS (LNAI), vol. 2049, pp. 300–307. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Schaefer, G., Hassanien, A.E., Jiang, J.: Computational Intelligence in Medical Imaging Techniques and Applications. CRC Press, Boca Raton (2008)

    Google Scholar 

  12. Greco, S., Inuiguchi, M., Slowinski, R.: Fuzzy rough sets and multiple-premise gradual decision rules. International Journal of Approximate Reasoning 41, 179–211 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Xiao, K., Ho, S.H., Hassanien, A.E.: Automatic Unsupervised Segmentation Methods for MRI Based on Modified Fuzzy C-Means. Fundam. Inform. 87(3-4), 465–481 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Lingras, P.: Rough neural networks. In: Proc. of the 6th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-based Systems, IPMU 1996, Granada, Spain, pp. 1445–1450 (1996)

    Google Scholar 

  15. Jain, L.C., Lim, C.P., Nguyen, N.T.: Recent advances in intelligent paradigms fusion and their applications. International Journal of Hybrid Intelligent Systems 5(3), 109–110 (2008)

    MathSciNet  Google Scholar 

  16. Hirano, S., Sun, X., Tsumoto, S.: Dealing with Multiple Types of Expert Knowledge in Medical Image Segmentation: A Rough Set Style Approach. In: IEEE Inter. Conf. on Fuzzy systems, May 12-17, vol. 2, pp. 884–889 (2002)

    Google Scholar 

  17. Peters, J.F.: Near sets. Toward approximation space-based object recognition. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 22–33. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Peters, J.F.: Near sets: general theory about nearness of objects. Applied Mathematical Sciences 1(53), 2609–2629 (2007)

    MATH  MathSciNet  Google Scholar 

  19. Peters, J.F.: Tolerance near sets and image correspondence. International Journal of Bio-Inspired Computation 1(4), 239–245 (2009)

    Article  Google Scholar 

  20. Peters, J.J.F., Ramanna, S.: Feature selection: Near set approach. In: Raś, Z.W., Tsumoto, S., Zighed, D.A. (eds.) MCD 2007. LNCS (LNAI), vol. 4944, pp. 57–71. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Peters, J.F., Wasilewski, P.: Foundations of Near Sets. Information Sciences. An International Journal 26, 1–35 (2009)

    Google Scholar 

  22. Peters, J.F., Puzio, L.: Anisotropic wavelet-based image nearness measure. Int. J. of Computational Intelligence Systems (in press, 2009)

    Google Scholar 

  23. Kerre, E., Nachtegael, M.: Fuzzy techniques in image processing: Techniques and applications. Studies in Fuzziness and Soft Computing, vol. 52. Physica Verlag, Heidelberg (2000)

    MATH  Google Scholar 

  24. Hu, Q., Xie, Z., Yu, D.: Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognition 40(12), 3509–3521 (2007)

    Article  MATH  Google Scholar 

  25. Martinez, C., Dall Oglio, M., Nesrallah, L., et al.: Predictive value of PSA velocity over early clinical and pathological parameters in patients with localized prostate cancer who undergo radical retropubic prostatectomy. Int. Braz. J. Urol. 30(1), 12–17 (2004)

    Article  Google Scholar 

  26. Nelson, D.E., Starzyk, J.A., Ensley, D.D.: Iterated Wavelet Transformation and Signal Discrimination for HRR Radar Target Recognation. IEEE Trans. on Systems, Man, and Cybernetic-part-A, System and Human 33(1), 52–57 (2002)

    Article  Google Scholar 

  27. Chandana, S., Mayorga, R.V.: RANFIS: Rough Adaptive Neuro-Fuzzy Inference System. International Journal of Computational Intelligence 3(4), 289–295

    Google Scholar 

  28. Pal, S.K.: Rough-Fuzzy Granulation, Rough Entropy and Image Segmentation. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, p. 31. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Scheipers, U., Pesavento, A., Ermert, H., J-Sommerfeld, H., Garcia-Schurmann, M., Kuhne, K., Senge, T., Philippau, S.: Ultrasound Multifeature Tissue Characterization for The Early Detection of Prostate Cancer. In: IEEE Ultrasonics Symposium, pp. 1265–1268 (2001)

    Google Scholar 

  30. Starck, J.L., Murtagh, F., Gastaud, R.: New Entropy Measure on the Wavelet Transform and Noise Modeling. IEEE Trans. on Circuits and Systems-II: analog and Digital Signal Processing 45(8), 1118–1124 (1998)

    Article  MATH  Google Scholar 

  31. Mallat, S.G.: A Theory for Multi-resolution Signal Decomposition: The Wavelet Representation. IEEE Trans. on Pattern Analysis and Machine Intelligence II(7), 674–693 (1989)

    Google Scholar 

  32. Shen, J.: A note on wavelets and diffusions. J. Comp. Anal. Appl. 5, 147–159 (2003)

    MATH  Google Scholar 

  33. Han, S.M., Lee, H.J., Choi, J.Y.: Computer-aided Prostate Cancer Detection using Texture Features and Clinical Features in Ultrasound Image. Journal of Digital Imaging 21(suppl. 1), 121–133 (2008)

    Article  Google Scholar 

  34. Zhou, H., Schaefer, G., Shi, C.: Fuzzy C-Means Techniques for Medical Image Segmentation. In: Fuzzy Systems in Bioinformatics and Computational Biology. Studies in Fuzziness and Soft Computing, vol. 242, pp. 257–271. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  35. Goswami, J., Chan, A.K.: Fundamentals of Wavelets, Theory, Algorithms and Applications. John Wiley & Son, Inc., Chichester (1999)

    Google Scholar 

  36. Own, H.S., Hassanien, A.E.: Image Registration Based in Multiresolution Local Contrast Entropy in Wavelet Transform Domain. In: IEEE 14th Inter. Conf. in Digital Signal Processing, Greece, July 1-3, vol. 2, pp. 889–892 (2002)

    Google Scholar 

  37. Pawlak, Z.: Rough Sets- Theoretical aspect of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  38. Perez-Cortes, J.C., Juan, A., Vallada, E.: Textural Analysis of Prostate Cancer In Ttansrectal Ultrasound Images. Biosignal (2002), http://prhlt.iti.es/papers/2002/Perez02.pdf

  39. Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  40. Pawlak, Z.: Rough sets. International J. Comp. Inform. Science 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough Sets. Communications of the ACM 38(11), 88–95 (1995)

    Article  Google Scholar 

  42. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ella Hassanien, A., Al-Qaheri, H., Snášel, V., Peters, J.F. (2010). Machine Learning Techniques for Prostate Ultrasound Image Diagnosis. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning I. Studies in Computational Intelligence, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05177-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05177-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05176-0

  • Online ISBN: 978-3-642-05177-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics