Transfer Learning via Advice Taking

Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

Abstract The goal of transfer learning is to speed up learning in a resk by
transferring knowledge from one or more related sourcestadle describe a trans-
fer method in which a reinforcement learner analyzes itseggpce in the source
task and learns rules to use as advice in the target task ulé® which are learned
via inductive logic programming, describe the conditionsler which an action is
successful in the source task. The advice-taking algoritlsed in the target task
allows a reinforcement learner to benefit from rules evemdytare imperfect. A
human-provided mapping describes the alignment betweersdhrce and target
tasks, and may also include advice about the differenceggeetthem. Using three
tasks in the RoboCup simulated soccer domain, we demosdhvat this transfer
method can speed up reinforcement learning substantially.

1 Introduction

Machine learning tasks are often addressed independemitier the implicit as-
sumption that each new task has no exploitable relationddabks that came be-
fore. Transfer learnings a machine learning paradigm that rejects this assumption

Lisa Torrey
University of Wisconsin, Madison WI 53706, USA e-mail: ltorrey@wisc.edu

Jude Shavlik
University of Wisconsin, Madison WI 53706, USA e-mail: shavlik@dsc.edu

Trevor Walker
University of Wisconsin, Madison WI 53706, USA e-mail: twalkergwisc.edu

Richard Maclin
University of Minnesota, Duluth, MN 55812, USA e-mail: rmaclig@ail.com

Appears inrRecent Advances in Machine Learnidgdicated to the memory of Ryszard S. Michal-
ski, published in the Springer Studies in Computational ligefice, edited by J. Koronacki, S.
Wirzchon, Z. Ras and J. Kacprzyk, 2009.



2 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

higher slope higher asymptote
!
o | | e
o
c o
©
S .
A with transfer
“5 — without transfer
o higher start
training

Fig. 1 Three ways in which transfer might improve reinforcement laagni

and uses known relationships between tasks to improveitepriihe goal of trans-
fer is to improve learning in garget taskby transferring knowledge from a related
source task

One context in which transfer learning can be particulaggful isreinforcement
learning (RL), where an agent learns to take actions in an environrneergceive
rewards [26]. Complex RL tasks can require very long tragniitmes. However,
when learning a new task in the same domain as previouslgddaasks, there are
opportunities for reducing the training times through &fam.

There are three common measures by which transfer mightoveplearning
in RL. First is the initial performance achievable in thegetrtask using only the
transferred knowledge, before any further learning is daoepared to the initial
performance of an ignorant agent. Second is the amount @& iirakes to fully
learn the target task given the transferred knowledge coadp# the amount of
time to learn it from scratch. Third is the final performaneedl achievable in the
target task compared to the final level without transferukégl illustrates these
three measures.

Our transfer method learnskills from a source task that may be useful in a
target task. Skills are rules in first-order logic that désewhen an action should be
successful. For example, suppose an RL soccer player hragtean a source task,
to pass to its teammates in a way that keeps the ball fromdgiltito the opponents’
possession. In the target task, suppose it must learn towitimkeammates to score
goals against opponents. If this player could rememberassing skills from the
source task, it should master the target task more quickly.

Even when RL tasks have shared actions, transfer betweem itha difficult
problem because differences in reward structures cretieggatices in the results of
actions. For example, the passing skill in the source taskels incomplete for the
target task — in the target, unlike the source, passing neexsise progress toward
the goal in addition to maintaining ball possession. Thitidates that RL agents
using transferred information must continue to learnfglin gaps left by transfer.
Since transfer might also produce partially irrelevantrararrect skills, RL agents
must also be able to modify or ignore transferred infornratimat is imperfect. Our
transfer method allows this by applying skills advice with a learning algorithm
that treats rules as soft constraints.



Transfer Learning via Advice Taking 3

We require a human observer to providenappingbetween the source and tar-
get task. A mapping describes the structural similaritiesveen the tasks, such as
correspondences between player objects in the examplealbavight also include
simple advice that reflects the differences between thestdskour example, ad-
ditional advice like “prefer passing toward the goal” antidst when close to the
goal” would be helpful.

Our chapter’s presence in this memorial volume is due to tag thvat our work
touches on several topics of interest to Professor Rysz&tdski. He contributed
significantly to the area of rule learning in first-order logiL4], which we use to
learn skills for transfer. He also did important work invisly expert advice [2],
which has connections to our advice-taking methods, anbbgical learning [15],
which is closely related to transfer learning.

The rest of the chapter is organized as follows. Section 2iges background
information on RL: an overview, and a description of our sl RL and advice-
taking RL implementations. Section 3 presents RoboCuplsiledi soccer and ex-
plains how we learn tasks in the domain with RL. Section 4 jgles background
information on inductive logic programming, which is the chane-learning tech-
nique we use to learn skills. Section 5 then describes onsfea method, with ex-
perimental results in Section 6. Section 7 surveys soméeblaork, and Section 8
reflects on some interesting issues that our work raises.

2 Background on Reinforcement Learning

A reinforcement learning agent operates in a episodic s#@keontrol environ-
ment. It senses thstateof the environment and perfornationsthat change the
state and also triggeewards Its objective is to learn a policy for acting in order to
maximize its cumulative reward during an episode. Thislve® solving a temporal
credit-assignment problem, since an entire sequence iohaathay be responsible
for a single reward received at the end of the sequence.

A typical RL agent behaves according to the diagram in Figuekt time stegt,
it observes the current stadeand consults its current policy to choose an action,
n(s) = &. After taking the action, it receives a rewarchnd observes the new state
S+1, and it uses that information to update its policy beforecegjmg the cycle.
Often RL consists of a sequenceagfisodeswhich end whenever the agent reaches
one of a set of ending states (e.g. the end of a game).

Formally, a reinforcement learning domain has two undagyiunctions that
determine immediate rewards and the state transitionsr&kerd functiorr (s,a)
gives the reward for taking actianin states, and the transition functiod(s,a) gives
the next state the agent enters after taking acionstates. If these functions are
known, the optimal policy™ can be calculated directly by maximizing thielue
functionat every state. The value functidfx(s) gives the discounted cumulative
reward achieved by policy starting in state (see Equation 1).



4 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

‘ Environment ‘
ot |
So 8 fg ... S; @ r; .. time
.

‘ Agent ‘

Fig. 2 Areinforcement learning agent interacts with its environtiemeceives information about
its state (s), chooses an action to take (a), receives a revyaeah¢rthen repeats.

Vi(s) = re+ Yresr + VZI’H.Z + ... (1)

The discount factoy € [0,1]. Settingy < 1 gives later rewards less impact on the
value function than earlier rewards, which may be desirédni¢éasks without fixed
lengths.

During learning, the agent must balance betwegploitingthe current policy
(acting in areas that it knows to have high rewards) exgloringnew areas to find
higher rewards. A common solution is tlgegreedy method, in which the agent
takes random exploratory actions a small fraction of theet{en< < 1), but usually
takes the action recommended by the current policy.

Often the reward and transition functions are not known, thedefore the opti-
mal policy cannot be calculated directly. In this situatione applicable RL tech-
nigue isQ-learning [36], which involves learning @-function instead of a value
function. TheQ-function,Q(s,a), estimates the discounted cumulative reward start-
ing in states and taking actiora and following the current policy thereafter. Given
the optimalQ-function, the optimal policy is to take the actiargmaxQ(s,a). RL
agents in deterministic worlds can begin with an inaccu€afieinction and recur-
sively update it after each step according to the rule in Eqo&.

Qs a) «— re+ymax Q(s+1,a) 2

In this equation, the current estimate dQavalue on the right is used to produce
a new estimate on the left. In the SARSA variant [26], the netingate uses the
actuala; 1 instead of thea with the highesQ-value ins 1; this takes the-greedy
action selections into account. In non-deterministic ¥®rh learning rate € (0, 1]
is required to form a weighted average between the old ettiarad the new one.
Equation 3 shows the SARSA update rule for non-determawstirlds.

Q(s.a) «— (1—a) Q(s, &)+ a (rt+yQ(sts1.a41)) (3)

While these equations give update rules that look just oreedtead, it is pos-
sible to perform updates over multiple steps. In tempoitf¢i@nce learning [25],
agents can combine estimates over multiple lookaheadhdissa

When there are small finite numbers of states and actionQthaction can
be represented in tabular form. However, some RL domaing Btates that are
described by very large feature spaces, or even infinitewhes continuous-valued



Transfer Learning via Advice Taking 5

features are present, making a tabular representatioadifie. A solution is to use a
function approximator to represent tefunction (e.g., a neural network). Function
approximation has the additional benefit of providing gatization across states;
that is, changes to th@-value of one state affect th@-values of similar states.

Under certain condition®-learning is guaranteed to converge to an accugate
function [37]. Although these conditions are typically fted (by using function
approximation, for example) the method can still produaecessful learning. For
further information on reinforcement learning, there amrendetailed introductions
by Mitchell [16] and Sutton and Barto [26].

2.1 Performing RL with Support Vector Regression

Our implementation is a form @-learning called SARSAX), which is the SARSA

variant combined with temporal-difference learning. Weresent the state with
a set of numeric features and approximate @éunction for each action with a
weighted linear sum of those features, learned via suppmter regression (SVR).
To find the feature weights, we solve a linear optimizatioolgbem, minimizing the

following quantity:

ModelSize+ C x DataMisfit

Here ModelSizeis the sum of the absolute values of the feature weights, and
DataMisfit is the disagreement between the learned function’s outants the
training-example outputs (i.e., the sum of the absolutaesbf the differences for
all examples). The numeric parame@specifies the relative importance of mini-
mizing disagreement with the data versus finding a simpleahod

Most Q-learning implementations make incremental updates t@fenctions
after each step the agent takes. However, completely vérgahe SVR optimiza-
tion problem after each data point would be too computatipir@ensive. Instead,
our agents perform batches of 25 full episodes at a time asdlve the optimiza-
tion problem after each batch.

Formally, for each action the agent finds an optimal weiglotamen that has one
weight for each feature in the feature veckoiThe expected-value of taking an
action from the state described by vectas wx-+ b, whereb is a scalar offset. Our
learners use the-greedy exploration method.

To compute the weight vector for an action, we find the subSeaiming exam-
ples in which that action was taken and place those featur®nrgeinto rows of a
data matrixA. WhenA becomes too large for efficient solving, we begin to discard
episodes randomly such that the probability of discardimgp@isode increases with
the age of the episode. Using the current model and the aswalds received in
the examples, we compu@value estimates and place them into an output vector
y. The optimal weight vector is then described by Equation 4.

Aw+b¥€ =y (4)



6 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

where € denotes a vector of ones (we omit this for simplicity from nom).

Our matrixA contains 75% exploitation examples, in which the actiohésdne
recommended by the current policy, and 25% exploration gtesn in which the
action is off-policy. We do this so that bad moves are notdten, as they could
be if we used almost entirely exploitation examples. Whenmetlage not enough
exploration examples, we create synthetic ones by randohdgsing exploitation
steps and using the current model to score unselected adtinthose steps.

In practice, we prefer to have non-zero weights for only a fewortant fea-
tures in order to keep the model simple and avoid overfittivegttaining examples.
Furthermore, an exact linear solution may not exist for amgmytraining set. We
therefore introducslackvariabless that allow inaccuracies on some examples. The
resulting minimization problem is

min |[wl[1+v|b| +ClIs]l1
(whs) (5)

st. —s<Aw+b-y<s.

where|- | denotes an absolute valyg,||1 denotes the one-norm (a sum of absolute
values), andv is a penalty on the offset term. By solving this problem, we ca
produce a weight vectar for each action that compromises between accuracy and
simplicity. We letC decay exponentially over time so that solutions may be more
complex later in the learning curve.

Several other parameters in our system also decay expaltgmver time: the
temporal-difference paramet@r, so that earlier episodes combine more lookahead
distances than later ones; the learning matso that earlier episodes tend to produce
larger Q-value updates than later ones; and the explorationgas® that agents
explore less later in the learning curve.

2.2 Performing Advice Takingin RL

Advice taking is learning with additional knowledge thatyrize imperfect. It at-
tempts to take advantage of this knowledge to improve laggrbut avoids trusting
it completely. Advice often comes from humans, but in ourkibrlso comes from
automated analysis of successful behavior in a source task.

We view advice as a set of soft constraints on@inction of an RL agent. For
example, here is a vague advice rule for passing in soccer:

IF anopponent is near menD
a teammate is open
THEN passhas a highQ-value

In this example, there are two conditions describing theestdthe agent’s en-
vironment: an opponent is nearby and there is an unblock#ddtpaa teammate.
These form theF portion of the rule. TherHEN portion gives a constraint on the



Transfer Learning via Advice Taking 7

Q-function that the advice indicates should hold when thérenment matches the
conditions.

In our advice-taking system, an agent can follow advicey éwllow it approx-
imately (which is like refining it), or ignore it altogethaNe extend the support-
vector regression technique described in Section 2.1 toraplish this. Recall that
Equation 5 describes the optimization problem for learrthgyweights that deter-
mine an action'®Q-function. We incorporate advice into this optimizatioroblem
using a method called Knowledge-Based Kernel RegressiBiKR), designed by
Mangasarian et al. [12] and applied to reinforcement lewyiy Maclin et al. [8].

An advice rule creates new constraints on the problem swiuti addition to
the constraints from the training data. In particular, simge use an extension of
KBKR called Preference-KBKR [9], our advice rules give citioths under which
one action is preferred over another action. Our adviceetoee takes the following
form:

Bx< d = Qp(X) —Qn(x) > B, (6)
This can be read as:

If the current state satisfi@x < d, then theQ-value of the preferred actiomshould exceed
that of the non-preferred actionby at leasi3.

For example, consider giving the advice that actids better than action when
the value of feature 5 is at most 10. The vedBowould have one row with a 1 in
the column for feature 5 and zeros elsewhere. The vettould contain only the
value 10, angB could be set to some small positive number.

Just as we allowed some inaccuracy on the training examplEguation 5, we
allow advice to be followed only partially. To do so, we irdiee slack variables
and penalty parametegsfor trading off the impact of the advice with the impact of
the training examples. Over time, we degao that advice has less impact as the
learner gains more experience.

The new optimization problem [9] solves tkgfunctions for all the actions si-
multaneously so that it can apply constraints to their ietatalues. Multiple pieces
of preference advice can be incorporated, each with itsByeh p, n, andf, which
makes it possible to advise taking a particular action btirggahat it is preferred
over all the other actions. We use the CPLEX commercial softwio solve the
resulting linear program. We do not show the entire fornaian here, but it mini-
mizes the following quantity:

ModelSize+ C x DataMisfit+ p x AdviceMisfit

We have also developed a variant of Preference-KBKR calie¢edrfKBKR [10]
that incorporates advice in a way that allows for faster fobsolving. We will not
present this variant in detail here, but we do use it for i@na&hen there is more
advice than Preference-KBKR can efficiently handle.



8 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

(€} © Q Q
3 > 5
& 2 3 (3
S 3
(@) o (¢)
KeepAway BreakAway MoveDownfield

Fig. 3 Snapshots of RoboCup soccer tasks. In KeepAway, the keepershpasalltaround and
keep it away from the takers. In BreakAway, the attackersngiteto score a goal against the
defenders. In MoveDownfield, the attackers attempt to movedliedward the defenders’ side.

3 RoboCup: A Challenging Reinforcement L earning Domain

One motivating domain for transfer in reinforcement leagiis RoboCup simulated
soccer. The RoboCup project [17] has the overall goal of peody robotic soccer
teams that compete on the human level, but it also has a seftsuaulator for
research purposes. Stone and Sutton [24] introduced RgbaSwan RL domain
that is challenging because of its large, continuous stateesand nondeterministic
action effects.

Since the full game of soccer is quite complex, researchers eveloped sev-
eral smaller games in the RoboCup domain (see Figure 3).eTaesinherently
multi-agent games, but a standard simplification is to hang one agent (the one
in possession of the soccer ball) learning at a time usingaeeshmodel built with
data combined from all the players on its team.

The first RoboCup task we useNt-on-N KeepAway [24], in which the objective
of theM reinforcement learners callé@eperss to keep the ball away fromd hand-
coded players callethkers The keeper with the ball may choose either to hold it
or to pass it to a teammate. Keepers without the ball follovaadhcoded strategy
to receive passes. The game ends when an opponent takedl threwdzen the ball
goes out of bounds. The learners receive a +1 reward for éaehstep their team
keeps the ball.

Our KeepAway state representation is the one designed Ioy Siad Sutton [24].
The features are listed in Table 1. The keepers are orderd¢hdiydistance to the
learnerkO, as are the takers.

Note that we present these features as predicates in fist-twgic. Variables
are capitalized and typedPlayer, Keeper etc.) and constants are uncapitalized.
For simplicity we indicate types by variable names, leavang implied terms like
player(Player) keeper(Keeper)etc. Since we are not using fully relational rein-
forcement learning, the predicates are actually grounaeidused as propositional
features during learning. However, since we transferictal information, we rep-
resent them in a relational form here.



Transfer Learning via Advice Taking 9

Table 1 Feature spaces for RoboCup tasks. The functiomDistTaker(Keepergnd minAngle-
Taker(Keepergvaluate to the player objed, t1, etc. that are closest in distance and angle re-
spectively to the given Keeper object. Similarly, the funetiminDistDefender(Attackegndmi-
nAngleDefender(Attackeevaluate to the player objeat§, d1, etc.

KeepAway features

distBetween(kO, Player) Playee {k1, k2, ..} U {t0,t1, ..}
distBetween(Keeper, minDistTaker(Keeper)) Keepdikl, k2, ..}
angleDefinedBy(Keeper, kO, minAngleTaker(Keeper)) Keepékl, k2, ..}
distBetween(Player, fieldCenter) Player {kO, k1, ..} U {tO, t1, ..}
MoveDownfield features

distBetween(a0, Player) Player {al, a2, .} U {d0, d1, ..}
distBetween(Attacker, minDistDefender(Attacker)) Attacke{al, a2, .}
angleDefinedBy(Attacker, a0, minAngleDefender(Attackértackere {al, a2, .}
distToRightEdge(Attacker) Attacker {a0, al, .}

timeLeft

BreakAway features

distBetween(a0, Player) Playee {al, a2, .} U {dO, d1, ..}
distBetween(Attacker, minDistDefender(Attacker)) Attacke{al, a2, .}
angleDefinedBy(Attacker, a0, minAngleDefender(Attackértackere {al, a2, .}
distBetween(Attacker, goalPart) Attacker{a0, a1, .}
distBetween(Attacker, goalie) Attacker{a0, a1, .}
angleDefinedBy(Attacker, a0, goalie) Attacke{al, a2, .}
angleDefinedBy(GoalPart, a0, goalie) GoalRaftright, left, cente}
angleDefinedBy(topRightCorner, goalCenter, a0)

timeLeft

A second RoboCup task M-on-N MoveDownfield, where the objective of the
M reinforcement learners calledtackersis to move across a line on the opposing
team’s side of the field while maintaining possession of thié Bhe attacker with
the ball may choose to pass to a teammate or to move ahead leftjayr right with
respect to the opponent’s goal. Attackers without the leditbév a hand-coded strat-
egy to receive passes. The game ends when they cross the/ier,an opponent
takes the ball, when the ball goes out of bounds, or after a timit of 25 sec-
onds. The learners receive symmetrical positive and negedivards for horizontal
movement forward and backward.

Our MoveDownfield state representation is the one presénfeatrey et al. [32].
The features are listed in Table 1. The attackers are ordsréldeir distance to the
learneraQ, as are the defenders.

A third RoboCup task idM-on-N BreakAway, where the objective of thé at-
tackers is to score a goal agaiét- 1 hand-codedlefendersand a hand-coded
goalie The attacker with the ball may choose to pass to a teamnoatge ahead,



10 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

away, left, or right with respect to the opponent’s goal,mshoot at the left, right,

or center part of the goal. Attackers without the ball follevhand-coded strategy
to receive passes. The game ends when they score a goal, wlogpanent takes
the ball, when the ball goes out of bounds, or after a timetlohiLlO seconds. The
learners receive a +1 reward if they score a goal, and zerarteatherwise.

Our BreakAway state representation is the one presentedriryl et al. [33].
The features are listed in Table 1. The attackers are ordsréldeir distance to the
learneraQ, as are the non-goalie defenders.

Our system discretizes each feature in these tasks intde32 ¢iach of which is
associated with a Boolean feature. For example, the tiletéerbydistBetween(ao,
al)ig2g takes value 1 whealis between 10 and 20 units away fraa® and O
otherwise. Stone and Sutton [24] found tiling to be impadrfantimely learning in
RoboCup.

The three RoboCup games have substantial differencestimrésaactions, and
rewards. The goal, goalie, and shoot actions exist in Breay/ut not in the other
two tasks. The move actions do not exist in KeepAway but dchéndther two
tasks. Rewards in KeepAway and MoveDownfield occur for imeatal progress,
but in BreakAway the reward is more sparse. These differenoean the solutions
to the tasks may be quite different. However, some knowledgmild clearly be
transferable between them, since they share many featudesoane actions, such as
thepassaction. Furthermore, since these are difficult RL tasksedjpey up learning
through transfer would be desirable.

4 Inductive L ogic Programming

Inductive logic programming (ILP) is a technique for leangiclassifiers in first-
order logic [16]. Our transfer algorithms uses ILP to extracowledge from the
source task. This section provides a brief introductiorLt® |

4.1 What ILP Learns

An ILP algorithm learns a set of first-order clauses, usuadfinite clauses. A def-
inite clause has aead which is a predicate that is implied to be true if the con-
junction of predicates in thiodyis true. Predicates describe relationships between
objects in the world, referring to objects either as constéower-case) or variables
(upper-case). In Prolog notation, the head and body areatepaby the symbol :-
denoting implication, and commas denotangd separate the predicates in the body,
as in the rest of this section.

As an example, consider applying ILP to learn a clause desgiwhen an ob-
ject in an agent’s world is at the bottom of a stack of objeTtse world always
contains the objedioor, and may contain any number of additional objects. The



Transfer Learning via Advice Taking 11

configuration of the world is described by predicatesckedOn(Obj1, Obj2here
ObjlandObj2 are variables that can be instantiated by the objects, sich a

stackedOn(chair, floor).
stackedOn(desk, floor).
stackedOn(book, desk).

Suppose we want the ILP algorithm to learn a clause that eaj@BottomOfS-
tack(Obj)is true whenObj = deskbut not whenObj € {floor, chair, book. Given
those positive and negative examples, it would learn tHeviahg clause:

isBottomOfStack(Obj) :-
stackedOn(Obj, floor),
stackedOn(OtherObj, Obj).

That is, an object is at the bottom of the stack if it is on therfland there exists
another object on top of it. On its way to discovering the eotrclause, the ILP
algorithm would probably evaluate the following clause:

isBottomOfStack(Obj) :-
stackedOn(Obj, floor).

This clause correctly classifies 3 of the 4 objects in the dydolut incorrectly
classifiexchair as positive. In domains with noise, a partially correct skalike this
might be optimal, though in this case the concept can bedelaeractly.

Note that the clause must be first-order to describe the ghreactly: it must
include the variable®bj andOtherObj First-order logic can posit the existence of
an object and then refer to properties of that object. Mosthimee learning algo-
rithms usepropositionallogic, which does not include variables, but ILP is able to
use a more powerful and natural type of reasoning.

In many domains, the true concept is disjunctive, meaniagrtultiple clauses
are necessary to describe the concept fully. ILP algorittimasefore typically at-
tempt to learn a set of clauses rather than just one. Theees#ttrof clauses is called
atheory.

4.2 How ILP Learns

There are several types of algorithms for producing a setref-dirder clauses,
including Michalski’'s AQ algorithm [14]. This section fosas on the Aleph sys-
tem [23], which we use in our experiments.

Aleph constructs a ruleset througkquential coveringt performs a search for
the rule that best classifies the positive and negative eleanfaccording to a user-
specified scoring function), adds that rule to the theory, tuen removes the posi-
tive examples covered by that rule and repeats the procegseaemaining exam-
ples.

The default procedure Aleph uses in each iteration is a sgtigearch. It ran-
domly chooses a positive example as sieedfor its search for a single rule. Then



12 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

it lists all the predicates in the world that are true for teed. This list is called the
bottom clausgand it is typically too specific, since it describes a siregtample in
great detail. Aleph conducts a search to find a more geneaabkel (a variablized
subset of the predicates in the bottom clause) that maxiie scoring function.
The search process is top-down, meaning that it begins witmgpty rule and adds
predicates one by one to greedily maximize a scoring functio

Our rule-scoring function is the F(1) measure, which rebesthe concepts of
precisionandrecall. Theprecisionof a rule is the fraction of examples it calls pos-
itive that are truly positive, and thecall is the fraction of truly positive examples
that it correctly calls positive. The F(1) measure combihestwo:

F(1) = 2x Precisionx Recall
" Precisior+ Recall

An alternative Aleph procedure that we also use is a randedrsearch [34]. This
also uses a seed example and generates a bottom clauseydming by randomly
drawing a legal clause of lengthfrom the bottom clause. It then makes local moves
by adding and removing literals from the clause. Aftéfocal moves, and possibly
K repeats of the entire process, it returns the highestssgoule encountered.

5 Skill Transfer in RL via Advice Taking

Our method for transfer in reinforcement learning, calgkdl transfer, begins by
analyzing games played by a successful source-task agging the ILP algorithm
from Section 4.2, it learns first-order rules that desciskéls. We define a skill
as a rule that describes the circumstances under which @mnastlikely to be
successful [32]. Our method then uses a human-providedimapptween the tasks
to translate skills into a form usable in the target taskafynit applies the skills as
advice in the target task, along with any additional humancaq using the KBKR
algorithm from Section 2.2.

Figure 4 shows an example of skill transfer from KeepAway tedkAway. In
this example, KeepAway games provide training exampleshferconcept “states
in which passing to a teammate is a good action,” and ILP teamle representing
thepassskill, which is mapped into advice for BreakAway.

We learn first-order rules because they can be more genenalgtopositional
rules, since they can contain variables. For example, thepass(Teammatéa}
likely to capture the essential elements of the passing s&iter than rules for
passing to specific teammates. We expect these common Iskileats to transfer
better to new tasks.

In a first-order representation, corresponding feature aatibn predicates can
ideally be made identical throughout the domain so thatetliemo need to map
them. However, we assume the user provides a mapping betagieal objects in
the source and target tasks (elfdin KeepAway maps ta0in BreakAway).



Transfer Learning via Advice Taking 13

Trai ni ng exanpl es Skill concept
State 1: T pass(Teammate) : -
— di st Bet ween( kO, Teanmate) > 14,
di st Bet ween( kO, k1) 10 ILP di st Bet ween(k0,t0) < 7.

di st Bet ween( kO, k2) 15

di st Bet ween(k0,t0) = 6 ‘ Mappi ng

L Advi ce

action = pass(k2) IF  distBetween(a0,a2) > 14
out conme = caught (k2) di st Bet ween( a0, d0) < 7

THEN pref er pass(a2)

Fig. 4 Example showing how we transfer skills. We provide positive ancatieg source-task
examples ofpassactions to ILP, which learns a rule describing thassskill, and we apply a
mapping to produce target-task advice.

The actions in the two tasks need not have one-to-one camdspces. If an
action in the source does not exist in the target, we do netrgtdt to transfer a skill
for it. The feature sets also do not need to have one-to-amesmmondences, because
the ILP search algorithm can limit its search space to ordgéhfeature predicates
that are present in the target task. We therefore allow oedyure predicates that
exist in the target task to appear in advice rules. This otbe algorithm to find
skill definitions that are applicable to the target task.

5.1 Learning Skillsin a Source Task

For each action, we conduct a search with ILP for the rule whith highest F(1)
score. To produce datasets for this search, we examines dtate games in the
source task and select positive and negative examples.lINtates should be used
as training examples; some are not unambiguously positivegative and should
be left out of the datasets. These states can be detectedkigdat theirQ-values,
as described below. Figure 5 summarizes the overall praggssan example from
RoboCup.

In a good positive example, several conditions should be thetskill is per-
formed, the desired outcome occurs (e.g. a pass reachegeitgled recipient), the
expected)-value (using the most rece@tfunction) is above the 10th percentile in
the training set and is at least 1.05 times the predi€eelues of all other actions.
The purpose of these conditions is to remove ambiguous eeartpwhich several
actions may be good or no actions seem good.

There are two types of good negative examples. These conslitlescribe one
type: some other action is performed, that actid@*salue is above the 10th per-
centile in the training set, and tl@@value of the skill being learned is at most 0.95
times thatQ-value and below the 50th percentile in the training set.sEheondi-
tions also remove ambiguous examples. The second type dfrgggative example



14 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

no

‘ action = pass(Teammate) ? ‘

‘ yes

‘ outcome = caught(Teammate) ? F no
no -
¥ s 0. some acion good? |
no
‘ pass(Teammate) good? ‘— ‘ yes
‘ yes no | pass(Teammate)
pass(Teammate) no clearly bad?
clearly best? E—
‘ yes 4 yes
Positive example for Reject Negative example
pass(Teammate) example for pass(Teammate)

Fig. 5 Example of how our algorithm selects training examples for skill

includes states in which the skill being learned was takdrthmidesired outcome
did not occur.

To make the search space finite, it is necessary to repladegouns features
(like distances and angles) with finite sets of discreteufest For example, the
rule in Figure 4 contains the Boolean constraiigtBetween(k0,t0% 7, derived
from the continuous distance feature. Our algorithm finés2h thresholds with the
highest information gain and allows the intervals above lagldw those thresholds
to appear as constraints in rules. Furthermore, we allowoupdonstraints in each
rule. We found these parameters to produce reasonablengitimies for RoboCup,
but they would need to be adjusted appropriately for othenalos.

5.2 Mapping Skillsfor a Target Task

To convert a skill into transfer advice, we need to apply ajectbmapping and
propositionalize the rule. Propositionalizing is necegbacause our KBKR advice-
taking algorithm only works with propositional advice. $tautomated process pre-
serves the meaning of the first-order rules without losingiaformation, but there
are several technical details involved.

First we instantiate skills likgpass(Teammatdpr the target task. For 3-on-2
BreakAway, this would produce two rulepass(al)and pass(a2) Next we deal
with any other conditions in the rule body that contain vales. For example, a
rule might have this condition:

10 < distBetween(a0, Attackery 20

This is effectively a disjunction of conditions: either tHistance toal or the
distance ta2is in the interval10, 20]. Since disjunctions are not part of the advice
language, we use tile features to represent them. Recale#th feature range is



Transfer Learning via Advice Taking 15

divided into Boolean tiles that take the value 1 when theufieatalue falls into their
interval and O otherwise. This disjunction is satisfied ifegtst one of several tiles
is active; for 3-on-2 BreakAway this is:

distBetween(a0, ah)oq + distBetween(a0, aghq > 1

If these exact tile boundaries do not exist in the target,task add new tile
boundaries to the feature space. Thus transfer advice cexpessed exactly even
though the target-task feature space is unknown at the tienedurce task is learned.

It is possible for multiple conditions in a rule to refer teetekame variable. For
example:

distBetween(a0, Attacker} 15,
angleDefinedBy(Attacker, a0, ClosestDefende}5

Here the variableAttackerrepresents the same object in both clauses, so the
system cannot propositionalize the two clauses separ#tstgad, it defines a new
predicate that puts simultaneous constraints on bothresitu

newFeature(Attacker, ClosestDefender) :-
Dist is distBetween(a0, Attacker),
Ang is angleDefinedBy(Attacker, a0, ClosestDefender),
Dist > 15, Ang> 25.

It then expresses the entire condition using the new featare3-on-2 Break-
Away this is:

newFeature(al, d0) + newFeature(a2, 2Q)

We add these new Boolean features to the target task. Thiidraksfer can
actually enhance the feature space of the target task.

Each advice item produced from a skill says to prefer thdt eler the other
actions shared between the source and target task. We gaefieeence amour
to approximately 1% of the target task¥value range.

5.3 Adding Human Advice

Skill transfer produces a small number of simple, intergioé rules. This introduces
the possibility of further user input in the transfer progel§ users can understand
the transfer advice, they may wish to add to it, either furpgecializing rules or
writing their own rules for new, non-transferred skills imettarget task. Our skill-
transfer method therefore allows optioneer advice

For example, the passing skills transferred from KeepAwagreakAway make
no distinction between passing toward the goal and away flegoal. Since the
new objective is to score goals, players should clearlyguedissing toward the goal.
A user could provide this guidance by instructing the systeisidd a condition like
this to thepass(Teammateskill:

distBetween(a0, goal) - distBetween(Teammate, godl)



16 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

Even more importantly, there are several actions in thissfier scenario that are
new in the target task, such sisootandmoveAheadWe allow users to write simple
rules to approximate skills like these, such as:

IF distBetween(a0, GoalPar) 10
AND angleDefinedBy(GoalPart, a0, goalie40
THEN prefer shoot(GoalPart) over all actions

IF distBetween(a0, goalCenter) 10
THEN prefer moveAhead over moveAway and the shoot actions

The advice-taking framework is a natural and powerful wayugers to provide
information not only about the correspondences betweds tdmit also about the
differences between them.

6 Results

We performed experiments with skill transfer in many scesawith RoboCup
tasks. Some arelose transfescenarios, where the tasks are closely related: the tar-
get task is the same as the source task except each team hasrengayer. Others
aredistant transfesscenarios, where the tasks are more distantly related: Keep-
Away to BreakAway and from MoveDownfield to BreakAway. Witlstant transfer
we concentrate on moving from easier tasks to harder tasks.

For each task, we use an appropriate measure of performapdet tagainst the
number of training games in a learning curve. In BreakAwtg, the probability that
the agents will score a goal in a game. In MoveDownfield, ihesaverage distance
traveled towards the right edge during a game. In KeepAwagithe average length
of a game.

Section 6.1 shows examples of rules our method learned ioussource tasks.
Section 6.2 shows learning curves in various target taskis and without skill
transfer.

6.1 SkillsLearned

From 2-on-1 BreakAway, one rule our method learned forstheotskill is:

shoot(GoalPart) :-
distBetween(a0, goalCenter) 6,
angleDefinedBy(GoalPart, a0, goalie)s52,
distBetween(a0, oppositePart(GoalPa¥t),
angleDefinedBy(oppositePart(GoalPart), a0, goali&g,
angleDefinedBy(goalCenter, a0, goalieP8.



Transfer Learning via Advice Taking 17

This rule requires a large open shot angle, a minimum distémthe goal, and angle
constraints that restrict the goalie’s position to a smiaha

From 3-on-2 MoveDownfield, one rule our method learned ferqthssskill is:

pass(Teammate) :-
distBetween(a0, Teammatg)15,
distBetween(a0, Teammatg)27,
angleDefinedBy(Teammate, a0, minAngleDefender(Teammate)),
distToRightEdge(Teammate) 10,
distBetween(a0, Opponent) 4.

This rule specifies an acceptable range for the distanceeteetteiving teammate
and a minimum pass angle. It also requires that the teamneattbe to the finish
line on the field and that an opponent not be close enougheccipt.

From 3-on-2 KeepAway, one rule our method learned foghssskill is:

pass(Teammate) :-
distBetween(Teammate, fieldCenter),
distBetween(Teammate, minDistTaker(Teammate),
angleDefinedBy(Teammate, a0, minAngleTaker(Teammate),
angleDefinedBy(OtherTeammate, a0, minAngleTaker(OtherTeae))ra23.

This rule specifies a minimum pass angle and an open distanoadthe re-
ceiving teammate. It also requires that the teammate natdelbse to the center
of the field and gives a maximum pass angle for the alternatarteate.

Some parts of these rules were unexpected, but make sensedsight. For
example, the shoot rule specifies a minimum distance to thergther than a max-
imum distance. Presumably this is because large shot aagdesnly available at
reasonable distances anyway. This shows the advantagesitfize learned through
transfer can have over human advice.

6.2 Learning Curves

Figures 6, 7, and 8 are learning curves from our transferm@xgats. One curve in
each figure is the average of 25 runs of standard reinforceleaming. The other
curves are RL with skill transfer from various source tasks. each transfer curve
we average 5 transfer runs from 5 different source runs, total of 25 runs (this
way, the results include both source and target varianoedaBse the variance is
high, we smooth thg-value at each data point by averaging oventhalues of the
last 250 games.



18 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

These figures show that skill transfer can have a large dvyawaltive impact in
both close-transfer and distant-transfer scenarios. Tdtéstical results in Table 2
indicate that in most cases the difference (in area undectinee) is statistically

significant.

We use appropriate subsets of the human-advice examplextin® 5.3 for all
of our skill-transfer experiments. That is, from KeepAwayBreakAway we use all
of it, from MoveDownfield to BreakAway we use only the partviathg shoot and

for close-transfer experiments we use none.

0.6

05 |

03 |

Probability of Goal

0.1

Standard RL(25) ——
ST from BA(25) -------
ST frOm MD(ZS) ................
ST frlom KA|(25) -

0 500 1000 1500 2000 2500 3000

Fig. 6 Probability of scoring a goal while training in 3-on-2 Breakdy with standard RL and skill
transfer (ST) from 2-on-1 BreakAway (BA), 3-on-2 MoveDowidi¢MD) and 3-on-2 KeepAway

(KA).

Training Games

20 T

Average Total Reward

Standard RL(25)
ST frlom MD|(25) T

0 1
0 500

Fig. 7 Average total reward while training in 4-on-3 MoveDownfielith standard RL and skill

1000 1500 2000 2500 3000
Training Games

transfer (ST) from 3-on-2 MoveDownfield (MD).



Transfer Learning via Advice Taking 19

Average Game Length (sec)

2 - -

1 Standard RL(25) 7
| ST Ifrom KA.‘(ZS) —

0

0 500 1000 1500 2000 2500 3000

Training Games
Fig. 8 Average game length while training in 4-on-3 KeepAway witstard RL and skill transfer
(ST) from 3-on-2 KeepAway (KA).

Table 2 Statistical results from skill transfer (ST) experiments in Brasay (BA), MoveDown-
field (MD), and KeepAway (KA), comparing area under the cuosstandard reinforcement learn-
ing (SRL).

Scenario Conclusion p-value | 95% confidence interva

BAto BA |[ST higher with 99% confidence 0.0003 63.75, 203.36
MD to BA |ST higher with 99% confidence< 0.0001| 153.63, 278.02
KA to BA |[ST higher with 97% confidence< 0.0001| 176.42, 299.87
MD to MD (ST higher with 98% confidence< 0.0001| 3682.59, 6436.61
KA to KA |[ST and SRL equivalent 0.1491 | -114.32, 389.20

6.3 Further Experiments with Human Advice

To show the effect of adding human advice, we performed $idhsfer without
any (Figure 9). In the scenario shown, MoveDownfield to BrAwedy, we compare
learning curves for skill transfer with and without humarviaeé. Our method still
improves learning significantly when it includes no humawiesl about shooting,
though the gain is smaller. The addition of our original hunzalvice produces
another significant gain.

To demonstrate that our method can cope with incorrect advie also per-
formed skill transfer with intentionally bad human advi¢edgure 10). In the sce-
nario shown, KeepAway to BreakAway, we compare learningesifor skill trans-
fer with our original human advice and with its opposite. he thad advice the
inequalities are reversed, so the rules instruct the leampass backwards, shoot
when far away from the goal and at a narrow angle, and move wltse to the
goal. Our method no longer improves learning significantithwthis bad advice,



20 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

but since the KBKR algorithm can learn to ignore it, learniaghever impacted
negatively.

The robustness indicated by these experiments means #ratneed not worry
about providing perfect advice in order for the skill-tréaranethod to work. It also
means that skill transfer can be applied to reasonablyrdisiaks, since the source-
task skills need not be perfect for the target task. It can¥peated that learning
with skill transfer will perform no worse than standard ifeircement learning, and
it may perform significantly better.

0.6 T T T T T

05 |

03 |

Probability of Goal

Standard RL(25) ——
ST original(25) -------
l\llo Userladvicel(25) ..... R

0.1

1
0 500 1000 1500 2000 2500 3000
Training Games

Fig. 9 Probability of scoring a goal while training in 3-on-2 Breakdy with standard RL and
skill transfer (ST) from 3-on-2 MoveDownfield, with and withtdhe original human advice.

0.6

0.5 4

0.4 4

0.3

0.2

Probability of Goal

—— Standard RL (25)
—— ST bad advice (25)

0.1

0 1000 2000 3000 4000 5000

Training Games
Fig. 10 Probability of scoring a goal while training in 3-on-2 Breaidy with standard RL skill
transfer (ST) from 3-on-2 KeepAway that includes intentignbad human advice.



Transfer Learning via Advice Taking 21

7 Related Work

There is a strong body of related work on transfer learnin@Rin We divide RL
transfer into five broad categories that represent proiyelgdarger changes to ex-
isting RL algorithms.

7.1 Starting-point methods

Since all RL methods begin with an initial solution and th@date it through ex-
perience, one straightforward type of transfer in RL is tbtke initial solution in

a target task based on knowledge from a source task. Compairtbe arbitrary

setting that RL algorithms usually use at first, thesating-point methodsan be-

gin the RL process at a point much closer to a good targetdgalsition. There are
variations on how to use the source-task knowledge to seitied solution, but in

general the RL algorithm in the target task is unchanged.

Taylor et al. [30] use a starting-point method for transfetamporal-difference
RL. To perform transfer, they copy the final value functiorref source task and use
it as the initial one for the target task. As many transferrapphes do, this requires
a mapping of features and actions between the tasks, angtbeyle a mapping
based on their domain knowledge.

Tanaka and Yamamura [27] use a similar approach in templiifakence learn-
ing without function approximation, where value functicr® simply represented
by tables. This greater simplicity allows them to combinewledge from several
source tasks: they initialize the value table of the targsi to the average of tables
from several prior tasks. Furthermore, they use the stahdaviations from prior
tasks to determine priorities between temporal-diffeesackups.

Approaching temporal-difference RL as a batch probleneadof an incremen-
tal one allows for different kinds of starting-point traesfmethods. In batch RL, the
agent interacts with the environment for more than one stepisode at a time be-
fore updating its solution. Lazaric et al. [7] perform tréarsn this setting by finding
source-task samples that are similar to the target taskddid@them to the normal
target-task samples in each batch, thus increasing thiabladata early on. The
early solutions are almost entirely based on source-tasiwlatlge, but the impact
decreases in later batches as more target-task data beavailable.

Moving away from temporal-difference RL, starting-poin¢tihods can take even
more forms. In a model-learning Bayesian RL algorithm, fiet al. [38] perform
transfer by treating the distribution of previous MDPs asriarpfor the current
MDP. In a policy-search genetic algorithm, Taylor et al.][8&nsfer a population
of policies from a source task to serve as the initial poparfafor a target task.



22 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

7.2 Imitation methods

Another class of RL transfer methods involves applying therse-task policy to
choose some actions while learning the target task. Whilg thake no direct
changes to the target-task solution the way that startoigtpmethods do, these
imitation methodsaffect the developing solution by producing different ftioo
or policy updates. Compared to the random exploration thatgorithms typi-
cally do, decisions based on a source-task policy can lemagkent more quickly
to promising areas of the environment. There are variatiofow the source-task
policy is represented and in how heavily it is used in thegttgsk RL algorithm.

One method is to follow a source-task policy only during exation steps of the
target task, when the agent would otherwise be taking a raraiion. Madden and
Howley [11] use this approach in tabul@rlearning. They represent a source-task
policy as a set of rules in propositional logic and choosmastbased on those rules
during exploration steps.

Fernandez and Veloso [5] instead give the agent a three-Wwaice between
exploiting the current target-task policy, exploiting asppolicy, and exploring ran-
domly. They introduce a second parameter, in addition tetbée-greedy explo-
ration, to determine the probability of making each choice.

7.3 Hierarchical methods

A third class of RL transfer includdsierarchical methodsThese view the source
as a subtask of the target, and use the solution to the sosraebailding block
for learning the target. Methods in this class have stronmeotions to the area of
hierarchical RL, in which a complex task is learned in piettesugh division into
a hierarchy of subtasks.

An early approach of this type is to compose several sowsk-$olutions to
form a target-task solution, as is done by Singh [22]. He eskls a scenario in
which complex tasks are temporal concatenations of simpéss,0so that a target
task can be solved by a composition of several smaller solsiti

Mehta et al. [13] have a transfer method that works directthiw the hierarchi-
cal RL framework. They learn a task hierarchy by observingesssful behavior in
a source task, and then use it to apply the MaxQ hierarchicalgorithm [4] in the
target task. This removes the burden of designing a taskigiey through transfer.

Other approaches operate within the frameworlopfions which is a term for
temporally-extended actions in RL [18]. An option typigatlonsists of a starting
condition, an ending condition, and an internal policy fooasing lower-level ac-
tions. An RL agent treats each option as an additional aetiomg with the original
lower-level ones.

In some scenarios it may be useful to have the entire soastegolicy as an
option in the target task, as Croonenborghs et al. [3] doyTaarn a relational
decision tree to represent the source-task policy and dahevtarget-task learner to



Transfer Learning via Advice Taking 23

execute it as an option. Another possibility is to learn demaptions, either during

or after the process of learning the source task, and ofeantto the target. Asadi

and Huber [1] do this by finding frequently-visited stateshia source task to serve
as ending conditions for options.

7.4 Alteration methods

The next class of RL transfer methods involves altering theespace, action space,
or reward function of the target task based on source-tasiwlatge. Thesalter-
ation methodshave some overlap with option-based transfer, which alsmgés
the action space in the target task, but they include a widgeraf other approaches
as well.

One way to alter the target-task state space is to simplifydugh state abstrac-
tion. Walsh et al. [35] do this by aggregating over compaamurce-task states.
They then use the aggregate states to learn the target thil reduces the com-
plexity significantly.

There are also approaches that expand the target-tasksptate instead of re-
ducing it. Taylor and Stone [29] do this by adding a new stat@able in the target
task. They learn a decision list that represents the saasiepolicy and use its
output as the new state variable.

While option-based transfer methods add to the target-tes&raspace, there
is also some work in decreasing the action space. SherstbGt@me [21] do this
by evaluating in the source task which of a large set of astiame most useful.
They then consider only a smaller action set in the targéy, tafich decreases
the complexity of the value function significantly and algzikases the amount of
exploration needed.

Reward shaping is a design technique in RL that aims to sppéédauning by
providing immediate rewards that are more indicative of alative rewards. Usu-
ally it requires human effort, as many aspects of RL taskgiedb. Konidaris and
Barto [6] do reward shaping automatically through transfeey learn to predict re-
wards in the source task and use this information to creat@jpexl reward function
in the target task.

7.5 New RL Algorithmsfor Transfer

A final class of RL transfer methods consists of entirely néwalRjorithms. Rather
than making small additions to an existing algorithm or mglkihanges to the target
task, these approaches address transfer as an inhereof Rart They incorporate
prior knowledge as an intrinsic part of the algorithm. Our KB algorithm falls
into this category of methods [32].



24 Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

Price and Boutilier [19] propose a temporal-differenceoaltpm in which value
functions are influenced by observations of expert ageriisy Tise a variant of the
usual value-function update that includes an expert’s iepee, weighted by the
agent’s confidence in itself and in the expert. They alsoguerfextra backups at
states the expert visits to focus attention on those aretheaftate space.

There are several algorithms for case-based RL that accatmtr@nsfer. Sharma
et al. [20] propose one in whid®-functions are estimated using a Gaussian kernel
over stored cases in a library. Cases are added to the liln@ary both the source
and target tasks when their distance to their nearest neighlabove a threshold.
Taylor et al. [28] use source-task examples more selegtingheir case-based RL
algorithm. They use target-task cases to make decisions thleee are enough, and
only use source-task examples when insufficient target plesexist.

8 Conclusion

We have described a method for transferring knowledge mfeetement learning

that learns logical rules to represent skills and uses theadsice for a new task.
This approach can provide significant benefits in targetstaa& evidenced by our
results in a complex RL domain. Our work has connections ¢éeBsor Michalski’s

interests in rule learning, advice, and analogical reaspni\s Michalski did, we

emphasize the value of logic as a means of representing kdge! We believe that
first-order logic is a powerful mechanism for transfer.

An inherent aspect of transfer learning is recognizing tbeespondences be-
tween tasks. Knowledge from one task can only be applied athan if it is ex-
pressed in a way that the target-task agent understande thsk representations
are not identical, aappingis needed to translate between task representations. We
assume a human-provided mapping so far, but learning a mgypalso an inter-
esting task.

If a transfer method actually decreases performance, iiegative transfehas
occurred. One of the major challenges in developing transiethods is to pro-
duce positive transfer between appropriately relatedstaghile avoiding negative
transfer between tasks that are less related. Ideally,nsfermethod would pro-
duce positive transfer between appropriately relatedstaghile avoiding negative
transfer when the tasks are not a good match. In practicse theals are difficult to
achieve simultaneously. Approaches that have safeguaastd negative transfer
often produce a smaller effect from positive transfer duth&r caution.

Another challenge that we have encountered in RL transéenieg is that dif-
ferences in reward structures between the source and tagiemake it difficult to
transfer even shared actions. Changing the game objectiadding a new action
changes the meaning of a shared skill. This means that itpsitant to continue
learning in the target task and to avoid relying on soursé-tkills too much. We
have also addressed this issue through human guidancdpbyrg additional ad-
vice that points out differences between tasks.



Transfer Learning via Advice Taking 25

9 Acknowledgements

This chapter was written while the authors were partiallpmurted by DARPA
grants HR0011-07-C-0060 and FA8650-06-C-7606.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Asadi and M. Huber. Effective control knowledge trangfeough learning skill and repre-
sentation hierarchies. Imternational Joint Conference on Atrtificial Intelligenddyderabad,
India, 2007.

. E. Bloedorn, R. Michalski, and J. Wnek. Multistrategy congiue induction: AQ17-MCI. In

International Workshop on Multistrategy Learnint993.

. T. Croonenborghs, K. Driessens, and M. Bruynooghe. Leareiagional skills for inductive

transfer in relational reinforcement learning. Ifrternational Conference on Inductive Logic
Programming Corvallis, OR, 2007.

. T. Dietterich. Hierarchical reinforcement learning wittle MAXQ value function decompo-

sition. Journal of Artificial Intelligence Researcth3:227-303, 2000.

. F. Fernandez and M. Veloso. Probabilistic policy reuse inrdgarement learning agent. In

Conference on Autonomous Agents and Multi-Agent Systéaiedate, Japan, 2006.

. G. Konidaris and A. Barto. Autonomous shaping: Knowledgesfer in reinforcement learn-

ing. InInternational Conference on Machine Learnjigjttsburgh, PA, 2006.

. A. Lazaric, M. Restelli, and A. Bonarini. Transfer of samplebatch reinforcement learning.

In International Conference on Machine Learnjridelsinki, Finland, 2008.

. R. Maclin, J. Shavlik, L. Torrey, and T. Walker. Knowledigased support vector regression

for reinforcement learning. IRKICAI Workshop on Reasoning, Representation, and Learning
in Computer Game<dinburgh, Scotland, 2005.

. R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild. Gig advice about preferred actions

to reinforcement learners via knowledge-based kernel regmessin AAAI Conference on
Artificial Intelligence Pittsburgh, PA, 2005.

R. Maclin, J. Shavlik, T. Walker, and L. Torrey. A simple afffeetive method for incorporat-
ing advice into kernel methods. WAAI Conference on Artificial Intelligenc&oston, MA,
2006.

M. Madden and T. Howley. Transfer of experience betwegtiaeement learning environ-
ments with progressive difficultyArtificial Intelligence Review21:375-398, 2004.

0. Mangasarian, J. Shavlik, and E. Wild. Knowledge-basatekaepproximationJournal of
Machine Learning Research:1127-1141, 2004.

N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich. Autaodiscovery and transfer of MAXQ
hierarchies. Innternational Conference on Machine Learnjrigelsinki, Finland, 2008.

R. Michalski. A theory and methodology of inductive leami Artificial Intelligence
20(2):111-161, 1983.

R. Michalski. Toward a unified theory of learning: Multatiegy task-adaptive learning. In
B.G. Buchanan and D.C. Wilkins, editoReadings in Knowledge Acquisition and Learning:
Automating the Construction and Improvement of Expert Systdogan Kaufmann, 1993.
T. Mitchell. Machine Learning McGraw-Hill, 1997.

I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer seeool for research on multia-
gent systemsApplied Atrtificial Intelligence12:233-250, 1998.

T. Perkins and D. Precup. Using options for knowledgesfearin reinforcement learning.
Technical Report UM-CS-1999-034, University of Massachusatisherst, 1999.

B. Price and C. Boutilier. Implicit imitation in multiagerginforcement learning. limterna-
tional Conference on Machine Learningled, Slovenia, 1999.



26

20.

21.
22.

23.
24.

25.

26.
. F. Tanaka and M. Yamamura. Multitask reinforcement learoimthe distribution of MDPs.

28.
29.
30.
31.
32.
33.
34.
35.
36.

. C. Watkins and P. Dayan. Q-learnindachine Learning8:279-292, 1992.
38.

Lisa Torrey, Jude Shavlik, Trevor Walker and Richard Maclin

M. Sharma, M. Holmes, J. Santamaria, A. Irani, C. Isbell, andeimRTransfer learning in
real-time strategy games using hybrid CBR/RLIrternational Joint Conference on Artificial
Intelligence Hyderabad, India, 2007.

A. Sherstov and P. Stone. Action-space knowledge tramslbDiPs: Formalism, suboptimal-
ity bounds, and algorithms. I@onference on Learning Theogigertinoro, Italy, 2005.

S. Singh. Transfer of learning by composing solutions of efeaisequential taskd4achine
Learning 8(3-4):323-339, 1992.

A. Srinivasan. The Aleph manual, 2001.

P. Stone and R. Sutton. Scaling reinforcement learniwgrt RoboCup soccer. limterna-
tional Conference on Machine Learning/illiamstown, MA, 2001.

R. Sutton. Learning to predict by the methods of tempoférinces. Machine Learning
3:9-44,1988.

R. Sutton and A. BartdReinforcement Learning: An IntroductioMIT Press, 1998.

Transactions of the Institute of Electrical Engineers of Jae28(5):1004-1011, 2003.

M. Taylor, N. Jong, and P. Stone. Transferring instancematel-based reinforcement learn-
ing. In European Conference on Machine Learnidgtwerp, Belgium, 2008.

M. Taylor and P. Stone. Cross-domain transfer for reinforcgrearning. Ininternational
Conference on Machine LearnipGorvallis, OR, 2007.

M. Taylor, P. Stone, and Y. Liu. Value functions for RLskd behavior transfer: A comparative
study. INnAAAI Conference on Artificial Intelligenc®ittsburgh, PA, 2005.

M. Taylor, S. Whiteson, and P. Stone. Transfer learningédicy search methods. ML
Workshop on Structural Knowledge Transfer for Machine Learniigsburgh, PA, 2006.

L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Skill adsjtion via transfer learning and
advice taking. IrEuropean Conference on Machine LearniBgrlin, Germany, 2006.

L. Torrey, T. Walker, J. Shavlik, and R. Maclin. Using advio transfer knowledge acquired
in one reinforcement learning task to anotherEbropean Conference on Machine Learning
Porto, Portugal, 2005.

F.Zelezry, A. Srinivasan, and D. Page.

T. Walsh, L. Li, and M. Littman. Transferring state abstrattibetween MDPs. [HCML
Workshop on Structural Knowledge Transfer for Machine Learniitisburgh, PA, 2006.

C. Watkins.Learning from delayed reward®hD thesis, University of Cambridge, 1989.

A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-taskfercement learning: A hierarchical
Bayesian approach. International Conference on Machine Learnjr@prvallis, OR, 2007.



