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Abstract Statistical Relational Learning (SRL) is a growing field in Machine Learn-
ing that aims at the integration of logic-based learning approaches with probabilistic
graphical models. Markov Logic Networks (MLNs) are one of the state-of-the-art
SRL models that combine first-order logic and Markov networks (MNs) by attach-
ing weights to first-order formulas and viewing these as templates for features of
MNs. Learning models in SRL consists in learning the structure (logical clauses in
MLNs) and the parameters (weights for each clause in MLNs). Structure learning
of MLNs is performed by maximizing a likelihood function (or a function thereof)
over relational databases and MLNs have been successfully applied to problems
in relational and uncertain domains. However, most complex domains are charac-
terized by incomplete data. Until now SRL models have mostly used Expectation-
Maximization (EM) for learning statistical parameters under missing values. Multi-
strategic learning in the relational setting has been a successful approach to dealing
with complex problems where multiple inference mechanisms can help solve dif-
ferent subproblems. Abduction is an inference strategy that has been proven useful
for completing missing values in observations. In this paper we propose two frame-
works for integrating abduction in SRL models. The first tightly integrates logical
abduction with structure and parameter learning of MLNs in a single step. During
structure search guided by conditional likelihood, clause evaluation is performed by
first trying to logically abduce missing values in the data and then by learning op-
timal pseudo-likelihood parameters using the completed data. The second approach
integrates abduction with Structural EM of [17] by performing logical abductive
inference in the E-step and then by trying to maximize parameters in the M-step.
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1 Introduction

Traditionally, Machine Learning research has fallen into two separate subfields: one
that has focused on logical representations, and one on statistical ones. Logical Ma-
chine Learning approaches based on logic programming, description logics, classi-
cal planning, rule induction, etc, tend to emphasize handling complexity. Statisti-
cal Machine Learning approaches like Bayesian networks, hidden Markov models,
statistical parsing, neural networks, etc, tend to emphasize handling uncertainty.
However, learning systems must be able to handle both for real-world applications.
The first attempts to integrate logic and probability were made in Artifical Intelli-
gence and date back to the works in [2, 22, 46]. Later, several authors began using
logic programs to compactly specify Bayesian networks, an approach known as
knowledge-based model construction [68].

A central problem in Machine Learning has always been learning in rich repre-
sentations that enable to deal with structure and relations. Much progress has been
achieved in the relational learning field or differently known as Inductive Logic Pro-
gramming [33]. On the other hand, successful statistical machine learning models
with their roots in statistics and pattern recognition, have made possible to deal with
noisy and uncertain domains in a robust manner. Powerful models such as Prob-
abilistic Graphical Models [48] and related algorithms have the power to handle
uncertainty but lack the capability of dealing with structured domains.

In Machine Learning, recently, in the burgeoning field of Statistical Relational
Learning (SRL) [20] or Probabilistic Inductive Logic Programming [11], several
approaches for combining logic and probability have been proposed. A growing
amount of work has been dedicated to integrating subsets of first-order logic with
probabilistic graphical models, to extend logic programs with a probabilistic se-
mantics or integrate other formalisms with probability. Some of the logic-based
approaches are: Knowledge-based Model Contruction [68], Bayesian Logic Pro-
grams [28], Stochastic Logic Programs [41, 9], Probabilistic Horn Abduction [51],
Queries for Probabilistic Knowledge Bases [44], PRISM [60], CLP(BN) [59]. Other
approaches include frame-based systems such as Probabilistic Relational Models
[43] or PRMs extensions defined in [47], description logics based approaches such
as those in [8] and P-CLASSIC of [30], database query langauges [67], [54], etc.

All these approaches combine probabilistic graphical models with subsets of
first-order logic (e.g., Horn Clauses). One of the state-of-the-art SRL approches
is Markov logic [58], a powerful representation that has finite first-order logic and
probabilistic graphical models as special cases. It extends first-order logic by attach-
ing weights to formulas providing the full expressiveness of graphical models and
first-order logic in finite domains and remaining well defined in many infinite do-
mains [58, 65]. Weighted formulas are viewed as templates for constructing Markov
Networks (MNs) and in the infinite-weight limit, Markov logic reduces to standard
first-order logic. In Markov logic it is avoided the assumption of i.i.d. (indepen-
dent and identically distributed) data made by most statistical learners by using the
power of first-order logic to compactly represent dependencies among objects and
relations. In this paper we will focus on this SRL model.
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The representation power and the robustness of SRL models to deal with uncer-
tainty does not solve all the problems present in complex domains. Dealing with
unknown or partially observed data is an important problem in Machine Learning.
Most SRL models face this problem only from the parameter setting point of view by
following similar approaches developed in the statistical machine learning field. The
most used approach is Expectation-Maximization (EM) [13]. On the other side, in
relational learning different approaches have been proposed that integrate multiple
inference mechanisms in inductive learning to deal with incomplete data [26, 16].

Multistrategic approaches to Machine Learning [38] aim at combining different
inference strategies in order to take advantage of each of these during learning. One
of these inference mechanisms is abduction. In the general inference schema, the
fundamental equation BK∪T |= O involves a language L, a background knowledge
BK and a theory T , that contains concept definitions accounting for some observa-
tions O. Specifically, O stands for the extensional representation of concepts, while
T is an intensional description, expressed in L, that explains such concepts together
with BK. Deduction traces forward the equation, deriving O given T and BK , and
hence it is a truth-preserving inference. Conversely, tracing the equation backward
yields two falsity-preserving inferences (meaning that if O is false, then the hypoth-
esis cannot be true): induction, when T is to be hypothesized given O and BK ,
or abduction, when BK is to be hypothesized given O and T (i.e., plausible/likely
causes of given observations). Most approaches to relational learning rely on induc-
tive mechanisms to fine-tune T in order to achieve the learning goal, but problems
might arise due to the partial relevance of the available evidence O. Abduction could
be exploited to overcome such a limitation by bridging the observations relevance
gap. Indeed, it is able to capture default reasoning [57], a well-known form of rea-
soning to deal with incomplete information [27, 50]. Thus, making these inference
strategies work together would allow to take advantage of the benefits that each of
them can bring. A step in this direction was proposed in [26], where the authors
show how to learn with incomplete background data about the training examples by
exploiting the hypothetical reasoning of abduction. Another approach is that in [16]
where it was proposed a framework for the integration of abductive and inductive
learning in an incremental ILP system.

In this paper we propose two frameworks that integrate logical abduction in an
SRL model based on Markov logic. The novelty of the proposed approaches stands
in the tight integration of structure and parameter learning of an SRL model in a sin-
gle step inside which a logical abductive proof procedure and a statistical parameter
estimation method are exploited. The first framework integrates logical abduction
with structure and parameter learning of MLNs in a single step. During structure
search guided by conditional likelihood, structure evaluation is performed by first
trying to logically abduce missing values in the data and then by learning opti-
mal pseudo-likelihood parameters using the completed data. The second approach
integrates abduction with Structural EM of [17] by performing logical abductive
inference in the E-step and then by trying to maximize parameters in the M-step.
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2 Markov Networks and Markov Logic Networks

A Markov network (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1,X2,. . . ,Xn) ∈ χ [12]. It is composed of an
undirected graph G and a set of potential functions. The graph has a node for each
variable, and the model has a potential function φk for each clique in the graph. A
potential function is a non-negative real-valued function of the state of the corre-
sponding clique. The joint distribution represented by a Markov network is given
by:

P(X = x) =
1
Z ∏

k
φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the variables that appear in
that clique). Z, known as the partition function, is given by:

Z = ∑
x∈χ

∏
k

φk(x{k}) (2)

Markov networks are often conveniently represented as log-linear models, with each
clique potential replaced by an exponentiated weighted sum of features of the state,
leading to:

P(X = x) =
1
Z

exp(∑
j

w jf j(x)) (3)

A feature may be any real-valued function of the state. We will focus on binary
features, f j ∈ {0,1}. In the most direct translation from the potential-function form,
there is one feature corresponding to each possible state xk of each clique, with
its weight being log(φ(x{k}). This representation is exponential in the size of the
cliques. However a much smaller number of features (e.g., logical functions of the
state of the clique) can be specified, allowing for a more compact representation
than the potential-function form, particularly when large cliques are present. MLNs
take advantage of this.

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The basic idea in
Markov logic is to soften these constraints: when a world violates one formula in the
KB it is less probable, but not impossible. The fewer formulas a world violates, the
more probable it is. Each formula has an associated weight that reflects how strong
a constraint it is: the higher the weight, the greater the difference in log probability
between a world that satisfies the formula and one that does not, other things being
equal.

A Markov logic network [58] L is a set of pairs (Fi;wi), where Fi is a formula in
first-order logic and wi is a real number. Together with a finite set of constants C =
{c1,c2, . . . ,cp} it defines a Markov network ML;C as follows:
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1. ML;C contains one binary node for each possible grounding of each predicate
appearing in L. The value of the node is 1 if the ground predicate is true, and 0 oth-
erwise.

2. ML;C contains one feature for each possible grounding of each formula Fi in
L. The value of this feature is 1 if the ground formula is true, and 0 otherwise. The
weight of the feature is the wi associated with Fi in L. Thus there is an edge between
two nodes of ML;C iff the corresponding ground predicates appear together in at
least one grounding of one formula in L. An MLN can be viewed as a template for
constructing Markov networks. The probability distribution over possible worlds x
specified by the ground Markov network ML;C is given by

P(X = x) =
1
Z

exp(
F

∑
i=1

wini(x)) =
1
Z ∏

i
φi(xi)ni(x) (4)

where F is the number of formulas in the MLN and ni(x) is the number of true
groundings of Fi in x. As formula weights increase, an MLN increasingly resembles
a purely logical KB, becoming equivalent to one in the limit of all infinite weights.

In this paper we focus on MLNs whose formulas are function-free clauses and
assume domain closure (it has been proven that no expressiveness is lost), ensuring
that the Markov networks generated are finite. In this case, the groundings of a
formula are formed simply by replacing its variables with constants in all possible
ways.

3 Structure and Parameter Learning of MLNs

3.1 Generative Structure Learning of MLNs

One of the approaches for learning MN weights is iterative scaling [12]. However,
maximizing the likelihood (or posterior) using a quasi-Newton optimization method
like L-BFGS has recently been found to be much faster [62]. Regarding structure
learning, the authors in [12] induce conjunctive features by starting with a set of
atomic features (the original variables), conjoining each current feature with each
atomic feature, adding to the network the conjunction that most increases likelihood,
and repeating. The work in [37] extends this to the case of conditional random fields,
which are Markov networks trained to maximize the conditional likelihood of a set
of outputs given a set of inputs.

The first attempt to learn MLNs was that in [58], where the authors used CLAU-
DIEN [10] to learn the clauses of MLNs and then learned the weights by maximiz-
ing pseudo-likelihood. In [29] another method was proposed that combines ideas
from ILP and feature induction of Markov networks. This algorithm, that performs
a beam or shortest first search in the space of clauses guided by a weighted pseudo-
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log-likelihood (WPLL) measure [3], outperformed that of [58]. Recently, in [39] a
bottom-up approach was proposed in order to reduce the search space. This algo-
rithm uses a propositional Markov network learning method to construct template
networks that guide the construction of candidate clauses. In this way, it generates
fewer candidates for evaluation. In [5], the authors proposed an algorithm based on
the iterated local search metaheuristic and showed that using parallel computation,
it is possible to improve over the previous algorithms. For every candidate structure,
in all these algorithms, the parameters that optimize the WPLL are set through L-
BFGS that approximates the second-derivative of the WPLL by keeping a running
finite-sized window of previous first-derivatives.

3.2 Discriminative Structure and Parameter Learning of MLNs

Learning MLNs in a discriminative fashion has produced for predictive tasks much
better results than generative approaches as the results in [64] show. In this work
the voted-perceptron algorithm was generalized to arbitrary MLNs by replacing the
Viterbi algorithm with a weighted satisfiability solver. The new algorithm is es-
sentially gradient descent with an MPE approximation to the expected sufficient
statistics (true clause counts) and these can vary widely between clauses, causing
the learning problem to be highly ill-conditioned, and making gradient descent very
slow. In [36] a preconditioned scaled conjugate gradient approach is shown to out-
perform the algorithm in [64] in terms of learning time and prediction accuracy. This
algorithm is based on the scaled conjugate gradient method and very good results
are obtained with a simple approach: per-weight learning weights, with the weight’s
learning rate being the global one divided by the corresponding clause’s empirical
number of true groundings.

However, for both these algorithms the structure is supposed to be given by an
expert or learned previously and they focus only on the parameter learning task. This
can lead to suboptimal results if the clauses given by an expert do not capture the
essential dependencies in the domain in order to improve classification accuracy. On
the other side, since to the best of our knowledge, no attempt has been made to learn
the structure of MLNs discriminatively, the clauses learned by generative structure
learning algorithms tend to optimize the joint distribution of all the variables and
applying discriminative weight learning after the structure has been learned gener-
atively may lead to suboptimal results since the initial goal of the learned structure
was not to discriminate query predicates.

Recently different attempts have been proposed for discriminative structure
learning of MLNs. In [24] MLNs were restricted to non recursive definite clauses
and the ILP system ALEPH [66] was used to generate a large number of potentially
good candidates that are then scored using exact inference methods. In [4] the au-
thors proposed another approach, they set parameters by maximizing likelihood and
choose structures by conditional likelihood. Inference for each canidate clause is
performed using the lazy version of the MC-SAT algorithm [53]. The authors pro-
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pose some simple heuristics to make the problem tractable and show improvements
in terms of predictive accuracy over generative structure learning approaches and
discriminative weight learning algorithms.

4 First-Order Logic and Inductive Logic Programming

Relational learning is mostly related to first-order logic or more restricted for-
malisms. A first-order knowledge base (KB) is a set of sentences or formulas in
first-order logic (FOL) [19]. Formulas in FOL are constructed using four types of
symbols: constants, variables, functions, and predicates. Constant symbols repre-
sent objects in the domain of interest. Variable symbols range over the objects in
the domain. Function symbols represent mappings from tuples of objects to objects.
Predicate symbols represent relations among objects in the domain or attributes of
objects. A term is any expression representing an object in the domain. It can be a
constant, a variable, or a function applied to a tuple of terms. An atomic formula or
atom is a predicate symbol applied to a tuple of terms. A ground term is a term con-
taining no variables. A ground atom or ground predicate is an atomic formula all
of whose arguments are ground terms. Formulas are recursively constructed from
atomic formulas using logical connectives and quantifiers. A positive literal is an
atomic formula; a negative literal is a negated atomic formula. A KB in clausal
form is a conjunction of clauses, a clause being a disjunction of literals. A definite
clause is a clause with exactly one positive literal (the head, with the negative literals
constituting the body). A possible world or Herbrand interpretation assigns a truth
value to each possible ground predicate.

Because of the computational complexity, KBs are generally constructed using a
restricted subset of FOL where inference and learning is more tractable. The most
widely-used restriction is to Horn clauses, which are clauses containing at most one
positive literal. In other words, a Horn clause is an implication with all positive
antecedents, and only one (positive) literal in the consequent. A program in the
Prolog language is a set of Horn clauses. Prolog programs can be learned from
examples (often relational databases) by searching for Horn clauses that hold in the
data. The field of inductive logic programming (ILP) [33] deals exactly with this
problem. The main task in ILP is finding an hypothesis H (a logic program, i.e. a
definite clause program) from a set of positive and negative examples P and N. In
particular, it is required that the hypothesis H covers all positive examples in P and
none of the negative examples in N. The representation language for representing
the examples together with the covers relation determines the ILP setting [56].

Learning from entailment is probably the most popular ILP setting and many
well-known ILP systems such as FOIL [55], Progol [42] or ALEPH [66] follow this
setting. In this setting examples are definite clauses and an example e is covered by
an hypothesis H, w.r.t the background theory B if and only if B∪H |= e. Most ILP
systems in this setting require ground facts as examples. They typically proceed fol-
lowing a separate-and-conquer rule-learning approach [18]. This means that in the
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outer loop they repeatedly search for a rule covering many positive examples and
none of the negatives (set-covering approach [40]). In the inner loop ILP systems
generally perform a general-to-specific heuristic search using refinement operators
[45, 63] based on θ -subsumption [49]. These operators perform the steps in the
search-space, by making small modifications to a hypothesis. From a logical per-
spective, these refinement operators typically realize elementary generalization and
specialization steps (usually under θ -subsumption). More sophisticated systems like
Progol or ALEPH employ a search bias to reduce the search space of hypothesis.

In the ILP setting of learning from interpretations, examples are Herbrand inter-
pretations and an examle e is covered by an hypthesis H, w.r.t the background theory
B, if and only if e is a model of B∪H. A possible world is described through sets
of true ground facts which are the Herbrand interpretations. Learning from inter-
pretations is generally easier and computationally more tractable than learning from
entailment [56]. This is due to the fact that interpretations carry much more infor-
mation than the examples in learning from entailment. In learning from entailment,
examples consist of a single fact, while in interepretations all the facts that hold
in the example are known. The approach followed by ILP systems learning from
interpretations is similar to those that learn from entailment. The most important
difference stands in the generality relationship. In learning from entailment an hy-
pothesis H1 is more general than H2 if and only if H1 |= H2, while in learning from
interpretations when H2 |= H1. A hypothesis H1 is more general than a hypothesis
H2 if all examples covered by H2 are also covered by H1. ILP systems that learn
from interpretations are also well suited for learning from positive examples only
[10].

5 Abduction

In this section we present Abductive Logic Programing and how an abductive proof
procedure can be integrated in an Inductice Logic Programming approach for incre-
mental theory revision.

5.1 Abuctive Logic Programming

Abductive Logic Programming (ALP) [31, 15] is an extension of Logic Program-
ming aimed at supporting abductive reasoning with theories (logic programs) that
incompletely describe their problem domain. In ALP this incomplete knowledge is
captured by an abductive theory, defined as a triple (T ,A ,I ) where T is a (hierar-
chical) logic program, A is a set of abducible predicates, and I is a set of integrity
constraints represented as program clauses.

An abductive procedure can be exploited to deal with the problem of incom-
pleteness by finding explanations that make hypotheses (abductive assumptions) on
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Algorithm 1 Abductive Refutation Algorithm
abduce(T , G, ∆ , A D , I )

{input: T : theory, G: Datalog goal (set of literals), ∆ : initial abductive assumptions, A D : the
set of abducibles and default literals, I : the integrity constraints;
output: ∆ ′ final abductive assumptions;}
∆ ′ = ∆ ;
while G 6= /0 do

L := Select a literal from G;
if L /∈A D then

/* (A1) */ G := Resolvent of some clause of T with G on L;
else if L ∈ ∆ ′ then

/* (A2) */ G := G\L;
else if LJ /∈ ∆ ′ and ∃∆C = consistency(T,L,∆ ′∪{L},A D ,I ) then

/* (A3) */ G := G\L; ∆ ′ := ∆C;
end if

end while

Algorithm 2 Consistency Derivation Algorithm
consistency(T , L, ∆ , A D , I )

{input: T : theory, L ∈A D : a literal, ∆ : initial abductive assumptions,
A D : the set of abducibles and default literals, I : the integrity constraints;
output: ∆ ′ final abductive assumptions;}
∆ ′ := ∆ ;
C :=

⋃
of goals of the form : −L1,L2, . . . ,Ln obtained by resolving the abducibles or default

literal L with the integrity constraints I with no such goal been empty;
while C 6= /0 do

B := Select a goal from C; M := Select a literal from B;
if M /∈A D then

H := Resolvent of some clause of T with B on M;
C := {C \B}∪H;

else if M ∈A D and M ∈ ∆ ′ then
/* (F1) */ H := B\M; C := {C \B}∪H;

else if M ∈A D and M ∈ ∆ ′ then
/* (F2) */ C := C \B;

else if M ∈A D and (M /∈ ∆ ′, M /∈ ∆ ′) then
/* (F3) */
if ∃∆A = abduce(T,M,∆ ′,A D ,I ) then

C := C \B; ∆ ′ := ∆A
end if

end if
end while
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the state of the world, possibly involving new abducible concepts. The procedure is
generally goal-driven by the observations that it tries to explain. Preliminarily, the
top-level goal undergoes a transformation process that converts it into sub-goals.
This provides a simple and unique modality for dealing with non-monotonic reason-
ing. Algorithm 1 sketches the classical abductive proof procedure proposed in [25].
After a literal is selected, if it is not abducible or a default one (A1), the procedure
continues with a resolution step with clauses from T . Otherwise, if the fact has been
already assumed abductively (and consistently) as true in previous steps (A2) it can
be dropped (a case of successful proof). Otherwise (A3), a new fact may be assumed
as true, provided that it is consistent with the current integrity constraints I , which
is verified by the consistency-check subroutine reported in Algorithm 2. The various
branches in the consistency-check subroutine are similar to derivations except that,
when dealing with an abducible or a default literal, if it has already been abduced
(F1) then it is simply dropped (i.e. consistency is trivially proved); otherwise, if its
complement has already been abduced or can be abduced (F2), the entire goal is
dropped. In the last if-branch (F3), whenever the literal to be tested is an abducible
or default one, but neither it nor its complement have been already abduced, the ab-
ductive procedure is called, in order to try hypothesizing it by abduction. Thus, the
two procedures may call each other both when a new abductive assumption requires
further consistency checks against the constraints and vice-versa.

Representing theories as hierarchical logic programs allows to maintain the
Least Herbrand Models semantics, coping with negation by means of NAF [7]
rule. Indeed, since the language of definite clauses with integrity constraints has
been proven to subsume NAF [14], integrity constraints can be simulated using
NAF as well. The advantage of adopting this semantics resides in the fact that
T |= P1, T |= P2, . . . , T |= Pn implies that T |= P1 ∧P2 ∧ ·· · ∧Pn. Hence, positive/negative
examples can be tested separately for completeness/consistency.

5.2 Integrating Abductive Inference in Inductive Learning

Algorithm 3 sketches the integration of an incremental inductive learning frame-
work with an abductive proof procedure as proposed in [16]. Here, M represents
the set of all positive and negative processed examples, E is the example currently
examined, T is the theory generated so far according to M, AbdT is the abduction
theory, D is the set of facts hypothesized by the abductive derivation when suc-
cessfully applied to a goal in theory T . Generalize and Specialize are the inductive
operators used by the system to refine an incorrect theory. When a new observation
is available, the abductive proof procedure is started, parameterized on the current
theory, the example and the current set of past abductive assumptions. If the pro-
cedure succeeds, the resulting set of assumptions, that were necessary to correctly
classify the observation, is added to the example description, otherwise the usual
refinement procedure (generalization/specialization) is performed.
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Several aspects of the strategy adopted in Algorithm 3 can be useful for our pur-
poses of learning the structure of an SRL model. First, it can be useful to apply the
abductive derivation on examples that are not correctly classified (i.e., generate an
omission/commission error) by the current theory using deduction only. The system
checks whether the example can be correctly explained by hypothesizing new facts
by means of the abductive procedure reported in Algorithm 1. Indeed, if success-
ful, such an application provides abduced facts that can be useful for extending the
available knowledge of the world. The incremental strategy exploits this feature to
complete the observations in such a way that the corresponding examples are either
covered (if positive) or ruled out (if negative) by the already generated theory, in or-
der to avoid performing a revision of the theory whenever possible (only in case of
failure the refinement operators are applied to modify/revise the theory). Abduction
is thus exploited. The abductive proof procedure can be set in such a way that the set
of abduced literals for each observation is minimal, which ensures that abducibles
are used only when really needed, or maximal, which allows to make all possible
consistent assumptions that can potentially provide new knowledge about the world.
In [16] the minimal option is adopted in order to have a conservative behaviour,
while here the maximal one could be more suitable to gain more information about
the likelihood of the candidate theories. This is the approach that we follow here.
Furthermore, in [16] the abduced information is attached directly to the observation
that generated it, in order to keep observations independent from each other. How-
ever, this implies that the “completed” examples obtained this way must be available
to subsequent abductions, so that the hypothesized facts can be considered in order
to preserve consistency among the whole set of abduced facts. In our case, examples
are to be exploited altogether, so there is no need to keep abductions attached to the
corresponding observations, but a single initial goal including the conjunction of all
available examples can be considered, which provides a unique set of abduced facts
that explain the whole set of examples, are consistent among each other and can be
exploited for the likelihood computation. Lastly, on the inductive side, another thing
that can be borrowed is the exploitation of refinement operators that can modify a
theory so that it can account for a new example on which it previously generated an
omission/commission error. In our case, these operators can be exploited for guid-
ing the move from a theory to one of its refinements, instead of randomly trying to
apply all possible refinements.

6 Single Step Structure Learning with Abduction

In this section we describe how structure learning of MLNs in a single step can be
combined with the procedure for logical abduction presented in the previous section.
The algorithms we propose here are built upon the ideas that we presented in [4].
The parameters are set through maximum pseudo-log-likelihood (WPLL), and the
structures are scored through conditional likelihood. The only difference regards the
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Algorithm 3 Theory Revision extending an incremental inductive learning frame-
work with an abductive proof procedure

Revise (T ; E; M; AbdT );
{input: T : theory, E: example, M: historical memory, AbdT : Abductive Theory;
output: T revised theory;}
D← E
if (Abductions = Abduct(T,E,D,AbdT )) succeeds then

Add to D the abduced literals Abductions; M←M∪{E ∪D};
else M←M∪E

if E is a positive example then Generalize(T,E,M);
else Specialize(T,E,M);

use of logical abduction to complete unknown values in the data during structure
search and before computing the WPLL score for each structure.

The first difference between the full framework of MLNs proposed by [58] and
the framework that we propose here is that in order to use ALP during structure
search we need to restrict the clauses of our model MLN to Horn clauses. Most of
relational learning is performed under this expressiveness power and the successes
of ILP have shown that for many problems Horn logic is sufficient to deal with
structured domains. Thus the structure learning algorithms that we propose here are
an extension of those proposed in [4, 5] in that here we perform logical abduction
in the structure learning process and the language we follow here is based on Horn
logic instead of full FOL. The second difference is that the algorithms proposed
in [58], try to apply all possible refinements, while here we use ILP refinement
operators to properly explore the search space.

6.1 Pseudo-likelihood

MLN weights can be learned by maximizing the likelihood of a relational database.
Like in ILP, a closed-world assumption [19] is made, thus all ground atoms not in
the database are assumed false. If there are n possible ground atoms, then we can
represent a database as a vector x = (x1, ...,xi...,xn) and xi is the truth value of the ith
ground atom, xi = 1 if the atom appears in the database, otherwise xi = 0. Standard
methods can be used to learn MLN weights following Equation 4. If the jth formula
has n j(x) true groundings, by Equation 4 we get the derivative of the log-likelihood
with respect to its weights by:

∂

∂w j
logPw(X = x) = n j(x)−∑

x′
Pw(X = x′)n j(x′) (5)

where x′ are databases and Pw(X = x′) is P(X = x′) computed using the current
weight vector w = (w1, ...,w j). Thus, the jth component of the gradient is the dif-
ference between the number of true groundings of the jth formula in the data and
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its expectation according to the model. Counting the number of true groundings of
a first-order formula, unfortunately, is a #P-complete problem.

The problem with Equation 5 is that not only the first component is intractable,
but also computing the expected number of true groundings is also intractable, re-
quiring inference over the model. Further, efficient optimization methods also re-
quire computing the log-likelihood itself (Equation 4), and thus the partition func-
tion Z. This can be done approximately using a Monte Carlo maximum likelihood
estimator (MC-MLE) [21]. However, the authors in [58] found in their experiments
that the Gibbs sampling used to compute the MC-MLEs and gradients did not
converge in reasonable time, and using the samples from the unconverged chains
yielded poor results.

In many other fields such as spatial statistics, social network modeling and lan-
guage processing, a more efficient alternative has been followed. This is optimizing
pseudo-likelihood [3] instead of likelihood. If x is a possible world (a database or
truth assignment) and xl is the lth ground atom’s truth value, the pseudo-likelihood
of x is given by the following equation (we follow the same notation as the authors
in [58]:

P∗w(X = x) =
n

∏
l=1

Pw(Xl = xl |MBx(Xl)) (6)

where MBx(Xl) is the state of the Markov blanket of Xl in the data. (i.e., the truth
values of the ground atoms it appears in some ground formula with). From Equation
4 we have:

P(Xl = xl |MBx(Xl)) =
exp(∑F

i=1 wini(x))
exp(∑F

i=1 wini(x[Xl=0]))+ exp(∑F
i=1 wini(x[Xl=1]))

(7)

Or we can take the gradient of pseudo-log-likelihood:

∂

∂wi
logP∗w(X = x) =

n

∑
l=1

[ni(x)−Pw(Xl = 0|MBx(Xl))ni(x[Xl=0])−

Pw(Xl = 1|MBx(Xl))ni(x[Xl=1])]
(8)

where ni(x[Xl=1]) is the number of true groundings of the ith formula when Xl = 1
and the remaining data do not change and similarly for ni(x[Xl=0]). To compute the
expressions 7 or 8, we do not need to perform inference over the model. The optimal
weights for pseudo-log-likelihood can be found using the limited-memory BFGS
algorithm [34].

When computing ni(x[Xl=1]) and ni(x[Xl=0]), the usually followed approach is
closed world assumption [19], i.e., all ground atoms not in the database are as-
sumed false. Using logical abduction we can pontentially infer the truth value of
these atoms and thus when we compute these counts we could have more accurate
values that reflect the current data. Since the optimization of the weights by L-BFGS
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Algorithm 4 MLNs Structure Learning with Abduction
Input: P:set of predicates, MLN:Markov Logic Network, RDB:Relational Database
CLS = All clauses in MLN;
LearnWPLLWeights(MLN,RDB);
BestScore = f (MLN,RDB);
BestModel = MLN;
repeat

CurrentModel = FindBestModel(P,MLN,BestScore,CLS,RDB);
if f (CurrentModel) ≥ f (BestModel) then

BestModel = CurrentModel;
BestScore = f (MLN,RDB);

end if
until BestScore does not improve for two consecutive steps
return BestModel;
f = CLL (conditional log-likelihood)

is performed on the estimates of the counts ni(x[Xl=1]) and ni(x[Xl=0]), an improved
accuracy on these counts would also result in a more accurate parameter learning
task. Thus the use of logical abduction is motivated by the fact that parameter es-
timation in satistical relational learning can benefit from completed data through
logical procedures. To the best of our knowledge, this is the first approach to inte-
grate a pure logical procedure for abductive inference with a statistical parameter
estimation algorithm.

6.2 Structure Learning with Abduction

Structure learning can start from an empty network or from an existing KB. Algo-
rithm iteratively generates refinements of the current structure and scores them by
conditional likelihood. These refinements are generated using normal ILP refine-
ment operators. Every neighbor of the current structure is obtained by a small gen-
eralization/specialization of a randomly chosen clause in the structure. Algorithm 5
performs Iterated Local Search [23, 35] for the best model that fits the data. It starts
by randomly choosing a clause CLC in the current MLN structure. Then it performs
a greedy local search to efficiently reach a local optimum MLNS. At this point, a
restart method is applied by randomly choosing a clause CL’C from the clauses of
MLNS. Then again, a greedy local search is applied to MLNS to reach another lo-
cal optimum MLN′S . The accept function decides whether the search must continue
from the previous local optimum MLNS or from the last local optimum MLN′S. The
accept function always accepts the best solution found so far.

For every candidate structure, the parameters that optimize the WPLL are set
through L-BFGS. As pointed out in [29] a potentially serious problem that arises
when evaluating candidate clauses using WPLL is that the optimal (maximum
WPLL) weights need to be computed for each candidate. Since this involves nu-
merical optimization, and needs to be done millions of times, it could easily make
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Algorithm 5 FindBestModel
Input: P:set of predicates, MLN:Markov Logic Network, BestScore: current best score, CLS:
List of clauses, RDB:Relational Database)
CLC = Random Pick a clause in CLS;
MLNS = LocalSearchII(CLC ,MLN,BestScore);
BestModel = MLNS;
repeat

CL’C = Random Pick a clause in (MLNS);
MLN’S = LocalSearchII(CL’C ,MLNS,BestScore);
if f (BestModel,RDB) ≥ f (MLN’S,RDB) then

BestModel = MLN’S;
BestScore = f (MLN’S,RDB)

end if
MLNS = accept(MLNS,MLN’S);

until two consecutive steps have not produced improvement
Return BestModel
f = CLL (conditional log-likelihood)

the algorithm too slow. In [37, 12] the problem is addressed by assuming that the
weights of previous features do not change when testing a new one. Surprisingly, the
authors in [29] found this to be unnecessary if the very simple approach of initial-
izing L-BFGS with the current weights (and zero weight for a new clause) is used.
Although in principle all weights could change as the result of introducing or mod-
ifying a clause, in practice this is very rare. Second-order, quadratic-convergence
methods like L-BFGS are known to be very fast if started near the optimum [62].
This is what happened in [29]: L-BFGS typically converges in just a few iterations,
sometimes one. We use the same approach for setting the parameters that optimize
the WPLL.

In Algorithm 6, we generate NBHD, the neighborhood of MLNC, by using ILP
refinement operators. All structures in NBHD differ from MLNC by only one clause
which is a generalization or specialization of the clause CLC. Two modifications can
be applied here with respect to the traditional setting. First of all, the structure re-
finement is not carried out randomly, but can be guided by the examples themselves,
since they were purposely provided by an expert. Hence, each example that is not
correctly classified by the current theory can be exploited to perform a generaliza-
tion (if positive) or specialization (if negative) according to classical ILP operators.
Application of such an operator will provide one or more (depending on the opera-
tor and on the generalization model adopted) alternative refinements of the original
structure, each of which consists in a new structure obtained by refining a single
clause in the original structure. Moreover, pruning criteria can be set in order to
avoid working on refinements that are not regarded as promising or acceptable. For
instance, one could require that each candidate structure fulfils a minimum coverage
threshold in the logical sense, i.e., that the accuracy from the ILP point of view (how
many positive examples are covered and how many negatives are not) is greater than
a given minimum. We believe this heuristic can help exclude candidates that have
a very low logical accuracy. Although there is a mismatch between the coverage
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Algorithm 6 LocalSearchII
Input: (CLC: clause chosen for refinement, MLNC: current model, BestScore: current best
score)
wp: walk probability, the probability of performing an improvement step or a
random step
repeat

NBHD = Neighborhood of MLNC constructed using ILP refinement operators on the clause
CLC;
for Each Candidate Structure MLN in NBHD do

if MLN satisfies ILP coverage threshold then
PerformLogicalAbduction(MLN,RDB);
if all atoms have known truth values then

LearnWPLLWeights(MLN,RDB);
else

LearnWPLLWeightswithEM(MLN,RDB);
end if

end if
end for
for Each structure scored MLN do

score = f (MLN,RDB)
if score ≥ BestScore then

BestScore = score;
MLNS = MLN

end if
end for

until two consecutive steps do not produce improvement
Return MLNS;

criterion used by most ILP systems and the likelihood (or a function thereof) used
by most statistical learners, a logical theory that does not explain any example from
a logical interpretation would be less useful, and would contradict the idea that ex-
amples are purposely labelled by an expert and hence deserve some level of trust.
Therefore, we decided to pose a threshold on the accuracy of candidate structures
and learn weights only for those candidates that satisfy this threshold.

After the coverage check, we perform logical abduction using the theory of each
structure and the examples in RDB. When the abductive proof procedure has poten-
tially completed missing values in RBD, we check whether all the data have been
completed. If this is the case then we can learn optimal WPLL weights without EM,
otherwise we use EM. For very incomplete data, it is probable that the abductive
proof procedure will not complete all the missing data. However, the partial com-
pleting of the data will potentially help the weight learning procedure to learn more
accurate weights compared to the case when more data is missing.

After setting weights with WPLL, in order to score each MLN structure in terms
of conditional likelihood (CLL), we need to perform inference over the network.
A very fast algorithm for inference in MLNs is MC-SAT [52]. Since probabilistic
inference methods like MCMC or belief propagation tend to give poor results when
deterministic or near-deterministic dependencies are present, and logical ones like
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satisfiability testing are inapplicable to probabilistic dependencies, MC-SAT com-
bines ideas from both MCMC and satisfiability to handle probabilistic, deterministic
and near-deterministic dependencies that are typical of statistical relational learning.
MC-SAT was shown to greatly outperform Gibbs sampling and simulated tempering
in two real-world datasets regarding entity resolution and collective classification.
MC-SAT produces probability outputs for every grounding of the query predicate
on the test fold and these values can be used to compute the average CLL over all
the groundings. In order to make the execution of MC-SAT tractable for every can-
didate structure, we follow the same heuristic that were proposed in [4], i.e., we
score through MC-SAT only those candidate structures that show an improvement
in WPLL, we use the lazy version of MC-SAT that is known as Lazy-MC-SAT [53]
which reduces memory and time by orders of magnitude compared to MC-SAT, we
pose a memory and time limit on the inference process thorugh Lazy-MC-SAT. As
the experiments showed in [4], these heuristics proved quite successful in two real
world domains. We denote this framework as Structure Learning with Abduction
(SLA).

7 Structural EM with Abduction

In the presence of missing values a procedure normally used is Expectation- Maxi-
mization (EM) [13]. In this section we describe the EM algorithm and the Structural-
EM algorithm that was first proposed in [17] to learn the structure of Bayesian
Networks. Then we sketch a framework for integrating logical abduction in the
Structural-EM algorithm and discuss the benefits that the statistical learning setting
can have from logical abduction.

7.1 Expectation-Maximization and Structural EM

In the presence of missing values maximum likelihood parameter estimation is a
numerical optimization problem, and all known algorithms involve nonlinear, iter-
ative optimization and multiple calls to an inference algorithm. The most widely
used algorithm for parameter estimation under hidden variables is Expectation-
Maximization [13]. This algorithm proceeds in two steps, in the Expectation (E)-
step it is computed the expectation of the previous model and the observed data and
in the Maximization (M) step, the expected score is maximized. Thus, if we denote
the previous model MLNk and the parameters of the model λk,l in the l step, then in
the l +1 the algorithm performs two steps:

E-Step: Computes the expectation of the log-likelihood given the old model
(MLNk,λk,l) and the observed data D, i.e., Q(MLNk,λ |MLNk,λk,l)

= E[logP(D|MLNk,λ )|MLNk,λk,l ].
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Algorithm 7 Structural EM
Input: (Current model: MLNk, λk,l , RDB:relational data)
Perform random assignment of λ0,0
repeat

for k = 0, 1, 2, . . .
repeat

for l = 0, 1, 2, . . .
λk,l+1 = argmaxQ(MLNk,λ |MLNk,λk,l)

until convergence is reached or l = lmax
Find a model MLNk+1 ∈ neighbors(MLNk) that maximizes
maxλ Q(MLNk+1,λ |MLNk,λk,l)
Set λk+1,0 = argmaxQ(MLNk+1,λ |MLNk,λk,l)

until convergence is reached
neighbors(MLNk) is computed using the ILP refinement operators.

where D denotes the completion of the data. The current model MLNk, λk,l and
the observed data D give the conditional distribution and E denotes the expectation
over it. The function Q is called the expected score.

M-Step: Maximize the expected score Q(MLNk,λ |MLNk,λk,l) w.r.t. λ , i.e.,
λk,l+1 = argmaxλ Q(MLNk,λ |MLNk,λk,l) .

Algorithm 4 can be instantiated using the EM. The problem, however, is the
huge computational costs. To evaluate a single neighbor, the EM has to run for a
reasonable number of iterations in order to get reliable ML estimates of λk . Each
EM iteration requires a full inference on all data cases. In total, the running time
per a neighbor evaluation is at least O(#EM iterations * size of data) which is in-
tractable even for very simple problems. The idea of Structural EM [17] is to per-
form structure search inside the EM procedure. Algorithm 7 takes the current model
(MLNk,λk,l) and runs the EM algorithm for a while to get reasonably completed
data. It then fixes the completed data cases and used them to compute the ML pa-
rameters λk of each neighbor MLNk. The neighbor (MLNk+1,λk+1) with the best
improvement of the score is chosen for the next iteration.

7.2 Integrating Logical Abduction in Structural EM

Algorithm 8 shows how the abductive proof procedure can be plugged in the Struc-
tual EM algorithm. The logical abduction process is performed inside the E-step,
in order to complete the available data. After the abductive process is completed,
the EM approach fixes the current model (MLNk,λk,l) and computes maximum
pseudo-likelihood parameters of the neighbors of (MLNk,λk,l). The neighbors are
constructed using the ILP refinement. After weights have been set for each neighbor,
the average CLL for each structure is then computed based on these weights using
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Algorithm 8 Structural EM with abduction
Input: (Current model: MLNk, λk,l , RDB:relational data)
Perform random assignment of λ0,0
repeat

for k = 0, 1, 2, . . .
CLC = Random Pick a clause in MLNk;
NBHD = Neighborhood of MLNk constructed using ILP refinement operators on the clause
CLC;
repeat

for l = 0, 1, 2, . . .
PerformLogicalAbduction(MLNk,RDB);
λk,l+1 = argmaxWPLLQ(MLNk,λ |MLNk,λk,l)

until convergence is reached or l = lmax
Find a model MLNk+1 ∈ NBHD that maximizes
maxWPLLλ Q(MLNk+1,λ |MLNk,λk,l)
score each structure with CLL using MC-SAT
Set λk+1,0 = argmaxCLLQ(MLNk+1,λ |MLNk,λk,l)

until convergence is reached

MC-SAT. The best model is the one that maximizes CLL. We call this framework
Structural EM with Logical Abduction (SEMLA).

The difference with the framework proposed in the previous section is that the
abductive proof procedure in SEMLA is executed on the current model trying to
complete the data based on the current theory. While in SLA the logical abductive
process is performed on each of the neighbors of the current model exploiting a
different theory which is obtained by refinement operators from the current theory.
Another difference of SLA and SEMLA is that in SEMLA the E-step is performed
for the current model with the current parameters, while in SLA the E-step is per-
formed on each candidate structure separately with a different set of parameters.
Finally, the M-step for SEMLA is performed on all the neighbors of the current
model using the estimates on the current model and trying to maximize the likeli-
hood of each neighbor, while in SLA the M-step uses the independent estimates on
each of the candidate structures to maximize its likelihood.

From a computational complexity point of view, we expect SLA to be more ex-
pensive since logical abduction and the entire E-step is performed for each of the
neighbors of the current model, while for SEMLA, both logical abduction and the
E-step are performed only once for the current model and then used for all the neigh-
bors. However, since the abduced atoms change with the available theory, in SLA
the logical abduction process would produce abducibles according to the logical
theory of each neighbor, thus the abduced truth values are directly related to each
neighbor. In SEMLA this is not the case, for each neighbor the abduced truth values
with the current model are used and these values may not be directly related with
the theory of the neighbor.
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8 Related Work

To the best of our knowledge this is the first proposal that tightly integrates in a task
of structure learning algorithm, a logical approach to abduction with a statistical pro-
cedure for parameter learning. Previous related work has considered mostly statisti-
cal abduction as the principal form of inference and has considered logic simply as
a representation formalism. One of the first approaches similar to ours is that of [51]
where probabilistic Horn abduction was proposed. In this approach, a program con-
tains non-probabilistic definite clauses and probabilistic disjoint declarations which
are of the form h1 : p1, ...,hn : pn and an abducible atom hi is considered true with
probability pi. This work focuses on the representation language issue trying to pro-
pose a simple language for integrating logic and probability and the authors does not
deal with the structure learning problem. Moreover, it does not integrate any form
of logic-based abductive proof procedure with statistical learning. Another approach
is that in [61], where a logic-based framework is proposed and statistical abduction
is introduced for representing and learning probabilistic knowledge. The abductive
inference is made possible through the definiton of a probability distribution over
abducibles. This makes possible to identify the best hypothesis as the most likely
hypothesis and likelihood is maximized through statistical learning. The difference
with our proposal is that the approach of [61] is purely statistical and the role of
logic is purely sintactic, i.e., there is no pure logic-based proof procedure as in our
two proposed frameworks. Moreover, the authors in [61] do not learn the structure
of the model as we do here. Instead, they hand code the clauses of the model and
only learn the statistical parameters of the model through an EM based algorithm.
Finally, our SEMLA framework modifies the EM algorithm in a way that structure
search can be performed inside the EM algorithm together with logical abduction.
Finally, a similar approach is that proposed in [1, 6] where the authors proposed Ab-
ductive Stochastic Logic Programs which is a framework that supports abduction in
SLPs [41] to provide a probability distribution over abductive hypothesis based on
a possible world semantics. Again the main difference with our proposed frame-
works is that the approaches in [1, 6] suppose to have an already learned structure
in order to learn the parameters for the SLP. When the parameters of the SLP have
been learned, this probabilistic program is used to define a probability distribution
over the abducibles using a stochastic SLD derivation. The labelled hypothesised
abducibles are chosen to maximize the likelihood. Therefore, since the structure
of the model is first learned by ILP using “coverage” as guiding function, and all
the following process involves only parameter learning, our proposals are differ-
ent since we learn the structure by directly optimizing a likelihood based function.
For an SRL this has proven to be the best way to learn a model as the results of
[29] show, where ILP based approaches were outperformed by likelihood-guided
approaches for the task of learning the structure of an SRL model. Moreover, we
perform abduction during structure selection, while the approach of [1, 6] uses a
two step approach, first learns the structure with ILP (then the parameters) and then
performs abduction. This two step approach has been shown in [32] to be inferiror
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in terms of accuracy compared to the single-step structure learning approach that
we follow here.

9 Conclusion and Future Work

Statistical Relational Learning (SRL) is a growing field in Machine Learning that
aims at the integration of logic-based learning approaches with probabilistic graphi-
cal models. Markov Logic Networks are one of the state-of-the-art SRL models that
combine first-order logic and Markov networks (MNs) by attaching weights to first-
order formulas and viewing these as templates for features of MNs. Learning models
in SRL consists in learning the structure (logical clauses in MLNs) and the parame-
ters (weights for each clause in MLNs). Structure learning of MLNs is performed by
maximizing a likelihood function (or a function thereof) over relational databases
and MLNs have been successfully applied to problems in relational and uncertain
domains. However, most complex domains are characterized by incomplete data.
Until now SRL models have mostly used Expectation-Maximization for learning
statistical parameters under missing values. Multistrategic learning in the relational
setting has been a successful approach to dealing with complex problems where
multiple inference mechanisms can help solve different subproblems. Abduction is
an inference strategy that has been proven useful for completing missing values in
observations. In this paper we propose two frameworks for integrating abduction in
an SRL model based on MLNs. The first tightly integrates logical abduction with
structure and parameter learning of MLNs in a single step. During structure search
guided by conditional likelihood, clause evaluation is performed by first trying to
logically abduce missing values in the data and then by learning optimal parameters
using the completed data. The second approach integrates abduction with Structural
EM of [17] by performing logical abductive inference in the E-step and then by
trying to maximize parameters in the M-step.

We intend to experimentally evaluate the proposed frameworks on complex re-
lational domains with missing data. In order to evaluate the advantages of our ap-
proach, we intend to compare the accuracy performance against a pure statistical
learner that uses EM to deal with missing values, a pure logical approach such as
an ILP system and finally against another SRL approach that does not follow our
approach to structure learning.
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