Skip to main content

Learning to Imitate Human Actions through Eigenposes

  • Chapter
From Motor Learning to Interaction Learning in Robots

Part of the book series: Studies in Computational Intelligence ((SCI,volume 264))

Abstract

Programming a humanoid robot to perform an action that takes into account the robot’s complex dynamics is a challenging problem. Traditional approaches typically require highly accurate prior knowledge of the robot’s dynamics and the environment in order to devise complex control algorithms for generating a stable dynamic motion. Training using human motion capture (mocap) data is an intuitive and flexible approach to programming a robot but direct usage of kinematic data from mocap usually results in dynamically unstable motion. Furthermore, optimization using mocap data in the high-dimensional full-body joint-space of a humanoid is typically intractable. In this chapter, we purposes a new model-free approach to tractable imitation-based learning in humanoids by using eigenposes.

The proposed framework is depicted in Fig. 1. A motion capture system transforms the Cartesian positions of markers attached to the human body to joint angles based on kinematic relationships between the human and robot bodies. Then, linear PCA is used to create eigenpose data, which are representation of whole-body posture information in a compact low-dimensional subspace. Optimization of whole-body robot dynamics to match human motion is performed in the low dimensional subspace by using eigenposes. In particular, sensory feedback data are recorded from the robot during motion and a causal relationship between eigenpose actions and the expected sensory feedback is learned. This learned sensory-motor mapping allows humanoid motion dynamics to be optimized. An inverse mapping that maps optimized eigenpose data from the low-dimensional subspace back to the original joint space is then used to generate motion on the robot. We present several results demonstrating that the proposed approach allows a humanoid robot to learn to walk based solely on human motion capture without the need for a detailed physics-based model of the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proceedings of the 2003 IEEE International Conference on Robotics and Automation, ICRA 2003, Taipei, Taiwan. IEEE, Los Alamitos (2003)

    Google Scholar 

  2. Billard, A.: Imitation: a means to enhance learning of a synthetic protolanguage in autonomous robots, pp. 281–310 (2002)

    Google Scholar 

  3. Chalodhorn, R., MacDorman, K.F., Asada, M.: An algorithm that recognizes and reproduces distinct types of humanoid motion based on periodically-constrained nonlinear pca. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 370–380. Springer, Heidelberg (2005)

    Google Scholar 

  4. Dana Kulic Dongheui Lee, C.O., Nakamura, Y.: Incremental learning of full body motion primitives for humanoid robots. In: IEEE International Conference on Humanoid Robots, pp. 326–332 (2008)

    Google Scholar 

  5. Demiris, J., Hayes, G.: A robot controller using learning by imitation. In: Proceedings of the 2nd International Symposium on Intelligent Robotic Systems, Grenoble, France (1994)

    Google Scholar 

  6. Grimes, D.B., Chalodhorn, R., Rao, R.P.N.: Dynamic imitation in a humanoid robot through nonparametric probabilistic inference. In: Sukhatme, G.S., Schaal, S., Burgard, W., Fox, D. (eds.) Robotics: Science and Systems. The MIT Press, Cambridge (2006)

    Google Scholar 

  7. Grochow, K., Martin, S.L., Hertzmann, A., Popovic, Z.: Style-based inverse kinematics. ACM Trans. Graph. 23(3), 522–531 (2004)

    Article  Google Scholar 

  8. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Trajectory formation for imitation with nonlinear dynamical systems. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 752–757 (2001)

    Google Scholar 

  9. Inamura, T., Toshima, I., Nakamura, Y.: Acquisition and embodiment of motion elements in closed mimesis loop. In: ICRA, pp. 1539–1544. IEEE, Los Alamitos (2002)

    Google Scholar 

  10. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: ICRA [1], pp. 1620–1626

    Google Scholar 

  11. Kajita, S., Matsumoto, O., Saigo, M.: Real-time 3d walking pattern generation for a biped robot with telescopic legs. In: ICRA, pp. 2299–2306. IEEE, Los Alamitos (2001)

    Google Scholar 

  12. Kajita, S., Nagasaki, T., Kaneko, K., Yokoi, K., Tanie, K.: A running controller of humanoid biped hrp-2lr. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, Barcelona, Spain, April 18-22, pp. 616–622 (2005)

    Google Scholar 

  13. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. Journal of the American Institute of Chemical Engineers 37(2), 233–243 (1991)

    Google Scholar 

  14. Michel, O.: Webots: Symbiosis between virtual and real mobile robots. In: Heudin, J.-C. (ed.) VW 1998. LNCS (LNAI), vol. 1434, pp. 254–263. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Morimoto, J., Hyon, S.H., Atkeson, C.G., Cheng, G.: Low-dimensional feature extraction for humanoid locomotion using kernel dimension reduction. In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, Pasadena, California, USA, May 19-23, pp. 2711–2716 (2008)

    Google Scholar 

  16. Rao, R.P.N., Shon, A.P., Meltzoff, A.N.: A Bayesian model of imitation in infants and robots. In: Nehaniv, C.L., Dautenhahn, K. (eds.) Imitation and Social Learning in Robots, Humans and Animals: Behavioural, Social and Communicative Dimensions. Cambridge University Press, UK (2007)

    Google Scholar 

  17. Sobotka, M., Wollherr, D., Buss, M.: A jacobian method for online modification of precalculated gait trajectories. In: Proceedings of the 6th International Conference on Climbing and Walking Robots, Catania, Italy, pp. 435–442 (2003)

    Google Scholar 

  18. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Tatani, K., Nakamura, Y.: Dimensionality reduction and reproduction with hierarchical nlpca neural networks-extracting common space of multiple humanoid motion patterns. In: ICRA [1], pp. 1927–1932

    Google Scholar 

  20. Vukobratović, M., Yu, S.: On the stability of anthropomorphic systems. Mathematical Biosciences 15, 1–37 (1972)

    Article  MATH  Google Scholar 

  21. Wang, J., Fleet, D., Hertzmann, A.: Gaussian process dynamical models. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems, vol. 18, pp. 1441–1448. MIT Press, Cambridge (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chalodhorn, R., Rao, R.P.N. (2010). Learning to Imitate Human Actions through Eigenposes. In: Sigaud, O., Peters, J. (eds) From Motor Learning to Interaction Learning in Robots. Studies in Computational Intelligence, vol 264. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05181-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05181-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05180-7

  • Online ISBN: 978-3-642-05181-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics