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Abstract We show that aconditional probability table(CPT) is obtained after every
multiplication and every marginalization step when eliminating variables from a
discrete Bayesian network. The main advantage of our work is an improvement in
presentation. The probability distributions constructed during variable elimination
in Bayesian networks have always been denoted as potentials. Since CPTs are a
special case of potential, our description is more precise and readable.

1 Introduction

A discreteBayesian network[2, 3, 4, 5, 9, 10, 15] consists of adirected acyclic
graph (DAG) and a corresponding set ofconditional probability tables(CPTs).
Bayesian networks serve as a clear and concise semantic modeling tool for man-
aging uncertainty in complex domains by representing variables in the problem
domain as vertices in the DAG, qualifying direct relationships between variables
with directed arcs in the DAG, and quantifying these relationships with CPTs. The
probabilistic conditional independencies[14] encoded in the DAG indicate that the
product of the CPTs is ajoint probability distribution(JPD). While a JPD overm
binary variables would comprise2m probabilities, a Bayesian network models a JPD
compactly and indirectly as a product of CPTs.

The task ofvariable elimination(VE) is central to reasoning with Bayesian net-
works. A variablev is eliminated using a simple two-step procedure. First, the prob-
ability distributions involvingv are multiplied together. Second,v is marginalized
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out of the product obtained in the first step. Other variables can be eliminated in
a recursive manner. The probabilistic reasoning literature has always denoted the
probability distributions constructed during VE aspotentials. This description is
not as precise as it should be.

In this chapter, we show that every multiplication operation and every marginal-
ization operation involved in eliminating variables from a discrete Bayesian network
yields a CPT. The concept ofexpanded formis introduced to define each poten-
tial constructed by the VE algorithm in terms of a sequence of multiplication and
marginalization operators on the given Bayesian network CPTs. We then establish
that each expanded form can be equivalently rewritten innormal form, that is, as
the marginalization of a product of Bayesian network CPTs. By applying our key
observation, it is established that every distribution constructed by VE is indeed a
CPT.

The significance of this result resides in the description of the VE algorithm. The
distributions constructed by VE have always been denoted as potentials. Potentials
do not have clear physical interpretation [2], as they are unnormalized probabil-
ity distributions [15]. In contrast, CPTs have clear semantic meaning [2], since the
probabilities in the distribution must necessarily obey a specific pattern. Thereby,
establishing that the distributions constructed by VE are, in fact, CPTs rather than
potentials yield a description that is more precise and readable.

The chapter is organized as follows. Section 2 reviews Bayesian networks and
the VE algorithm. That each multiplication and addition during VE yields a CPT
is shown in Section 3. We then show the advantages of our work in Section 4. The
conclusion is presented in Section 5.

2 Background Knowledge

Let U = {v1,v2, . . . ,vn} be a finite set of variables. Each variablevi ∈U has a finite
domain, denoteddom(vi), representing the valuesvi can assume. For a subsetX ⊆
U , we write dom(X) for the Cartesian product of the domains of the individual
variables inX. Each elementx ∈ dom(X) is called aconfigurationof X. If c is a
configuration onX andY⊆ X, thenc.Y denotes the restriction ofc ontoY. As done
in relational databases [7], we assume that there is a valueλ such thatc. /0 = λ for
any configurationc.

Definition 1. [4] A potential ondom(X) is a functionφ ondom(X) such thatφ(x)≥
0, for each configurationx∈ dom(X), and∑x∈dom(X) φ(x) > 0.

For brevity, we refer to a potential as a distribution onX rather thandom(X), and
we callX, notdom(X), its domain [13]. Also, for simplified notation, we useXY to
denoteX∪Y, and may write{vi} asvi in this chapter.

Example 1.Let a,b,c,d be four binary variables. Two potentialsφ(a,b) andφ(c,d)
are shown in Table 1.
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Table 1 Two potentialsφ(a,b) andφ(c,d).

a b φ(a,b) c d φ(c,d)
0 0 0.2 0 0 1.6
0 1 0.8 0 1 0.0
1 0 0.0 1 0 0.5
1 1 1.0 1 1 0.3

Definition 2. The unity-potential 1(vi) for a single variablevi is a function 1
mapping every element ofdom(vi) to one. More generally, the unity-potential
1(X) for a set X = {v1,v2, . . . ,vk} of variables is defined as follows:1(X) =
1(v1) · 1(v2) · . . . · 1(vk). That is,1(X) is table onX, where the probability value
is one for each row.

Note thatφ(Y) = φ(Y) ·1(X), if X ⊆Y.

Definition 3. A conditional probability table(CPT) on a setX of variables given a
disjoint setY of variables, denotedp(X|Y), is a potential on the union ofX andY
such that for each configurationy∈ dom(Y), ∑x∈dom(X) p(X = x|Y = y) = 1.

Example 2.Let a,b,c,d,e, f ,g,h, i be binary variables. Table 2 shows CPTsp(a),
p(b), p(c|a), p(d|a,b), p(e|b), p( f |c,d), p(g|e, f ), p(h|e,g) andp(i| f ).

Table 2 CPTsp(a), p(b), p(c|a), p(d|a,b), p(e|b), p( f |c,d), p(g|e, f ), p(h|e,g) andp(i| f ).

a p(a) b p(b) a c p(c|a) a b d p(d|a,b) b e p(e|b)
0 0.496 0 0.423 0 0 0.123 0 0 0 0.408 0 0 0.437
1 0.504 1 0.577 0 1 0.877 0 0 1 0.592 0 1 0.563

1 0 0.057 0 1 0 0.101 1 0 0.421
1 1 0.943 0 1 1 0.899 1 1 0.579

1 0 0 0.123
1 0 1 0.877
1 1 0 0.027
1 1 1 0.973

c d f p( f |c,d) e f g p(g|e, f ) e g h p(h|e,g) f i p(i| f )
0 0 0 1.0 0 0 0 0.739 0 0 0 0.562 0 0 0.739
0 0 1 0.0 0 0 1 0.261 0 0 1 0.438 0 1 0.261
0 1 0 1.0 0 1 0 0.278 0 1 0 0.406 1 0 0.498
0 1 1 0.0 0 1 1 0.722 0 1 1 0.594 1 1 0.502
1 0 0 1.0 1 0 0 0.567 1 0 0 0.421
1 0 1 0.0 1 0 1 0.433 1 0 1 0.579
1 1 0 0.0 1 1 0 0.303 1 1 0 0.353
1 1 1 1.0 1 1 1 0.697 1 1 1 0.647

Wheneverp(X|Y) is written withX andY not disjoint, we meanp(X|Y−X) to
satisfy the disjointness condition of CPTs. In [8], three special cases of CPTs are
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denoted asp(X| /0), p( /0|Y) and p( /0| /0). However, in BN literature, they are more
commonly written asp(X), 1(Y) and1, respectively.

Definition 4. Let φ1(X) and φ2(Y) be two potentials. The product ofφ1(X) and
φ2(Y), denotedφ1 ·φ2, is defined as: for each configurationc of XY,

(φ1 ·φ2)(c) = φ1(c.X) ·φ2(c.Y).

Example 3.Table 3 (left) depicts the productφ1(e, f ,g,h) of the two CPTsp(g|e, f )
andp(h|e,g) in Table 2, namely,

φ1(e, f ,g,h) = p(g|e, f ) · p(h|e,g). (1)

Table 3 (left) The productφ1(e, f ,g,h) of p(g|e, f ) andp(h|e,g) in Table 2. (right) The marginal-
ization ofφ1(e, f ,g,h) onto{e, f ,h} yieldsφ1(e, f ,h).

e f g h φ1(e, f ,g,h) e f h φ1(e, f ,h)
0 0 0 0 0.415 0 0 0 0.521
0 0 0 1 0.324 0 0 1 0.479
0 0 1 0 0.106 0 1 0 0.449
0 0 1 1 0.155 0 1 1 0.551
0 1 0 0 0.156 1 0 0 0.392
0 1 0 1 0.122 1 0 1 0.608
0 1 1 0 0.293 1 1 0 0.374
0 1 1 1 0.429 1 1 1 0.626
1 0 0 0 0.239
1 0 0 1 0.328
1 0 1 0 0.153
1 0 1 1 0.280
1 1 0 0 0.128
1 1 0 1 0.175
1 1 1 0 0.246
1 1 1 1 0.451

The key concept of a Bayesian network can now be defined.

Definition 5. [10] A Bayesian network onU = {v1,v2, . . . ,vn} is a pair(D,C). D is
a directed acyclic graph(DAG) on U . C is a set of CPTs{p(v1|P1), p(v2|P2), . . . ,
p(vn|Pn)} such that for each variablevi ∈ D, there is a CPTp(vi |Pi) for vi given its
parentsPi in D.

One salient feature of Bayesian networks is that the product of the given CPTs is
a joint distribution on the setU of variables.
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Example 4.Thecoronary heart disease(CHD) [4, 12] Bayesian network, inspired
by a research project in the field of epidemiology, is the DAG in Figure 1 on the set
U of variables, along with the CPTs in Table 2. It follows that:

p(U)
= p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(g|e, f ) · p(h|e,g) · p(i| f ).

(2)

Fig. 1 The CHD Bayesian
network consists of this DAG
together with the CPTs in
Table 2.

b

d e

a

g

f

i

c

h

It is assumed in the literature that it is feasible to store the Bayesian network
CPTs in computer memory, but not the joint distributionp(U). The marginalization
operator, denoted∑, is used to further manipulate the stored CPTs.

Definition 6. Given a potentialφ(Z), let X ⊆ Z andY = Z−X. The marginal of
φ(Z) ontoX, denotedφ(X), is defined as: for each configurationx of X,

φ(x) = ∑
y∈dom(Y)

φ(x,y),

wherex,y is the configuration ofZ obtained by combiningx with the configuration
y of Y.

Example 5.The marginalization of potentialφ1(e, f ,g,h) in Table 3 (left) onto
{e, f ,h} yields the potentialφ1(e, f ,h) in Table 3 (right).

Lemmas 1 and 2 state two important properties that are used in Bayesian network
reasoning.

Lemma 1. [13] Let φ be a potential onZ, andX ⊆Y ⊆ Z. Marginalizingφ ontoY
and subsequently ontoX is the same as marginalizingφ directly ontoX.

Lemma 1 states that variables can be eliminated in any order. While the order can
affect the amount of computation performed [13], it has no bearing on the results of
this chapter. The minimum deficiency search (MDS) [1, 6] algorithm, a technique
for finding a good elimination ordering, is used in this chapter.
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Lemma 2. [13] If φ1 is a potential onX and φ2 is a potential onY, then the
marginalization ofφ1 · φ2 onto X is the same asφ1 multiplied with the marginal-
ization ofφ2 ontoX∩Y.

Lemma 2 means that only the potentials involving the variablev being elimi-
nated need be multiplied together beforev is marginalized away.Variable elimina-
tion (VE), a central component in Bayesian network reasoning, is now defined.

Algorithm 1. [13] VE(C,X)
Input: C - a set of CPTs defining a Bayesian network on a set of variablesU ,

X - a non-empty, proper subset of variables inU to be eliminated.
Output: F - the factorization obtained by marginalizingX from C.
begin

Let F = C.
while X is not empty

Let X = X−{v}.
Let F ′ be the set of potentials inF involving v.
Let φ(Y) be the product of the potentials inF ′.
Let φ(Y−v) be obtained by marginalizingv out of φ(Y).
Let F = (F−F ′)∪{φ(Y−v)}.

end while
return F .
end

Example 6.Consider VE(C,X), whereC are the CPTs in Table 2 defining the
CHD Bayesian network andX = {a,c,d,e,g} are the variables to be eliminated.
The MDS algorithm suggests to use the elimination orderingg,c,a,d,e. Let F
be a copy ofC and let v be variableg. Those potentials involvingg, namely,
F ′ = {p(g|e, f ), p(h|e,g)} are collected. The productφ1(e, f ,g,h), shown in Table
3 (left), of the potentials inF ′ is obtained by Equation ( 1). Thenφ1(e, f ,h), shown
in Table 3 (right), is obtained by∑g φ1(e, f ,g,h). Next, the setF of potentials is
updated asF = (F −{p(g|e, f ), p(h|e,g)})∪{φ1(e, f ,h)}. The remainder of the
example follows in a similar manner.

Regarding Example 6, let us emphasize the distributions multiplied and marginal-
ized in terms of equations:

∑
a,c,d,e,g

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(g|e, f ) · p(h|e,g)

·p(i| f ) (3)

= ∑
a,c,d,e

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(i| f ) ·∑
g

p(g|e, f )

·p(h|e,g) (4)

= ∑
a,c,d,e

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(i| f ) ·∑
g

φ1(e, f ,g,h)

(5)
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= ∑
a,c,d,e

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(i| f ) ·φ1(e, f ,h) (6)

= ∑
a,d,e

p(a) · p(b) · p(d|a,b) · p(e|b) · p(i| f ) ·φ1(e, f ,h) ·∑
c

p(c|a) · p( f |c,d) (7)

= ∑
a,d,e

p(a) · p(b) · p(d|a,b) · p(e|b) · p(i| f ) ·φ1(e, f ,h) ·∑
c

φ2(a,c,d, f ) (8)

= ∑
a,d,e

p(a) · p(b) · p(d|a,b) · p(e|b) · p(i| f ) ·φ1(e, f ,h) ·φ2(a,d, f ) (9)

= ∑
d,e

p(b) · p(e|b) · p(i| f ) ·φ1(e, f ,h) ·∑
a

p(a) · p(d|a,b) ·φ2(a,d, f ) (10)

= ∑
d,e

p(b) · p(e|b) · p(i| f ) ·φ1(e, f ,h) ·∑
a

φ3(a,b,d) ·φ2(a,d, f ) (11)

= ∑
d,e

p(b) · p(e|b) · p(i| f ) ·φ1(e, f ,h) ·∑
a

φ4(a,b,d, f ) (12)

= ∑
d,e

p(b) · p(e|b) · p(i| f ) ·φ1(e, f ,h) ·φ4(b,d, f ) (13)

= ∑
e

p(b) · p(e|b) · p(i| f ) ·φ1(e, f ,h) ·∑
d

φ4(b,d, f ) (14)

= ∑
e

p(b) · p(e|b) · p(i| f ) ·φ1(e, f ,h) ·φ4(b, f ) (15)

= p(b) · p(i| f ) ·φ4(b, f ) ·∑
e

p(e|b) ·φ1(e, f ,h) (16)

= p(b) · p(i| f ) ·φ4(b, f ) ·∑
e

φ5(b,e, f ,h) (17)

= p(b) · p(i| f ) ·φ4(b, f ) ·φ5(b, f ,h). (18)

3 The CPT Structure of Variable Elimination

Here we prove that a CPT is obtained after every multiplication operation and every
marginalization operation when applying the VE algorithm on a discrete Bayesian
network. A key observation is that the product of any non-empty subset of Bayesian
network CPTs is itself a CPT. Our claim is then shown by rewriting the factorization
to exploit our key observation.

First, one salient feature of Bayesian networks is shown, namely, that the prod-
uct of the given CPTs is a joint probability distribution. For example, in the CHD
Bayesian network, we have:

p(a,b,c,d,e, f ,g,h, i)
= p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(g|e, f ) · p(h|e,g) · p(i| f ).

(19)

Equation (19) can be verified by showing that the following equation equals one (1):
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∑
U

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(g|e, f ) · p(h|e,g) · p(i| f ).

Let ≺ be atopological ordering[11] of the variables{a,b,c,d,e, f ,g,h, i} in the
CHD DAG, sayb≺ a≺ c≺ d ≺ e≺ f ≺ g≺ h≺ i. By marginalizing the vari-
ables in reverse order of≺, the variablevi being marginalized only appears in one
CPT,p(vi |Pi). By the definition of CPT,∑vi

p(vi |Pi) = 1(Pi). The claim follows. For
example, the above equation can be rewritten as

∑
U − i

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(g|e, f ) · p(h|e,g)

·∑
i

p(i| f )

= ∑
U − i

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(g|e, f ) · p(h|e,g)

·1( f )
= ∑

U − i
p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(g|e, f ) · p(h|e,g).

The remaining variables can be removed similarly, thereby establishing that the
product of all CPTs in Table 2 is a joint probability distribution. This well-known
proof is a special case of a more general result.

Lemma 3. Consider a Bayesian network on variablesU = {v1,v2, . . . ,vn} with
DAG D and CPTsC = {p(v1|P1), p(v2|P2), . . . , p(vn|Pn)}. Let C′ = {p(vi |Pi),
p(v j |Pj), . . . , p(vl |Pl ), p(vm|Pm)} be any non-empty subset ofC. The product of the
CPTs inC′ is a CPT of the variablesX givenY, whereX = {vi ,v j , . . . ,vl ,vm} and
Y = (PiPj · · ·Pl Pm)−X.

Proof. Let C′ = {p(vi |Pi), p(v j |Pj), . . . , p(vl |Pl ), p(vm|Pm)}. Similar to the proof
that the product of all Bayesian network CPTs is a joint probability distribution, we
show that the product of the Bayesian network CPTs inC′ is a CPT by establishing

∑
X

p(vi |Pi) · p(v j |Pj) · . . . · p(vl |Pl ) · p(vm|Pm) = 1(Y). (20)

Let≺ denote a topological ordering of the variables inD. Without loss of generality,
let vi ≺ v j ≺ ·· · ≺ vl ≺ vm. This≺ and the fact thatD is a DAG mean thatvm can
only appear in one CPT ofC′, namely,p(vm|Pm). Thereby, we have

∑
X

p(vi |Pi) · p(v j |Pj) · . . . · p(vl |Pl ) · p(vm|Pm)

= ∑
X−vm

p(vi |Pi) · p(v j |Pj) · . . . · p(vl |Pl ) ·∑
vm

p(vm|Pm)

= ∑
X−vm

p(vi |Pi) · p(v j |Pj) · . . . · p(vl |Pl ) ·1(Pm)

= ∑
X−vm

p(vi |Pi) · p(v j |Pj) · . . . · p(vl |Pl ) ·1(Pm−X) ·1(Pm∩X)
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= 1(Pm−X) · ∑
X−vm

p(vi |Pi) · p(v j |Pj) · . . . · p(vl |Pl ) ·1(Pm∩X). (21)

Sincevm /∈ Pm, by definition,(Pm∩X)⊆ X−vm. That is,(Pm∩X)⊆ {vi ,v j , . . . ,vl}.
Thereby,1(Pm∩X) can be factorized into unity-potentials1(v) on its singleton vari-
ablesv, and each1(v) can be multiplied with the CPTp(v|Pv). As p(v|Pv) · 1(v)
givesp(v|Pv), Equation (21) can be rewritten as

1(Pm−X) · ∑
X−vm

p(vi |Pi) · p(v j |Pj) · . . . · p(vl |Pl ).

By a similar argument for variablesvl , . . . ,v j ,vi , we obtain our desired result:

∑
X

p(vi |Pi) · p(v j |Pj) · . . . · p(vl |Pl ) · p(vm|Pm)

= 1(Pi −X) ·1(Pj −X) · . . . ·1(Pl −X) ·1(Pm−X)
= 1(Y). ut

Lemma 3 establishes that the product of a subset of CPTs from a Bayesian net-
work is a CPT. While it is not guaranteed that the product isp(X|Y), namely, a
CPT defined with respect to the joint distributionp, we make this assumption in this
chapter.

Example 7.Consider the CPTs{p(c|a), p(e|b), p( f |c,d)}, which are a subset of the
CHD Bayesian network of Figure 1. By Lemma 3,

p(c,e, f |a,b,d) = p(c|a) · p(e|b) · p( f |c,d). (22)

The notion ofexpanded formis introduced to express potentials built by VE
equivalently in terms of multiplication and marginalization operators on a subset of
Bayesian network CPTs.

Definition 7. Let φ be any potential constructed in a given instance ofVE(C,X).
The expanded form ofφ is the unique expression defining how VE builtφ using the
multiplication and marginalization operators on the Bayesian network CPTs inC.

Example 8.The expanded form of potentialφ4(b, f ) in Equation (15) is:

φ4(b, f ) = ∑
d

(
∑
a

(
(p(a) · p(d|a,b)) ·

(
∑
c

(p(c|a) · p( f |c,d))
)))

,

which is determined recursively as follows:

φ4(b, f ) = ∑
d

φ4(b,d, f )

= ∑
d

(
∑
a

φ4(a,b,d, f )
)
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= ∑
d

(
∑
a

(φ3(a,b,d) ·φ2(a,d, f ))
)

= ∑
d

(
∑
a

((p(a) · p(d|a,b)) ·φ2(a,d, f ))
)

= ∑
d

(
∑
a

(
(p(a) · p(d|a,b)) ·

(
∑
c

φ2(a,c,d, f )
)))

= ∑
d

(
∑
a

(
(p(a) · p(d|a,b)) ·

(
∑
c

(p(c|a) · p( f |c,d))
)))

.

Definition 8. The expanded form of a potentialφ constructed in a given instance
of VE(C,X) is said to be in normal form, if all marginalizations take place on the
product of all CPTs used to buildφ .

Example 9.The expanded form of potentialφ4(b, f ) in Example 8 is not in normal
form, since, for instance, the marginalization of variablec takes place on a product
not involving the CPTsp(a) andp(d|a,b).

The next result is critical to applying our key observation.

Lemma 4. The expanded form of any potentialφ constructed in a given instance of
VE(C,X) can always be equivalently rewritten in normal form.

Proof. Let ∑vi
be any marginalization in the expanded form. There are two cases to

consider. First, consider the case when there is another marginalization∑v j
to the

immediate left of∑vi
. By Lemma 1, we can equivalently rewrite∑v j ∑vi

as∑vi ∑v j
.

Otherwise, consider the case when a multiplication operator appears to the immedi-
ate left of∑vi

, sayφ1 ·∑vi
φ2. By construction of VE, all distributions involvingvi

are multiplied together asφ2 beforevi is marginalized out. This means thatvi does
not appear inφ1. By Lemma 2,φ1 ·∑vi

φ2 can be equivalently rewritten as∑vi
φ1 ·φ2.

By repeated argument,∑vi
can be pulled to the left of all multiplication operators

in the expanded form. This argument holds for all other marginalization signs. By
definition, the expanded form can be equivalently rewritten into normal form.ut
Example 10.In Example 8, the expanded form of potentialφ4(b, f ) can be equiva-
lently rewritten in normal form as follows:

∑
d

(
∑
a

(
(p(a) · p(d|a,b)) ·

(
∑
c

(p(c|a) · p( f |c,d))
)))

= ∑
d

(
∑
a

(
∑
c

((p(a) · p(d|a,b)) · (p(c|a) · p( f |c,d)))
))

= ∑
d,a,c

p(a) · p(d|a,b) · p(c|a) · p( f |c,d).

The main result of this chapter is given next.
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Theorem 1.Every multiplication step and every marginalization step inVE(C,X)
yields a CPT.

Proof. Let φ be any potential built during an instance ofVE(C,X). By Definition 7,
the expanded form ofφ is the unique expression defining how VE builtφ using the
multiplication and marginalization operators on the Bayesian network CPTs inC.
By Lemma 4, the expanded form can be equivalently rewritten in normal form, say:

∑
X′

p(vi |Pi) · p(v j |Pj) · . . . · p(vl |Pl ) · p(vm|Pm).

Lemma 3 establishes that

p(vi ,v j , . . . ,vl ,vm|PiPj · · ·Pl Pm) = p(vi |Pi) · p(v j |Pj) · . . . · p(vl |Pl ) · p(vm|Pm).

It follows thatX′ is a subset of{vi ,v j , . . . ,vl ,vm}, since the VE algorithm requires
that all distributions involving the variable being eliminated be multiplied together
before the variable is marginalized away. Thus, by definition of CPT,

∑
X′

p(vi ,v j , . . . ,vl ,vm|PiPj · · ·Pl Pm)

yields a CPT. Therefore, any potential built by the VE algorithm is a CPT.ut
Example 11.Recall the elimination of variablesa, c, d, e andg from the Bayesian
network in Example 4. By Theorem 1, we now have:

∑
a,c,d,e,g

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(g|e, f ) · p(h|e,g)

·p(i| f )
= ∑

a,c,d,e

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(i| f ) ·∑
g

p(g|e, f )

·p(h|e,g)
= ∑

a,c,d,e

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(i| f ) ·∑
g

p(g,h|e, f )

= ∑
a,c,d,e

p(a) · p(b) · p(c|a) · p(d|a,b) · p(e|b) · p( f |c,d) · p(i| f ) · p(h|e, f )

= ∑
a,d,e

p(a) · p(b) · p(d|a,b) · p(e|b) · p(i| f ) · p(h|e, f ) ·∑
c

p(c|a) · p( f |c,d)

= ∑
a,d,e

p(a) · p(b) · p(d|a,b) · p(e|b) · p(i| f ) · p(h|e, f ) ·∑
c

p(c, f |a,d)

= ∑
a,d,e

p(a) · p(b) · p(d|a,b) · p(e|b) · p(i| f ) · p(h|e, f ) · p( f |a,d)

= ∑
d,e

p(b) · p(e|b) · p(i| f ) · p(h|e, f ) ·∑
a

p(a) · p(d|a,b) · p( f |a,d)

= ∑
d,e

p(b) · p(e|b) · p(i| f ) · p(h|e, f ) ·∑
a

p(a,d|b) · p( f |a,d)
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= ∑
d,e

p(b) · p(e|b) · p(i| f ) · p(h|e, f ) ·∑
a

p(a,d, f |b)

= ∑
d,e

p(b) · p(e|b) · p(i| f ) · p(h|e, f ) · p(d, f |b)

= ∑
e

p(b) · p(e|b) · p(i| f ) · p(h|e, f ) ·∑
d

p(d, f |b)

= ∑
e

p(b) · p(e|b) · p(i| f ) · p(h|e, f ) · p( f |b)

= p(b) · p(i| f ) · p( f |b) ·∑
e

p(e|b) · p(h|e, f )

= p(b) · p(i| f ) · p( f |b) ·∑
e

p(e,h|b, f )

= p(b) · p(i| f ) · p( f |b) · p(h|b, f ).

The significance of Theorem 1 is that the potentialsφ1(e, f ,g,h), φ1(e, f ,h),
φ2(a,c,d, f ), φ2(a,d, f ), φ3(a,b,d), φ4(a,b,d, f ), φ4(b,d, f ), φ5(b,e, f ,h) and
φ5(b, f ,h) constructed in Equations (3) - (18) of Example 6 are actually the CPTs
p(g,h|e, f ), p(h|e, f ), p(c, f |a,d), p( f |a,d), p(a,d|b), p(a,d, f |b), p(d, f |b),
p(e,h|b, f ) andp(h|b, f ), respectively.

4 Advantages

By definition, a CPT is a special case of potential. For instance, all of the CPTs in
Table 2 are potentials. On the contrary, not all potentials are CPTs. For example,
usingφ(a,b) in Table 1, it can be verified that

∑
b

φ(a,b) = 1(a). (23)

Therefore, the potentialφ(a,b) is, in fact, a CPTp(b|a). In contrast, the potential
φ(c,d) in Table 1 cannot satisfy the definition of CPT. Nevertheless, it is more
precise to label the distributions constructed by VE as CPTs rather than as potentials.

Labeling distributions as CPTs bring more clarity to the VE algorithm. Poten-
tials do not have clear physical interpretation [2] as they are unnormalized probabil-
ity distributions [15]. In contrast, CPTs have clear semantic meaning [2], since the
probabilities must satisfy a rigorous pattern.

5 Conclusion

In this chapter, we considered the problem of eliminating a variable from a Bayesian
network in the context of no evidence. Our main result is that each multiplication
and addition in the VE algorithm generates a CPT, not a potential. Our key observa-
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tion is that the product of any subset of Bayesian network CPTs is itself a CPT. The
main advantage of our work is an improvement in presentation. Potentials do not
have clear physical interpretation [2] as they are unnormalized probability distribu-
tions [15]. In contrast, CPTs have clear semantic meaning [2], since the probabilities
must satisfy a rigorous pattern. While the distributions constructed during VE have
traditionally been called potentials, we have shown that they are, in fact, CPTs.
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2. E. Castillo, J. Gutíerrez, A. Hadi, Expert Systems and Probabilistic Network Models, Springer,
New York, 1997.

3. R.G. Cowell, A.P. Dawid, S.L. Lauritzen, D.J. Spiegelhalter, Probabilistic Networks and Ex-
pert Systems, Springer, New York, 1999.
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Hrabovsḱy, and E. Stuchlı́ková, Prognostic significance of the risk profile in the prevention
of coronary heart disease, Bratisl. Lék. Listy, 76, 137, 1981.
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