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Asymmetric and sample size sensitive entropy
measures for supervised learning

Djamel A. Zighed and Gilbert Ritschard and Simon Marcellin

Abstract Many algorithms of machine learning use an entropy measure as opti-
mization criterion. Among the widely used entropy measures, Shannon’s is one of
the most popular. In some real world applications, the use of such entropy measures
without precautions, could lead to inconsistent results. Indeed, the measures of en-
tropy are built upon some assumptions which are not fulfilled in many real cases.
For instance, in supervised learning such as decision trees, the classification cost of
the classes is not explicitly taken into account in the tree growing process. Thus, the
misclassification costs are assumed to be the same for all classes. In the case where
those costs are not equal on all classes, the maximum of entropy must be elsewhere
than on the uniform probability distribution. Also, when the classes don’t have the
same a priori distribution of probability, the worst case (maximum of the entropy)
must be elsewhere than on the uniform distribution. In this paper, starting from real
world problems, we will show that classical entropy measures are not suitable for
building a predictive model. Then, we examine the main axioms that define an en-
tropy and discuss their inadequacy in machine learning. This we lead us to propose a
new entropy measure that possesses more suitable proprieties. After what, we carry
out some evaluations on data sets that illustrate the performance of the new measure
of entropy.
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1 Introduction

In machine learning, more specifically in supervised learning, algorithms such as
association rules, decision trees,... use plenty of criteria, and among them are mea-
sures of entropy. Unfortunately, when the entropy criteria are used, it is done with-
out taking into account the assumptions upon which they are founded. Indeed, many
assumptions required for such usage are not satisfied in real applications. The en-
tropy criteria would be suitable if, in one hand, the classes were balanced, i.e. they
had, almost, the same a priori probability and, on the other hand, the misclassifi-
cation costs were equal for all the classes. Entropy measures are also based on an
axiomatic which assumes that the probabilities of the classes could be calculated
at any time, which is not always possible because of the finite size of the learning
sample. Let us describe some situations when the main assumptions are not taken
into consideration:

• Hypothesis of distribution of classes a priori uniform : This hypothesis is not
valid in real world applications. We can observe this when the classes are unbal-
anced. In such case, the distribution of the modalities of the class variable is far
away from the uniform distribution. If the sampling process does not suffer from
any bias, i.e. the sample conforms to the reality, then we may conclude that the
a priori distribution of the classes is not uniform. This happens in a lot of real
world applications: in the medical field, to predict a rare illness; in the industry
to predict a device failure; or in the banking field, to predict insolvent customers
or frauds in transactions. In these cases, there is one rare state of the class vari-
able (ill, breakdown, insolvent, fraud) with less cases in comparison to the whole
population. Standard methods do not take such specificities into account and just
optimize a global criterion with the consequence that all the examples would be
classified into the majority class, i.e. which minimizes the global error rate on the
learning set. This kind of prediction models is useless because it does not carry
any information. In decision trees, this problem appears at two levels: during the
generation of the tree with the splitting criterion, and during the prediction with
the assignment rule of a class in each leaf. Indeed, in decision tree for instance,
to choose the best feature and the best split point to create a new partition, clas-
sical algorithms use an entropy measure, like the Shannon entropy [23] and [22]
or quadratic entropy [26]. Entropy measures evaluate the quantity of information
about the outcome provided by the distribution of the class variable. They con-
sider the uniform distribution, i.e for which we have the same number of cases
in each class, as the most entropic situation. So the worst situation according to
these measures is the balanced distribution. However, if in the real world for ex-
ample a priori 1% of the people are sick, ending with a leaf in which 50% of the
members are sick would be very instructive and would carry a lot of information
for the user. Thus, using a classical entropy measure precludes obtaining such
branches and hence the relevant associated rules for predicting the rare class. The
second important aspect of decision trees is the assignment rule. Once the deci-
sion tree is grown, each branch defines the condition of a rule. The conclusion
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of the rule depends on the distribution of the leaf. Classical algorithms conclude
to the majority class, i.e the most frequent modality in the leaf. But this is not
efficient: In the previous example where 1% of the people are sick, a rule leading
to a leaf with a frequency of the ‘sick’ class of 30% would conclude to ‘not sick’.
According to the importance of predicting correctly the minority class, it may
be better however in that case to conclude to ’sick’. This will lead to a higher
total number of errors, but a lower number of errors on the rare class and hence
a better model.

• Hypothesis of equal misclassification costs : Overall, the supervised learning
algorithms assume that the misclassification costs are equal for all the classes,
thus the cost is constant and fixed. If we denote by ci j the cost of the classification
of an individual issued from the class i to the class j then, we have :

– a symmetrical misclassification cost : ci j = c ji = c for all (i, j); i 6= j
– the cost of a good classification cii = 0 for all classes

But, in many real world applications, this hypothesis is not true. For instance, in
cancer diagnosis, missing a cancer could lead to death whereas the consequence
of misleading to a cancer are less important even if they are costly.

• Hypothesis of non sensitivity to the sample size : the entropy measures are
all non sensitive to the sample size. They depend only on the distribution of the
classes. For instance, in decision trees, if we consider two leaves, with the same
distribution of the classes, the values of the entropy associated to each node are
equal even if one node has many more individuals. Yet it would be natural to
consider the leaf, with the higher size, as providing a more reliable information.

Plenty of works have been done to address issues brought about by the above
assumptions. We may cite [2], [4], [5], [6], [8], [16], [17], [20], [25]. All these
works have dealt with only one issue at a time. In section 2 we introduce some
notations and definitions. We will focus on the axiomatic of the entropy which has
been defined, at the beginning, outside of the area of machine learning and then we
will present some measures of entropy. In section 3 we introduce our design for
a new entropy measure that fulfill a set of requirements. In section 4 we propose
an evaluation based on some experiments on data set where some are drawn from
real world applications. And then, in section 5, we conclude and propose some new
directions.

2 Notations and basic definition

For the sake of clarity of the presentation, our frame work is that of decision trees.
Nevertheless, our proposal may be extended to any other machine learning algo-
rithms that use entropy measure as criterion.
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2.1 Notations and basic concepts

We denote Ω the population concerned by the learning problem. The profile of any
example ω in Ω is described by p explicative or exogenous features X1, . . . ,Xp.
Those features may be qualitative or quantitative ones. We also consider a variable
C to be predicted called either endogenous, class or response variable. The values
taken by this variable within the population are discrete and form a finite set C . Let-
ting m j be the number of different values taken by X j and n the number of modalities
of C, we have C = {c1, . . . ,cn}. And when it is not ambiguous, we denote the class ci
simply by i. Algorithms of tree induction generate a model φ(X1, . . . ,Xp) for the pre-
diction of C represented by a decision tree [3, 18] or an induction graph [25]. Each
branch of the tree represents a rule. The set of these rules is the prediction model that
permits to determine the predicted value of the endogenous variable for any new ex-
ample for which we only know the exogenous features. The development of the tree
is made as follows: The learning set Ωa is iteratively segmented, each time on one
of the exogenous features X j; j = 1, ...p so as to get the partition with the smallest
entropy for the distribution of C. The nodes obtained at each iteration define a par-
tition on Ωa. Each node s of a partition S is described by a probability distribution
of the modalities of the endogenous features C: p(i/s); i = 1, . . . ,n. Finally, these
methods generate decision rules in the form If condition then Conclusion. Splitting
criteria are often based on entropies.

2.2 Entropy measures

The concept of entropy has been introduced by Hartley [11] but was really devel-
oped and used in the industrial context by Shannon and Weaver [22, 23] in the
forties. They proposed a measure of information which is the general entropy of a
distribution of probabilities. Following the theorem that defines the entropy, many
researchers such as Hencin [12] and later, Forte [10], Aczel and Daroczy [1] have
proposed an axiomatic approach for the entropies.

2.2.1 Shannon’s entropy

Let E be an experience with the possible events e1,e2, . . . ,en of respective probabil-
ities p1, p2, . . . , pn. We suppose that ∑

n
i pi = 1 et pi ≥ 0 for i = 1, . . . ,n. The entropy

of Shannon of the probabilities distribution is given by the following formula :

Hn(p1, p2, . . . , pn) =−
n

∑
i=1

pi log2 pi (1)

By continuity, we set 0 log2 0 = 0.
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2.2.2 Entropy on a partition

The entropy H on the partition S to minimize is generally a mean entropy such
that H(S) = ∑s∈S p(s)h(p(1|s), . . . , p(i|s), . . . , p(n|s)) where p(s) is the proportion
of cases in the node s and h(p(1|s), . . . , p(n|s)) an entropy function such as Shan-
non’s entropy for instance Hn(p1, p2, . . . , pn) =−∑

n
i=1 pi log2 pi ..

There are many other entropy measures [19] [26] such as the quadratic entropy
Hn(p1, p2, . . . , pn) = ∑

n
i=1 pi(1− pi) for instance. The Figure 1 depicts the quadratic

and Shannon entropies for 2 classes. All the pictures of entropy measures have the
same shape.

En
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p
y

)5.0;5.0( 21 wwW

Quadratic entropy

Shannon entropy

Fig. 1 Shannon and Quadratic entropies for a 2 classes problem

2.2.3 Properties of the entropy measures

Let’s suppose that (p1, p2, . . . , pn) for n ≥ 2 are taken in a finite set of distributions
of probabilities and let’s consider the simplex of order n

Γn = {(p1, p2, . . . , pn) :
n

∑
i

pi = 1; pi ≥ 0} (2)

A measure of entropy is defined as follow :

h : Γn → R (3)
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with the following properties :

Non negativity:
h(p1, p2, . . . , pn)≥ 0 (4)

Symmetry: The entropy is non sensitive to any permutation within the vector
(p1, . . . , pn) in Γn.

h(p1, p2, . . . , pn) = h(pσ(1) , pσ(2) , . . . , pσ(n)) (5)

where σ is any permutation on (p1, p2, . . . , pn).
Minimality: If exists k such that pk = 1 and that pi = 0 for all i 6= k then

h(p1, p2, . . . , pn) = 0 (6)

Maximality:

h(p1, p2, . . . , pn)≤ h(
1
n
,

1
n
, . . . ,

1
n
) (7)

Strict concavity: The function h(p1, p2, . . . , pn) is strictly concave.

3 Asymmetric and sample size sensitive entropy

3.1 Asymmetric criteria

The properties of classical entropy measures such as those cited above (Shannon,
quadratic) are not suited to inductive learning for many reasons [25]:

• First, the uniform distribution is not necessarily the most uncertain.
• Second, the computation of the entropy being based on estimates of the proba-

bilities should account for the precision of those estimates, i.e. account for the
sample size.

That is why we proposed in [25] a new axiomatic leading to a new family of
more general measures. They make it possible for the user to define a reference
distribution that is viewed as of maximal entropy. It permits also to make the entropy
measure sensitive to the sample size.

We recall below the new axiomatic that take into account the limitations we have
identified.

3.2 Properties requested for the new entropy measure

Let h̄ be the new function of entropy that we want to build. We want it to be empiri-
cal, i.e. frequency dependent f (i/.), sensitive to the sample size N and parametrized
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by a distribution of frequencies W = (w1, . . . ,w j, . . . ,wp) which is considered as the
less desired, i.e. where the entropy must be maximal.

h̄ : N∗×Γ
2

n → R+ (8)

For a fixed distribution W , that we explain later on how it is set up, the function
h̄W (N, f1, . . . , fi, . . . , fn) must have the following properties :

(P1) Non negativity: The function h̄ must be non negative

h̄W (N, f1, . . . , f j, . . . , fn)≥ 0 (9)

(P2) Maximality: Let W = (w1,w2, . . . ,wn) be a distribution fixed by the user as
the less desired and therefore of maximal entropy value. Thus, for a given N,

h̄W (N, f1, . . . , fn)≤ h̄W (N,w1, . . . ,wn) (10)

for all distribution ( f1, . . . , fn) brought from a sample of size N.
(P3) Asymmetry: The new property of maximality challenges the axiom of sym-

metry required by the classical entropies. Therefore, some permutations σ could
affect the value of the entropy : h̄( f1, . . . , fn) 6= h̄( fσ1 , . . . , fσn).
We can easily identify the conditions in which the property of symmetry would
be kept. For instance in the case where wi would be equal, i.e. in the case of
uniform distribution.

(P4) Minimality: In the context of classical entropy, the value of the entropy is
null when the distribution of the sample over the classes is concentrated in one
class, in other word, it exists j such that p j = 1 and that pi = 0 for all i 6= j.
This property must remain theoretically valid. However, in real world problems
of supervised learning these probabilities are unknown and must be estimated.
It would still be embarrassing to say that the entropy is null when the distribution
is concentrated in one specific class. We have to take into consideration the size
of the sample on which the probabilities p j are estimated.
So, we merely require that the entropy of an empirical distribution for which it
exists j such that f j = 1, to tend to zero when N becomes big :

lim
N→∞

h̄W (N,0, . . . ,0,1,0 . . . ,0) = 0 (11)

(P5) Consistency: For a given W and a constant distribution, the entropy must
be smaller when the size of the sample is bigger.

h̄W (N +1, f1, . . . , f j, . . . , fn)≤ h̄W (N, f1, . . . , f j, . . . , fn) (12)
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3.3 Proposition for an asymmetric and sample-size sensitive
entropy

3.3.1 How to estimate the probabilities

Instead of using classical frequency estimates, we carry out the estimates by mean
of Laplace estimator which is given by λi = N fi+1

N+n

3.3.2 How to fix the “worst” distribution W

An important issue with asymmetric criterion is how can we determine the “most”
uncertain reference distribution W? When the probability of each class is known, it
is consistent to use these a priori probabilities of the classes. Otherwise, we could
estimate them from the overall class frequencies in the learning dataset.

3.3.3 Asymmetric and sensitive entropy

Let W = (w1,w2, . . . ,wn) be the worst distribution, that has the maximal entropy
value. The probabilities of the classes are estimated, locally, at each iteration of the
growing process of the tree, by the Laplace estimator. The asymmetric entropy we
propose is defined as follow :

Theorem

hW (N, f1, f2, . . . , fn) =
n

∑
i=1

λi(1−λi)
(−2wi +1)λi +wi2

is an entropy measure that verifies the five properties cited above.

For the 2 classes problem, the Figure 2 shows the behavior of this function accord-
ing to the parameters W and the size of the sample on which the probabilities are
estimated.

Another non-centered entropy has been proposed in [14]. It results from a differ-
ent approach that transforms the frequencies pi’s of the relevant node by means of
a transformation that turns W into a uniform distribution. In the two class case, the
transformation function is composed of two affine functions: π = p

2w if 0 ≤ p ≤ w
and π = p+1−2w

2(1−w) if w ≤ p ≤ 1. The resulting non-centered entropy is then defined
as the classical entropy of the transformed distribution. Though this method can be
used with any kind of entropy measure, it is hardly extensible to more than two class
problems.
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Fig. 2 Asymmetric and sample size sensitive entropy for 2 classes

4 Evaluation criteria of trees in the unbalanced case

4.1 Performance measures

There exist different measures for evaluating a prediction model. Most of them are
based on the confusion matrix (see Table 1). Some measures are designed for the
prediction of a specific modality (positive class) whereas the remaining modalities
are gathered in the negative class : the recall rate ( T P

T P+FN ), that measures the rate
of positive cases actually predicted as positive, and the precision rate ( T P

T P+FP ) that
gives the proportion of real positive cases among those classified as positive by
the classifier. The F-Measure is the harmonic mean of recall and precision. Other
measures do not distinguish among outcome classes. We may cite here the overall
error rate, and the sensibility and specificity (mean of recall and precision on each
class). The latter measures are less interesting for us, since by construction they
favor accuracy on the majority class. (Still, we may cite the PRAGMA measure
[24] that allows the user to specify the importance granted for each class as well as
its preferences in terms of recall and precision). It follows that recall and precision
are the best suited measures when the concern is the prediction of a specific class,
for instance rare class, most costly class, positive class and so on.
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Class + Class -
Class + True positives (TP) False negatives (FN)
Class - False positives (FP) True negatives (TN)

Table 1 Confusion matrix for the two classes case.

The confusion matrix depicted in Table 1 is obtained for a decision tree by apply-
ing the relevant decision rule to each leaf. This is not a problem when the assigned
class is the majority one. But with an asymmetric criterion this rule is not longer
suited [15]: If we consider that the worst situation is a distribution W , meaning that
the probability of class i is wi in the most uncertain case, then no decision can be
taken for leaves having this distribution. Hence, leaves where the class of interest
is better represented than in this worst reference case ( fi > wi) should be assigned
to the class i. This simple and intuitive rule could be replaced by a statistical test,
as we proposed it with the implication intensity [20] for instance. In this paper, we
consider however the following simple decision rule: C = i if fi > wi. This rule is
adapted to the 2-class case. With k classes, the condition can indeed be satisfied
for more than one modality and should then be reinforced. In [20] we proposed for
instance to select the class with the lowest contribution to the off-centered entropy.
To avoid the rule’s limitation, we also move the decision threshold between 0 and 1
to observe the recall / precision graph. This allows us to see if a method dominates
another one for different thresholds of decision, and can also help us to choose the
most appropriate decision rule.

4.2 ROC curve

A ROC curve (Receiver operating characteristics) is a well suited tool for visualiz-
ing the performances of a classifier regarding results for a specific outcome class.
Several works present its principles [7, 9]. First, a score is computed for each exam-
ple. For decision trees, it is the probability to classify this example as positive. This
probability is estimated by the proportion of positive examples in the leaf. Then, all
examples are plotted in a false positive rate / true positive rate space, cumulatively
from the best scored to the last scored. A ROC curve close to the main diagonal
means that the model provides no useful additional information about the class. A
contrario a ROC curve with a point in [0,1] means that the model perfectly separates
positive and negative examples. The area under the ROC curve (AUC) summarizes
the whole curve. We now examine how the ROC curve and the AUC may be affected
when an asymmetric measure is used instead of a symmetric one.
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4.3 Evaluations

4.3.1 Compared models and datasets

Our study is based on decision trees evaluated in 10 cross-validation to avoid the
problems of over-fitting on the majority class. For each dataset we consider the
quadratic entropy and the asymmetric entropy. The chosen stopping criterion, re-
quired to avoid over-fitting, is a minimal information gain of 3%. Other classical
stopping criteria such as the minimal support of a leaf, or the maximal depth of the
tree could be used. We selected the 11 datasets listed in Table 2. For each of them
we have a two class outcome variable. We consider predicting the overall last fre-
quent class. A first group of datasets is formed by strongly imbalanced datasets of
the UCI repository [13]. In the dataset letter (recognition of hand-writing letters)
we consider predicting the letter ’a’ vs all the others (letter a) and the vowels vs the
consonants (letter vowels). The classes of the dataset Satimage were merged into
two classes as proposed by [5]. The datasets Mammo1 and Mammo2 are real data
from the breast cancer screening and diagnosis collected within an industrial part-
nership. The goal is to predict from a set of predictive features whether some regions
of interest on digital mammograms are cancers or not. This last example provides a
good illustration of learning on a imbalanced dataset: Missing a cancer could lead to
death, which renders the prediction of this class very important. A high precision is
also requested since the cost of a false alarm is psychologically and monetary high.

Dataset # of examples # of features Imbalance
Breast 699 9 34%
Letter a 2000 16 4%
Letter vowels 2000 16 23%
Pima 768 8 35%
Satimage 6435 36 10%
Segment path 2310 19 14%
Waveform merged 5000 40 34%
Sick 3772 29 6%
Hepatisis 155 19 21%
Mammo1 6329 1038 8%
Mammo2 3297 1038 15%

Table 2 Datasets.

4.3.2 Results and interpretation

Table 3 shows the AUC values obtained for each dataset. Figures 3,4,5,6 and 7
exhibit the ROC curves and the recall / precision graphs respectively for the datasets
Mammo1, Mammo2, Letter a, Waveform merged and Satimage.
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Fig. 3 Results for Mammo1

Fig. 4 Results for Mammo2

The recall / precision graphs show that when recall is high, the asymmetric cri-
terion ends up with a better precision. This means that decision rules derived from
a tree grown with an asymmetrical entropy are more accurate for predicting the rare
class. On both real datasets (Figures 3 and 4) we see that if we try to maximize the
recall (or to minimize the number of ‘missed’ cancers, or false negatives), we obtain
fewer false positives with the asymmetric entropy. This is exactly the desired effect.

The ROC curve analysis shows that using the asymmetric entropy improves the
AUC criterion (Table 3). More importantly, however is the form of the curves. The
ROC curves of the quadratic entropy are globally higher on the left side of the graph,
i.e. for high scores. Then the two ROC curves cross each other, and on the right side
the asymmetric criterion is almost always dominating. We can thus conclude that
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Fig. 5 Results for Letter a

Fig. 6 Results for Waveform merged

the lower the score, the more suited the use of an asymmetric entropy. As we have
seen through several examples that when predicting rare events, we have to use
small acceptation threshold (we accept a leaf when the observed frequency of the
minority class exceeds the corresponding probability in the more uncertain distri-
bution). Thus, ROC curves clearly highlight the usefulness of asymmetric entropies
for predicting rare classes.

The two previous remarks mean that for seeking ‘nuggets’ of the minority class,
we always get better recall and precision rates with an asymmetric criterion. In other
words, if we accept predicting the class of interest with a score below 50%, then the
smaller the score, the better the recall and precision rates when compared with those
obtained with a symmetric criterion.



14 Djamel A. Zighed and Gilbert Ritschard and Simon Marcellin

Fig. 7 Results for Satimage

Dataset AUC with quadratic entropy AUC with asymmetric entropy
Breast 0.9288 0.9359
Letter a 0.8744 0.9576
letter voyelles 0.8709 0.8818
pima 0.6315 0.6376
satimage 0.6715 0.8746
segment path 0.9969 0.9985
Waveform merged 0.713 0.749
sick 0.8965 0.9572
hepatisis 0.5554 0.6338
mammo1 0.6312 0.8103
mammo2 0.6927 0.8126

Table 3 Obtained AUC

5 Conclusion

We evaluated how using a splitting criterion based on an asymmetrical entropy to
grow decision trees for imbalanced datasets influences the quality of the prediction
of the rare class. If the proposed models are as expected less efficient in terms of
global measures such as the error rate, ROC curves as well as the behavior of recall
and precision as function of the acceptation threshold reveals that models based on
asymmetric entropy outperform those built with a symmetric entropy, at least for
low decision threshold.

For our empirical experimentation, the reference distribution W has been set up
once and for all, as the a priori distribution of the probabilities estimated on the
learning sample. A different approach would be to use at each node the distribution
in the parent node as reference W . The criterion would in that case adapt itself at
each node. A similar approach is to use Bayesian trees [4], where in each node
we try to get rid of the parent node distribution. Finally, we noticed during our
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experimentations that the choice of the stopping criterion is very important when we
work on imbalanced datasets. Therefore, we plan to elaborate a stopping criterion
suited for imbalanced data, that would, for instance, take into account the number of
examples at each leaf, but allow for a lower threshold for leaves where the relevant
class is better represented. In a more general way, various measures of the quality
of association rules should help us to build decision trees.

We did not decide about the question of the decision rule to assign a class to each
leaf. Since an intuitive rule is the one proposed in section 3, consisting in accepting
the leaves where the class of interest is better represented than in the original distri-
bution, we propose two alternative approaches: the first is to use statistical rules, or
quality measures of association rules. The second is to use the graphs we proposed
in this article, by searching optimal points on the recall / precision graph and on the
ROC curve. We should consider the break-even Point (BEP, [21]) to find the best
rate, or the Pragma criterion [24].

The extension of the concepts exposed in this article to the case of more than two
modalities raises several problems. First, even if the asymmetric entropy applies to
the multiclass case, some other measures are not. The problem of the decision rule
is very complex with several classes. Indeed, setting a threshold on each class is
not efficient, because this rule can be satisfied for several classes simultaneously. A
solution is to choose the class with the frequency that departs the most from its as-
sociated threshold, or that with the smallest contribution to the entropy of the node.
The methods of evaluation proposed in this paper (ROC curves and recall / preci-
sion graphs) are adapted for a class vs all the others, i.e. in the case with more than 2
classes, for the case where one modality among the others is the class of interest. It
would be more difficult evaluating the model when two or more rare classes should
be considered as equally relevant. The evaluation of multiclass asymmetric criteria
will be the topic of future work.
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