Applying Optimal Stopping for Optimizing Queries to
External Semantic Web Resources

Albert Weichselbraun

Vienna University of Economics and Business Administration
Augasse 2-6, Vienna, Austria
albert.weichselbraun@wu-wien.ac.at,

WWW home page: http://www.ai.wu-wien.ac.at/ aweichse

Abstract. The rapid increase in the amount of available information from vari-
ous online sources poses new challenges for programs that endeavor to process
these sources automatically and identify the most relevant material for a given
application.

This paper introduces an approach for optimizing queries to Semantic Web re-
sources based on ideas originally proposed by MacQueen for optimal stopping in
business economics. Modeling applications as decision makers looking for opti-
mal action/answer sets, facing search costs for acquiring information, test costs
for checking these information, and receiving a reward depending on the useful-
ness of the proposed solution, yields strategies for optimizing queries to exter-
nal services. An extensive evaluation compares these strategies to a conventional
coverage based approach, based on real world response times taken from popular
Web services.

1 Introduction

Semantic Web applications provide, integrate and process data from multiple data sourc-
es including third party providers. Combining information from different locations and
services is one of the key benefits of semantic applications.

Current approaches usually limit their queries to a number of particularly useful
and popular services as for instance Swoogle, GeoNames, or DBpedia. Research on
automated web service discovery and matching [1] focuses on enhanced applications,
capable of identifying and interfacing relevant resources in real time. Future imple-
mentations, therefore, could theoretically issue queries spawning vast collections of
different data sources, providing even more enhanced and accurate information. Obvi-
ously, such query strategies - if applied by a large enough number of clients - impose a
considerable load on the affected services, even if only small pieces of information are
requested. The World Wide Web Consortium’s (W3C) struggle against excessive doc-
ument type definition (DTD) traffic provides a recent example of the potential impact
a large number of clients achieves. Ted Guild pointed out (p.semanticlab.net/w3dtd)
that the W3C receives up to 130 million requests per day from broken clients, fetching
popular DTD’s over and over again, leading to a sustained bandwidth consumption of
approximately 350 Mbps.

Service provider like Google restrict the number of queries processed on a per
IP/user base to prevent excessive use of their Web services. From a client’s perspec-
tive overloaded Web services lead to higher response times and therefore higher cost in
terms of processing times and service outages.

Grass and Zilberstein [2] suggest applying value driven information gathering (VDIG)
for considering the cost of information in query planning. VDIG focuses on the query
selection problem in terms of the trade off between response time and the value of the
retrieved information. In contrast approaches addressing only the coverage problem put
their emphasis solely on maximizing precision and recall.

Optimizing value under scare resources is a classical problem from economics and
highly related to decision theory. Applying these concepts to the information systems
research domain yields important strategies for optimizing the acquisition of Web re-
sources [3], addressing the trade-off between using resources sparingly and providing
accurate and up-to-date information. In this research we apply the search test stop (STS)
model to applications leveraging third party resources. The STS model considers the
user’s preferences between accuracy and processing time, maximizing the total utility
in regard to these two measures. In contrast to the approach described by Grass and
Zilberstein [2] the STS model adds support for a testing step, designed to obtain more
information about the accuracy of the obtained results, aiding the decision algorithm in
its decision whether to acquire additional information or act based on the current answer
set. Similar to Ipeirotis et al. [4] the resulting query strategy might lead to less accurate
results than a “brute force” approach, but nevertheless optimizes the balance between
accuracy and costs. Therefore, the search test stop model addresses the trade-off be-
tween two of the major software engineering challenges outlined in ISO/IEC 9126-1:
(1) reliability - the capability of the software product to maintain a level of accuracy
according to measures specified in the software design process [5], and (ii) efficiency
- requiring the software to provide an appropriate performance in terms of processing
time and resource allocation, under stated conditions [6].

This paper’s results are within the field of Al research facilitating techniques from
decision theory to address problems of agent decision making [7].

The article is organized as follows. Section 2 presents known query limits and re-
sponse times of some popular Web services. Section 3 provides the theoretical back-
ground for the search test stop model, and presents its extension to discrete probability
functions. Afterwards the application of this method to applications utilizing external
resources is outlined in Section 4 and an evaluation of this technique is presented in
Section 5. This paper closes with an outlook and conclusions drawn in Section 6.

2 Performance and Scalability

The increased popularity of applications that rely on external data repositories calls for
strategies for a responsible and efficient use of these resources.

Extensive queries to external resources increases their share of the program’s exe-
cution time and may lead to longer response times, requiring its operators to impose
limits on the service’s use.

Even commercial providers like Google or Amazon restrict the number of accesses
to their services. For instance, Google’s Web API only allows 1000 requests a day, with
exceptions for research projects. Workarounds like the use of Google’s public Web in-
terface may lead to blacklisting of the client’s IP address'. Google’s geo coding service
imposes a limit of 15,000 queries per day and IP address. Amazon limits clients to 20
queries per second, but restrictions vary between the offered services and might change
over time?. Other popular resources like GeoNames and Swoogle to our knowledge
currently do not impose such limits.

A Web service timing application issuing five different queries to popular Web re-
sources in 30 min intervals over a time period of five weeks yielded Table 2. The ser-
vices’ average response time (7,), the response time’s median (7,), its minimum and
maximum values (£, %), and variance (Gtz’,) characterize its potential impact on an
application’s performance. Due to the timeout value of 60 seconds, specified in the
timing application, all #"** values are equal or below 60. These response times vary,
depending on the client’s Internet connectivity and location, but adequate values can be
easily obtained by probing the service’s response times from the client’s location.

Table 2 suggests that Google provides a fast and quite reliable service (Gzz, =0.2)
with only small variations in the response times. This result is not very surprising con-
sidering the global and highly reliable infrastructure Google employs.

Service Protocol | 7, f, tf’”" fnax G,zr

Amazon REST (0502 0.231.3 0.6
DBpedia |SPARQL|0.8 0.5 0.1 60.0 4.2
Del.icio.us| REST (0.6 0.4 0.124.3 0.5
GeoNames| REST (0.7 0.1 0.0 60.0 19.9
Google Web (0.30.2 0.1 103 0.2
Swoogle Web |4.1 1.6 0.2 60.0 98.4
Wikipedia | Web |0.50.2 0.1 60.0 1.3
Table 1. Response times of some popular Web services.

Smaller information providers which cannot afford this kind of infrastructure in
general provide good response times (due to fewer requests), but they are more sensi-
tive to sudden peaks in the number of clients accessing their services as visualized in
Figure 1. Table 2 reflects these spikes in terms of higher variances and #,"** values.

Our experiments suggest (see Section 5) that especially clients querying services
with high variances benefit from implementing the search test stop model.

Another strategy from the client’s perspective is avoiding external resources at all.
Many community projects like Wikipedia or GeoNames provide database dumps which
might be used to install a local copy of the service. These dumps are usually rather large
(a current Wikipedia dump including all pages, discussions, but without the edit history
comprises approximately 7.8 GB?) and often outdated (Wikipedia dumps are sometimes

! see p.semanticlab.net/gooso

2 developer.amazonwebservices.com
3 download.wikipedia.org; 2008-10-15

60

i Test Times (doogle)
!l Test Times (swoogle) ———~
est Times (GeoNames)

50

40

30

regest time (s)

20

10

! n i i : 4
1 e AN gl

,”A H i ERLY bk
okt B 02 st L i, ks
e Su Rk, 2

[RHN

0 100 200 300 400
datapoint (10*n)

600

Fig. 1. Selected test times over the time, computed with a timeout of 60 seconds. Every data point
accumulates five measurements.

even more than one month old, other services like GeoNames update their records very
frequently).

The import of this data requires customized tools (like mwdumper*) or hacks and
rarely processes without major hassles. In some cases the provided files do not contain
all available data (GeoNames for instance does not publish the relatedTo information)
so that querying the service cannot be avoided at all.

3 The Search Test Stop Model

This section outlines the basic principles of the search test stop (STS) model as found
in decision theory. For a detailed description of the model please refer to MacQueen [8]
and Hartmann [9].

MacQueen [8] describes the idea of the STS model as follows: A decision maker
(a person or an agent) searches through a population of possible actions, sequentially
discovering sets of actions (S4), paying a certain cost each time a new set of actions is
revealed (the search cost ¢,;). On the first encounter with a set of possible actions, the
person obtains some preliminary information (xp) about its utility (&), based on which
he can

1. continue looking for another set of possible actions (paying search cost c;,, ,),

2. test the retrieved set of actions, to obtain (x;) - a better estimation of the actions
value - paying the test cost (¢;;) and based on this extended information continue
with option 1 or finish the process with option 3, or

3. accept the current set of answers (and gain the utility u).

4 www.mediawiki.org/wiki/MWDumper

The challenge is combining these three options so that the total outcome is optimized by
keeping the search (cy;) and test (c;;) costs low (X c5; + L | ¢;) without jeopardizing
the obtained utility u.

Introducing the transformation r = E(u|xp) yields the following description for a
policy without testing:

+o0
v=vF(v) +/ rf(r)dr—cs (H

with the solution v = vg. F(r) represent the cumulative distribution function of the
expected utility and f(r) its probability mass function. The constant c; refers to search
cost and v (better vp) to the utility obtained by the solution of this equation.

Extending Equation 1 to testing yields Equation 2:

v=vF(rp)+ 2)
/r: T(v,r)f(r)dr+
/+oo rf(r)dr—c; and
T(v,rp) = VVA 3)
T(v,ra) =14 “4)

T (v, r) refers to the utility gained by testing, rp to the value below which the discovered
action set (S4) will be dropped, and r4 to the minimal utility required for accepting Sy4.
A rational decision maker will only resort to testing, if the utility gained outweighs its
costs and therefore the condition T (vg,vo) > v holds which is the case in the interval
[rD, rA] .

In the next two sections we will (i) describe the preconditions for applying this
model to a real world use case, and (ii) present a solution for discrete data.

3.1 Preconditions

MacQueen [8] defines a number of preconditions required for the application of the
STS model. Hartmann [9] eases some of these restrictions yielding the following set of
requirements for the application of the model:

1. a common probability mass function A (xo,x;,u) exists.

2. The expected value of u given a known realization xo (z = E(U|xo,y0)) exists and
is finite.

3. F(z]xo) is stochastically increasing in xo. For the concept of stochastically increas-
ing variables please refer to [10, p75].

3.2 The Discrete Search Test Stop Model

This research deals with discrete service response time distributions and therefore ap-
plies the discrete STS methodology. Hartmann transferred MacQueen’s approach to

discrete models. The following section summarizes the most important points of his
work [9].

Hartmann starts with a triple (xo, x1, ©) of discrete probability variables, described
by a common probability function /(xo,x1,u). From & Hartmann derives

1. the conditional probability function f (u|xo,x;) and the expected value Z = E (u|xg, x1),
2. the probability function of r, f(r|xp) and F(r|xp),
3. the probability of xo, f(xo) and F(xp).

Provided that the conditions described in Section 3.1 are fulfilled only five possible
optimal policies are possible - (i) always test, (ii) never test, (iii) test if u > u;, (iv) if
u<u,or(v)ifu <u<u.

The expected utility equals to

—_

E (u]xo) for accepting without testing,

2. T(r,v) with testing, and

3. vp if the action is dropped and a new set (S4) is selected according to the optimal
policy.

4 Method

This section focuses on the application of the STS model to Web services. At first we
describe heuristics for estimating cost functions (c;s, ¢;), and the common probability
mass function i(xg,x;,u) Afterwards the process of applying search test stop to tagging
applications is elaborated.

4.1 Cost functions

In the conventional STS model costs refer to the investment in terms of time and money
for gathering information. By applying this idea to software, costs comprise all expenses
in terms of CPU-time, bandwidth and storage cost necessary to search for or test certain
answers.

Large scale Semantic Web projects, like the IDIOM media watch on climate change
[11], process hundred thousands of pages a week. Querying GeoNames for geo-tagging
such numbers of documents would add days of processing time to the IDIOM architec-
ture.

This research focuses solely on costs in terms of response time, because they are
the limiting factor in our current research projects. Other applications might require
extending this approach to consider additional cost factors like CPU-time, bandwidth,
etc.

4.2 Utility Distributions

Applying the STS model to economic problems yields cash deposits and payments.
Transferring this idea to information science is a little bit more subtle, because the
utility is highly dependent on the application and its user’s preferences. Even within

one domain the notion of an answer set’s (S4) value might not be clear. For instance in
a geo context the “correct” answer for a certain problem may be a particular mountain in
Austria, but the geo-tagger might not identify the mountain but the surrounding region
or at least the state in which it is located (compare Figure 2).

1. Austria/Carinthia/Spittal/Heiligenblut/Grossglockner (mountain)

2. Austria/Carinthia/Spittal/Heiligenblut (village)

3. Austria/Carinthia/Spittal (district)

4. Austria/National Park Hohe Tauern (national park)
5. Austria/Carinthia (state)

6. Austria/Salzburg (Neighbor) (state)

7. Austria/Tyrol (Neighbor) (state)

8. Austria (country)

Fig. 2. Ranking of “correct” results for geo-tagging an article covering the “Grossglockner”.

Assigning concrete utility values to these alternatives is not possible without de-
tailed information regarding the application and user preferences. Approaches for eval-
uating the set’s value might therefore vary from binary methods (full score for correct
answers; no points for incomplete/incorrect answers) to complex ontology based ap-
proaches, evaluating the grade of correctness and severe of deviations.

4.3 Application

This work has been motivated by performance issues in a geo-tagging application facil-
itating resources from GeoNames and WordNet for improving tagging accuracy. Based
on the experience garnered during the evaluation of STS models, this section will
present a heuristic for determining the cost functions (c;, ¢;) and the common prob-
ability mass function h(xo,x1,u).

Figure 3 visualizes the application of the search test stop model to Web services.
Searching yields an answer set S, = {a1,...,a,} and the indicator x(at a prices of c;.
Based on xj the search test stop description logic decides on whether to (i) accept the
current answer set, (ii) drop the answer set and continue searching, or (iii) query another
set of resources to retrieve the refined indicator x| paying the test cost ¢;. Based on x|
the answer set is dropped or finally accepted.

Cost functions Searching leads to external queries and therefore costs. Measuring a
service’s performance over a certain time period allows estimating the average response
time and variance.

STS fits best for situations, where the query cost ¢ is in the same order as the
average utility retrieved (O(cs) = O(u)). In settings with O(cy) < O(u) the search costs
have no significant impact on the utility and if O(cs) > O(#%) no searching will take
place at all (because the involved costs are much higher than the possible benefit).

Input Query Response

~—— =
=

B g

Folksonomies m‘

N
SPARQL-Endpoints

<

Ontology Searcl test
Engine, get indicator x_1;
. pay c_t

Search c Test ¢ Stop

! stop
! search get the utility u
+ getanswerset{a_1,..a_n} minus ITGICZStS
\ and retrieve indicator x_0; accumulated.
‘-‘ pay c_s

Fig. 3. Applying the search test stop model to Web resources.

In real world situations the translation from search times to costs is highly user de-
pendent. To simplify the comparison of the results, this research applies a linear trans-
lation function ¢; = A - #; with A = const = 1/i; yielding costs of O(cy) = 1. Selecting
the median of the response times 7; and specifying a timeout value of 60 seconds for
any query operation reduces the influence of service outages on the simulation results.

The performance of the search test stop algorithm is highly dependent on accurate
estimations of the query cost, because all decisions are solely based on the common
probability mass function and the cost functions. Future research will compute query
cost based on use case specific cost functions as demonstrated by Strunk et al. [12],
Verma et al. [13], and Yeo and Buyya [14] and evaluate the results yielded by these
different approaches.

Utility distribution The discrete common probability mass function 4 is composed of
three components: The probability mass function of (i) the utility u, (ii) the random vari-
able x(providing an estimate of the utility and, (iii) the random variable x; containing
a refined estimate of the answer’s utility.

In general a utility function assuming linearly independent utility values might look
like Equation 5.

u= Z }\-(ai)feval(ai))]

a; €Sy

The utility equals to the sum of the utility gained by each answer set S4, which is eval-
uvated using an evaluation function f,,,, and weighted with a factor A(a;). To simplify
the computation of the utility we consider only correct answers as useful (Equation 6)
and apply the same weight (A(a;) = const = 1) to all answers.

0 if g; incorrect;
feval(ai) = 6)

1 if a; correct.

Geo-tagging identifies geographic entities based on a knowledge base as for instance a
gazetteer or a trained artificial intelligence algorithm.

After searching the number of identified entries (|S,| = xo) provides a good esti-
mation of the expected value of the answers utility. Applying a focus algorithm (e.g.
[15]) yields a refined evaluation of the entity set (|S}| = x;) resolving geo ambigui-
ties. S/, might still contain incorrect answers due to errors in the geo disambiguation
or due to ambiguous terms not resolved by the focus algorithm (e.g. turkey/bird versus
Turkey/country). Based on the probabilities of a particular answer a; € Sq/d; € S., of
being incorrect Piucorr(ai)/Pincorr(a;) the expected value u for a given combination of
Xp, X1 is determined. Evaluating historical error rates yields estimations for Py,co.(a;)
and Pincorr (Cl;)

If no historical data is available heuristics based on the number of ambiguous geo-
entries are useful for providing an educated guess of the probabilities.

A tagger recognizes patterns based on a pattern database table. The relation hasPattern
translates these patterns to TaggingEntities as for instance spatial locations, persons, and
organizations. Figure 4 visualizes a possible database layout for such a tagger.

TaggingEntry

+entry_id: bigint n
+pattern: varchar(255) hasPattern
+lang: char(4) +entity id: bigint
+isPreferredName: boolean
+isAmbiguous: boolean

TaggingEntity

Fig. 4. Database schema of a simple tagger.

The hasPattern table often does not provide a unique mapping between patterns
and entities - names as for instance Vienna may refer to multiple entities (Vienna/Austria
versus Vienna/Virgina/US). On the other side many entities have multiple patterns asso-
ciated with them (e.g. Wien, Vienna, Vienne, Bech, etc.). Based on the database schema
above, Pi,corr(a;) for such a tagger is estimated using the following heuristic:

NEntivies = |TaggingEntity|)
NMappings = |hasPattern| 8)
Nambiguous = |6[isAmbiguous:’true/] ()

TaggingEntry x hasPattern)|
NEntries
Pim‘()rr =1- Entries (10)

NMappings + Nambiguous

Extending the database schema visualized in Figure 4 to non geo entries using
WordNet and applying Equations 7-10 yields Picorr(a}).

5 Evaluation

For evaluating the STS model’s efficiency in real world applications a simulation frame-
work, supporting (i) a solely coverage based decision logic and the search test stop
model, (ii) artificial (normal distribution) and measured (compare Section 2) distribu-
tions of network response times, and (iii) common probability mass functions %(xg,x;,u)
composed from user defined Pjucorr(a;) and Pipeorr(a}) settings have been programmed.

To prevent the coverage based decision logic from delivering large amounts of low
quality answers, the simulation controller only accepts answers with an expected utility
above a certain threshold (u,,). In contrast the search test stop algorithm computes
umin = rp on the fly, based on the current responsiveness of the external service and the
user’s preferences.

5.1 Performance

Comparing the two approaches at different minimum quality levels (#,,,), and service
response time distributions approximated by a normal distribution N(7,6?) yields Ta-
ble 2. The common probability mass functions has been composed with Pycorr(a;) =
0.3, Pincorr(a:) = 0.1. The parameters for the normal distribution are ¢; = N(2,1.9) for
high search costs, ¢y = N(1,0.9) for medium search costs, and ¢; = N(0.5,0.4) for low
search costs.

Search Quality (@) Quantity (4%
Cost (cg) Umin|STS Conv|STS Conv

low 216.62 5.58(3.47 7.79
low 416.64 6.13|3.56 6.93
low 6(6.69 6.55|3.57 5.95
low 8|6.66 6.39(3.55 2.75
medium 2(4.99 4.84|1.88 3.22
medium 415.02 5.15(1.92 2.76
medium 6/5.01 5.32/1.89 2.27
medium 8(5.00 3.86(1.87 0.79
high 2|2.81 3.20/0.78 1.05
high 4(2.75 3.25/|0.76 0.88
high 6(2.84 2.81/0.80 0.59
8

high 2.81 -0.910.76 -0.09

Table 2. Tagging performance.

Table 2 evaluates the two strategies according to two criteria: (i) answer quality u,
the average utility of a set (S4) retrieved by the strategy, and (ii) answer quantity %, the
rate at which the number of correct answers (and therefore the total utility (x)) grows.

High u values correspond to accepting only high quality results, with a lot of correct
answers, and dropping low quality answer sets (at the cost of a lower quantity).

The conventional coverage based approach (Conv) delivers the highest quantity for
small u,,;, values because virtually all answers are accepted and contribute to the total

utility. This greedy approach comes at the cost of a lower answer quality and therefore
low average utility u per answer. Increasing u,,;, yields a better answer quality, but
lower quantity values. At high search costs this strategy’s performance is particularly
unsatisfactory, because it doesn’t consider the costs of the search operation.

In contrast to the conventional approach STS maximizes answer quality and quan-
tity based on the current search cost adjusting queries to the responsiveness of the ser-
vice and the user’s preferences. These preferences formalize the trade-off between qual-
ity and quantity by specifying a transformation function between search cost and search
times.

10000 T T T T T
—_— Search Test Stop
fffffff Conventional Approach
8000 B
6000 B

4000

utility (u)

2000

T
-y

-2000

-4000 ' ' ' '
0 20000 40000 60000 80000 100000 120000

time (sec)

Fig. 5. Search test stop versus conventional decision logic for Swoogle (7=1.6; Gtzy >10000).

STS therefore optimizes the agent’s behavior in terms of user utility. This does not
mean that STS minimizes resource usage. Instead STS dynamically adjusts the resource
utilization based on the cost of searching (c;) and testing (c;), providing the user with
optimal results in terms of accuracy and response times.

Enforcing a minimal utility u,,;; boosts the average utility # of the non STS service,
but at the cost of a higher resource utilization, independent from the server’s load (lead-
ing to extremely high response times during high load conditions). Static limits also do
not consider additional queries at idle servers, leading to lower utilities under low load
conditions. In contrast to the conventional approach STS (i) utilizes dormant resources
of idle servers, and (ii) spares resources of busy servers, maximizing utility according
to the user’s preferences.

5.2 Web Services

In this section we will simulate the effect of STS on the performance of real world
Web services, using search costs as measured during the Web service timing (compare
Section 2).

The simulation facilitates the cost and common probability mass functions from
Section 5. The figures 5-7 compare the tagger’s performance when providing tagged
documents corresponding to a utility score of 10,000 based on three different Web ser-
vices (Swoogle, Google, GeoNames) with a minimum utility (i,) of four.

In all three use cases STS performs well, because the search times are adjusted ac-
cording to the service’s responsiveness. GeoNames and Swoogle experience the highest
performance boost, due to high variances in the search cost, leading to negative utility
for the conventional query strategy. Using Google as external resource yields the fastest

10000 T T
—_— Search Test Stop
fffffff Conventional Approach

9000 |-]
8000 |- A
7000 |- i
6000 |- .

5000 Pae's]

utility (u)

4000 | i
3000 | o ,,,.,,r“ .
2000 e b

1000 | i

0 i 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000

time (sec)

Fig. 6. Search test stop versus the conventional decision logic for Google (7=0.2; G%:O.Z).

processing time. The algorithm is able to provide documents with the required quality
level in around 8,300 seconds in contrast to more than 107,000 seconds for GeoNames
and more than 129,000 seconds for Swoogle.

Services with low variances (Gtzr) in their response times as for instance Google,
del.icio.us and Wikipedia benefit least from the application of the STS model, because
static strategies perform reasonable well under these conditions.

10000

—_— I Search Test Stlop
fffffff Conventional Approach

8000
6000

4000

2000

utility (u)
o

-2000 | ey .
-4000 | g
-6000 |- e 4

-8000 |- RS E—

-10000 ' ' ' ' '
0 20000 40000 60000 80000 100000

time (sec)

Fig. 7. Search test stop versus the conventional decision logic for GeoNames (7=0.1; (5,2, =771.4).

6 Outlook and Conclusions

This work presents an approach for optimizing access to third party remote resources.
Optimizing the clients resource access strategy yields higher query performance and
spares remote resources by preventing unnecessary queries.

The main contributions of this paper are (i) applying the search test stop model to
value driven information gathering, extending its usefulness to domains where one or
more testings steps allow refining the estimated utility of the answer set; (ii) demon-
strating the use of this approach to semantic tagging, and (iii) evaluating how the search
test stop model performs in comparison to a solely value based approach.

The experiments show that search test stop and value driven information gathering
perform especially well in domains with highly variable search cost.

In this work we only use one level testing, nevertheless, as Hartmann has shown
[9] extending STS to n-levels of testing is a straight forward task. Future research will
transfer these techniques and results to more complex use cases integrating multiple
data sources as for instance semi automatic ontology extension [16]. The development
of utility functions considering partially correct answers and user preferences will allow
a more fine grained control over the process’s performance yielding highly accurate
querying strategies and therefore better results.

Acknowledgment

The author wishes to thank Prof. Wolfgang Janko for his valuable feedback and sug-
gestions. The project results have been developed in the IDIOM (Information Diffu-
sion across Interactive Online Media; www.idiom.at) project funded by the Austrian
Ministry of Transport, Innovation & Technology (BMVIT) and the Austrian Research
Promotion Agency (FFG).

References

1.

12.

13.

14.

15.

16.

Gupta, C., Bhowmik, R., Head, M.R., Govindaraju, M., Meng, W.: Improving performance
of web services query matchmaking with automated knowledge acquisition. In: Web Intelli-
gence, IEEE Computer Society (2007) 559-563

. Grass, J., Zilberstein, S.: A value-driven system for autonomous information gathering.

Journal of Intelligent Information Systems 14 (March 2000) 5-27(23)

. Kukulenz, D., Ntoulas, A.: Answering bounded continuous search queries in the world wide

web. In: WWW °07: Proceedings of the 16th international conference on World Wide Web,
New York, NY, USA, ACM (2007) 551-560

. Ipeirotis, P.G., Agichtein, E., Jain, P, Gravano, L.: Towards a query optimizer for text-centric

tasks. ACM Trans. Database Syst. 32(4) (2007) 21

. Software Engineering Standard Committe of the IEEE Computer Society: IEEE std 830-

1999: IEEE recommended practice for software requirements specifications (1998)

. International Standards Organization JTC 1/SC 7: ISO/IEC 9126-1, 2001. software engi-

neering — product quality — part 1: Quality model (2001)

. Horvitz, E.J., Breese, J.S., Henrion, M.: Decision theory in expert systems and artificial

intelligence. International Journal of Approximate Reasoning 2 (1988) 247-302

. MacQueen, J.: Optimal policies for a class of search and evaluation problems. Management

Science 10(4) (1964) 746-759

. Hartmann, J.: Wirtschaftliche Alternativensuche mit Informationsbeschaffung unter Un-

sicherheit. PhD thesis, Universitit Fridericiana Karlsruhe (1985)

. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. 3rd edition edn. Springer, New

York (2005)

. Scharl, A., Weichselbraun, A., Liu, W.: Tracking and modelling information diffusion across

interactive online media. International Journal of Metadata, Semantics and Ontologies 2(2)
(2007) 136-145

Strunk, J.D., Thereska, E., Faloutsos, C., Ganger, G.R.: Using utility to provision storage
systems. In: FAST’08: Proceedings of the 6th USENIX Conference on File and Storage
Technologies, Berkeley, CA, USA, USENIX Association (2008) 1-16

Verma, A., Jain, R., Ghosal, S.: A utility-based unified disk scheduling framework for shared
mixed-media services. Trans. Storage 3(4) (2008) 1-30

Yeo, C.S., Buyya, R.: Pricing for utility-driven resource management and allocation in clus-
ters. International Journal of High Performance Computing Applications 21(4) (November
2007) 405418

Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content. In: SI-
GIR ’04: Proceedings of the 27th annual international ACM SIGIR conference on Research
and development in information retrieval, New York, NY, USA, ACM (2004) 273-280

Liu, W., Weichselbraun, A., Scharl, A., Chang, E.: Semi-automatic ontology extension us-
ing spreading activation. Journal of Universal Knowledge Management 0(1) (2005) 50-58
http://www.jukm.org/jukm_ 0_ 1/semi_ automatic_ ontology_ extension.

