Skip to main content

Coupled Metric Learning for Face Recognition with Degraded Images

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5828))

Abstract

Real-world face recognition systems are sometimes confronted with degraded face images, e.g., low-resolution, blurred, and noisy ones. Traditional two-step methods have limited performance, due to the disadvantageous issues of inconsistent targets between restoration and recognition, over-dependence on normal face images, and high computational complexity. To avoid these limitations, we propose a novel approach using coupled metric learning, without image restoration or any other preprocessing operations. Different from most previous work, our method takes into consideration both the recognition of the degraded test faces as well as the class-wise feature extraction of the normal faces in training set. We formulate the coupled metric learning as an optimization problem and solve it efficiently with a closed-form solution. This method can be generally applied to face recognition problems with various degrade images. Experimental results on various degraded face recognition problems show the effectiveness and efficiency of our proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.: Face recognition: a literature survey. ACM Computing Surveys, 399–458 (2003)

    Google Scholar 

  2. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1167–1183 (2002)

    Article  Google Scholar 

  3. Biemond, J., Lagendijk, R., Mersereau, R.: Iterative methods for image deblurring. Proceedings of the IEEE 78(5), 856–883 (1990)

    Article  Google Scholar 

  4. Chang, H., Yeung, D., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 275–282 (2004)

    Google Scholar 

  5. Fergus, R., Singh, B., Hertzmann, A., Roweis, S., Freeman, W.: Removing camera shake from a single photograph. ACM Transactions on Graphics 25(3), 784–794 (2006)

    Article  Google Scholar 

  6. Freeman, B., Pasztor, E., Carmichael, O.: Learning low-level vision. International Journal of Computer Vision 40(1), 25–47 (2000)

    Article  MATH  Google Scholar 

  7. Capel, D., Zisserman, A.: Super-resolution from multiple views using learnt image models. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 627–634 (2001)

    Google Scholar 

  8. Chen, J., Yuan, L., Tang, C., Quan, L.: Robust dual motion deblurring. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  9. Elad, M., Feuer, A.: Super-resolution reconstruction of image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(9), 817–834 (1999)

    Article  Google Scholar 

  10. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw patches. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  11. Baker, S., Kanade, T.: Hallucinating faces. Automatic Face and Gesture Recognition (2000)

    Google Scholar 

  12. Liu, C., Shum, H., Zhang, C.: A two-step approach to hallucinating faces: global parametric model and local nonparametric model. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 192–198 (2001)

    Google Scholar 

  13. Gunturk, B., Batur, A., Altunbasak, Y., Hayes, M., Mersereau, R.: Eigenface-domain super-resolution for face recognition. IEEE Transactions on Image Processing 12(5), 597–606 (2003)

    Article  Google Scholar 

  14. Jia, K., Gong, S.: Multi-modal tensor face for simultaneous super-resolution. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, pp. 1683–1690 (2005)

    Google Scholar 

  15. Hennings-Yeomans, P., Baker, S., Kumar, B.: Simultaneous super-resolution and feature extraction for recognition of low-resolution faces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  16. Domeniconi, C., Peng, J., Gunopulos, D.: Locally adaptive metric nearest-neighbor classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1281–1285 (2002)

    Article  Google Scholar 

  17. Frome, A., Singer, Y., Sha, F., Malik, J.: Learning globally-consistent local distance functions for shape based image retrieval and classification. In: Proceedings of the Eleventh IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  18. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood component analysis. In: Advances in Neural Information Processing Systems 17, pp. 513–520 (2005)

    Google Scholar 

  19. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest neighbor classification. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18. MIT Press, Cambridge (2006)

    Google Scholar 

  20. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 312–377 (1936)

    Google Scholar 

  21. Hardoon, D., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Computation 16, 2639–2664 (2004)

    Article  MATH  Google Scholar 

  22. Martinez, A., Benavente, R.: The AR face database. Technical report, CVC Tech. Report No. 24 (1998)

    Google Scholar 

  23. Zhang, Z.: Learning metrics via discriminant kernels and multidimensional scaling: toward expected euclidean representation. In: Proceedings of the Twentieth International Conference on Machine Learning, Washington, DC, USA (2003)

    Google Scholar 

  24. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  25. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astronomical Journal 79(6), 745–754 (1974)

    Article  Google Scholar 

  26. Richardson, W.: Bayesian-based iterative method of image restoration. Journal of the Optical Society of America 62(1), 55–59 (1972)

    Article  Google Scholar 

  27. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  28. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  29. Park, J., Oh, Y., Ahn, S., Lee, S.: Glasses removal from facial image using recursive error compensation. IEEE transactions on pattern analysis and machine intelligence 27(5), 805–811 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, B., Chang, H., Shan, S., Chen, X. (2009). Coupled Metric Learning for Face Recognition with Degraded Images. In: Zhou, ZH., Washio, T. (eds) Advances in Machine Learning. ACML 2009. Lecture Notes in Computer Science(), vol 5828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05224-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05224-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05223-1

  • Online ISBN: 978-3-642-05224-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics