Skip to main content

Probabilistic Graphical Markov Model Learning: An Adaptive Strategy

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5845))

Abstract

In this paper an adaptive strategy to learn graphical Markov models is proposed to construct two algorithms. A statistical model complexity index (SMCI) is defined and used to classify models in complexity classes, sparse, medium and dense. The first step of both algorithms is to fit a tree using the Chow and Liu algorithm. The second step begins calculating SMCI and using it to evaluate an index (EMUBI) to predict the edges to add to the model. The first algorithm adds the predicted edges and stop, and the second, decides to add an edge when the fitting improves. The two algorithms are compared by an experimental design using models of different complexity classes. The samples to test the models are generated by a random sampler (MSRS). For the sparse class both algorithms obtain always the correct model. For the other two classes, efficiency of the algorithms is sensible to complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adami, C.N., Cerf, J.: Physical Complexity of Symbolic Sequences. Physica D 137, 62–69 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akaike, H.: A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control 19, 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chickering, M.C., Heckerman, D., Meck, C.: Large-Sample Learning of Bayesian Network is NP-Hard. Journal of Machine Learning Research 5, 1287–1330 (2004)

    Google Scholar 

  4. Chow, C.K., Liu, W.: Approximating Discrete Probability Distributions with Dependency Trees. IEEE Trans. Inf. Theory IT-14(3), 462–467 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  5. Deming, W.E., Stephan, F.F.: On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known. Ann. of Math. Static. 11, 427–444 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  6. Diaz, E.: Metaheurísticas Híbridas para el Aprendizaje de Modelos Gráficos Markovianos y Aplicaciones. Tesis para optar por el Grado de Doctor en Ciencias de la Computación. Universidad Autónoma de Aguascalientes, Ags., Mexico (2008)

    Google Scholar 

  7. Diaz, E., Ponce de Leon, E.: Discrete Markov model selection by a genetic algorithm. In: Sossa-Azuela, J.H., Aguilar-IbaÑÉz, C., Alvarado-Mentado, M., Gelbukh, A. (eds.) Avances en Ciencias de la Computación e Ingeniería de Cómputo, Mexico, vol. 2, pp. 315–324 (2002)

    Google Scholar 

  8. Diaz, E., Ponce de Leon, E.: Markov Structure Random Sampler (MSRS) algorithm from unrestricted discrete graphic Markov models. In: Gelbukh, A., Reyes, C.A. (eds.) Proceedings of the Fifth Mexican International Conference on Artificial Intelligence, pp. 199–206. IEEE Computer Society, Mexico (2006)

    Chapter  Google Scholar 

  9. Haberman, S.J.: The Analysis of Frequency Data. The University of Chicago Press (1974)

    Google Scholar 

  10. Koller, D., Freedman, N., Getoor, L., Taskar, B.: Graphical models in a nutshell in Introduction to Statistical Relational Learning. In: Getoor, L., Taskar, B. (eds.) Stanford (2007)

    Google Scholar 

  11. Kruskal, J.B.: On the Shortest Spanning Tree of a Graph and the Traveling Salesman Problem. Proc. Amer. Math. Soc. 7, 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  12. Kuratowski, K.: Introduction to Calculus. Pergamon Press, Warsaw (1961)

    MATH  Google Scholar 

  13. Lauritzen, S.L.: Graphical models. Oxford University Press, USA (1996)

    Google Scholar 

  14. Li, M., Vitanyi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  15. MacKay, J.C.: Information Theory Inference and Learning Algorithms. Cambridge Press (2003)

    Google Scholar 

  16. Zvonkin, A.K., Levin, L.A.: The Complexity of Finite Objects and the Development of the Concepts of Information and Randomness by Means of the Theory of Algorithms. Russ. Math. Surv. 256, 83–124 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diaz, E., Ponce-de-Leon, E., Larrañaga, P., Bielza, C. (2009). Probabilistic Graphical Markov Model Learning: An Adaptive Strategy. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds) MICAI 2009: Advances in Artificial Intelligence. MICAI 2009. Lecture Notes in Computer Science(), vol 5845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05258-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05258-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05257-6

  • Online ISBN: 978-3-642-05258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics