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Abstract. Key-Policy Attribute-Based Encryption (KP-ABE) is a promis-
ing cryptographic primitive which enables fine-grained access control
over sensitive data. However, key abuse attacks in KP-ABE may im-
pede its wide application especially in copyright-sensitive systems. To
defend against this kind of attacks, this paper proposes a novel KP-ABE
scheme which is able to disclose any illegal key distributor’s ID when
key abuse is detected. In our scheme, each bit of user ID is defined as
an attribute and the user secret key is associated with his unique ID.
The tracing algorithm fulfills its task by tricking the pirate device into
decrypting the ciphertext associated with the corresponding bits of his
ID. Our proposed scheme has the salient property of black box tracing,
i.e., it traces back to the illegal key distributor’s ID only by observing the
pirate device’s outputs on certain inputs. In addition, it does not require
the pirate device’s secret keys to be well-formed as compared to some
previous work. Our proposed scheme is provably secure under the De-
cisional Bilinear Diffie-Hellman (DBDH) assumption and the Decisional
Linear (DL) assumption.

1 INTRODUCTION

There is a trend that more data are stored or delivered across third parties over
Internet for either reliable storage or ease of sharing. For example, individuals
would store their personal information on portal web sites such as Google, and
commercial content providers may deliver their product through content delivery
networks (CDNs) such as Akamai. Such a trend raises the concern that sensitive
data stored or cached by these third-party sites will be compromised. Moreover,
in some critical or copyright-sensitive application scenarios, it requires differen-
tiated service in the way that, data are defined with sets of attributes and each
user is limited to access data of some particular set of attributes or their com-
binations. In this kind of applications, each user’s access privilege is assigned
by the user’s role or the price that this user paid. One example of this kind of
applications is targeted broadcast system, e.g., a digital video recorder (DVR)
system. In such a system, the content provider might broadcast episodes of TV
shows and each of the shows may be assigned a set of attributes such as name,



season number, genre, so on and so forth. Users will obtain the access privilege
to contents of some particular combination of these attributes by paying the
corresponding price to the content provider. The user’s access privilege can be
encoded as a policy such as (“name=heros” AND (“season 2” OR “season 3”)).
As content providers might provide their services across third party CDNs, for
the purpose of access control it is desirable to encrypt the media products us-
ing certain cryptographic primitive since traditional centralized access control
methods such as the reference monitor approach might not be suitable in this
scenario.

Key-policy attribute-based encryption (KP-ABE) [1] is such a cryptographic
primitive that was proposed to resolve the exact problem of fine-grained data
access control in one-to-many communications. In KP-ABE, a ciphertext is as-
sociated with a set of attributes, and each user secret key is embedded with
an access structure which is the logic combination of certain set of attributes.
Users can decrypt a ciphertext if and only if the set of attributes associated
with the ciphertext satisfy the access structures embedded in their secret keys.
Beside this property, KP-ABE also has nice properties of collusion resistance
and provable security under standard difficulty assumptions. All these proper-
ties seem to make KP-ABE a perfect tool to enforce access control in the above
copyright-sensitive applications.

However, the following issue may impede its direct application in targeted
broadcast systems of our interests: In the current KP-ABE construction [1], a
user secret key is defined over an access structure and does not have the one-
to-one correspondence with any particular user. This results in the fact that a
paid user is able to “share” his secret key and abuse his access privilege with-
out being identified. More seriously, pirates may take this advantage to make
profits by abusing the access privilege. We call this kind of misbehavior by key
abuse attacks. As a matter of fact, key abuse attacks are extremely harmful for
copyright-sensitive application scenarios. Imagine that in a DVR system pro-
tected by KP-ABE, key abusers can easily distribute content decryption keys to
others by ways such as sending via email. Due to the cost of this is extremely
low, it is more destructive than directly distributing the content itself. Therefore,
before KP-ABE can be safely applied to aforementioned applications, key abuse
attacks should be well addressed. The ideal way for defending against key abuse
attacks is to technically prevent illegal users from using others’ decryption keys.
However, it is difficult to realize since it may require on-line servers to monitor
the usage of user decryption keys, or the user secret key to be physically as-
sociated with the user. In conventional broadcast encryption, the issue of key
abuse is addressed by using a technique called traitor tracing which has been well
studied by previous works [2–5]. The key idea of traitor tracing is to enable the
content provider to trace any suspicious pirate device and thus discover illegal
key distributor’s identitie(s) and collect evidences of key abuse. Then the con-
tent provider can sue the illegal key distributors by presenting these evidences to
law authorities. Specifically, the content provider would choose particular types
of ciphertexts and trick pirate devices into decrypting them. Success of decryp-
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tion will provide the evidence of pirating. At a high level view, we can play the
same trick in KP-ABE to defend against key abuse attacks. However, underlying
techniques adopted by existing traitor tracing systems can not be directly ap-
plied to KP-ABE because receivers are represented individually in conventional
broadcast encryption while not in KP-ABE. Therefore, it is desirable to propose
a novel solution for defending against key abuse attacks in KP-ABE.

1.1 Our Contribution

In this paper, we resolve the issue and provide an abuse free KP-ABE (AFKP-
ABE) scheme based on the Decisional Bilinear Diffie-Hellman (DBDH) assump-
tion and the Decision Linear (D-Linear) assumption. AFKP-ABE has properties
of partially collusion resistance and black box tracing according to the defini-
tion in [5]. In addition, AFKP-ABE is efficient since both the secret key size
and the ciphertext size are O(logN), where N is the total number of users. The
main technical challenge of our construction of AFKP-ABE is to realize black
box tracing, i.e., tracing the pirate device only by observing its outputs on some
inputs. To achieve this goal, one frequently used method is to trick the pirate
device into decrypting tracing ciphertexts and success of decryption will provide
the evidence of pirating as mentioned before. In the context of KP-ABE, how-
ever, this implies that an unsuspected user may not be able to correctly decrypt
a tracing ciphertext even if the attributes embedded in the ciphertext satisfy his
access structure, and thus has the chance to detect the ongoing tracing activity.
A pirate can take advantage of this and collude with other pirates to detect
tracing activities.

The main idea of our construction is as follows. Each user is assigned a unique
ID which is chosen from the identity space. Then, we define bits of user iden-
tities as attributes and embed them in user secret key. We call these attributes
by identity-related attributes and other attributes by normal attributes. Normal
(non-tracing) encryption algorithm associates the identity-related attributes to
the ciphertext in the way that all the bits of the identity space are set to “don’t
care”. The tracing algorithm just associates the suspicious identity correspond-
ing identity-related attributes to the ciphertext. This turns out that only the user
with the suspicious identity is able to correctly decrypt the tracing ciphertext.
Note that in this construction the only difference between a normal encryp-
tion algorithm and the tracing algorithm is on the input set of identity-related
attributes. To make the tracing algorithm indistinguishable from the regular en-
cryption algorithm, we hide these identity-related attributes when encrypting
so that pirate devices are not able to tell which and how many identity-related
attributes are used. In addition we also hide some of the normal attributes. The
intuition behind this is to prevent the pirate device from being able to check if
normal attributes of the ciphertext satisfy his access structure and thus detect
the tracing activity. We achieve the goal of hiding attributes using the technique
from anonymous ciphertext-policy attribute-based encryption [6] in which the
ciphertext policy is hidden to receivers. Our definition of the KP-ABE tracing
system is based on the definition of the traitor tracing system by Boneh et al. [5].
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1.2 Related Work

Attribute-Based Encryption Sahai and Waters [7] first introduced attribute-
based enctyption (ABE) for encrypted access control. In an ABE system, both
the user’ private key and the ciphertext are associated with a set of attributes. If
only at least k attributes overlap between the ciphertext and his private key, can
the user decrypt the ciphertext. Based on ABE, Goyal et al. [1] proposed a key-
policy attribute-based encryption (KP-ABE) scheme and introduced the concept
of ciphertext-policy attribute-based encryption (CP-ABE). The first CP-ABE
construction was proposed by Bethencourt et al. [8]. Cheung et al. [9] proposed
the first provably secure CP-ABE. In CP-ABE, the user secret key is associated
with a set of attributes and ciphertexts are embedded with an access structure.
A user is able to decrypt the ciphertext only if the attributes associated with
his secret keys satisfy the access structure of the ciphertext. KP-ABE is defined
in the reverse way than CP-ABE. User secret keys in KP-ABE are embedded
with an access structure and ciphertexts are associated with a set of attributes.
Successful decryption of the ciphertext requires a match between the user’s access
structure and the ciphertext attribute set.

Anonymous CP-ABE In conventional CP-ABE schemes [8, 9], ciphertext
policies should be revealed in the ciphertext so that receivers are able to combine
correct secret keys for decryption. To better protect user privacy, some applica-
tion scenarios may require ciphertext policies to be hidden to receivers. We call
this branch of CP-ABE schemes by anonymous CP-ABE. The first anonymous
CP-ABE scheme was proposed by Kapadia et al. [10]. However, this scheme is
not collusion-resistant and it needs an online semi-trusted server to participate
in data encryption. Yu et al. [11,12] proposed two collusion-resistant anonymous
CP-ABE schemes based on [9]. But the security of these schemes is based on
strong assumptions. Nishide et al. [6] proposed the first provably secure anony-
mous CP-ABE based on the DBDH assumption and the D-Linear assumption.
In their proposed scheme, each attribute could have several values. A public
key component is defined over each value of an attribute. User secret key is
associated with exactly one value of each attribute. The ciphertext has a well-
formed ciphertext component for each intended attribute value and mal-formed
ciphertext components for unintended attribute values. It sets an attribute as
“don’t care” by presenting well-formed ciphertext components for all the values
of this attribute. If there is one ciphertext component corresponding to the user
attributes is mal-formed, this user will not be able to decrypt the ciphertext.
Because the scheme is designed in such a way that it is hard to distinguish well-
formed ciphertext components from mal-formed ones, receivers are not able to
tell which or how many attributes appear in the ciphertext policy. Our construc-
tion is partially based on this scheme. We refer to [6] for more details on this
scheme. Anonymous CP-ABE can also be realized by using a recently invented
cryptographic primitive called predicate encryption by Katz et al. [13]. How-
ever, their construction requires the bilinear group to be of the order of product
of three large primes. Moreover, their security proof is based on new complex-
ity assumptions. Recently, Li et. al proposed two accountable attribute-based
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schemes [14, 15] which solve the similar issue of key forgery in the setting of
CP-ABE. We claim that our work is proposed in parallel with these schemes
and in different models.

Traitor Tracing Traitor tracing systems were proposed for use in broadcast en-
vironments to help content providers trace back to the original source of pirates.
In a traitor tracing system, each user (with a decoder) is assigned a personal
decryption key. The content provider encrypts the content such that only autho-
rized users are able to decrypt. Suppose a group of colluding users P contribute
their personal keys to build a pirate decoder. The tracing scheme should be able
to trace back to each member of P . The first traitor tracing system is proposed
by Chor et al [2]. Since that, many traitor tracing schemes [3–5] have been pro-
posed. These scheme can be categorized by the following properties [5]: public
key/private key broadcast encryption, public/private traceability, collusion resis-
tance, black box tracing, stateful/stateless decoder. For example, [5] is a traitor
tracing system for public key broadcast and enables private black box tracing
against arbitrary colluding stateless decoders. Other important properties of a
traitor tracing system include secret key size and ciphertext size.

The rest of this paper is organized as follows. Section 2 reviews some tech-
nique preliminaries pertaining to our construction. Section 3 presents formal
definitions and models of our proposed abuse free key-policy attribute-based en-
cryption scheme. In section 4 we give our construction of such a scheme as well
as our security proof to it. In section 5, we discuss potential application scenarios
in which our scheme would be applicable. We conclude this paper in Section 6.

2 Preliminaries

2.1 Bilinear Maps

Our design is based on some facts about groups with efficiently computable
bilinear maps.

Let G0 and G1 be two multiplicative cyclic groups of prime order p. Let g be
a generator of G0. A bilinear map is is an injective function e : G0 × G0 → G1

with the following properties:
1. Bilinearity : for all u, v ∈ G0 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy : e(g, g) 6= 1.
3. Computability : There is an efficient algorithm to compute e(u, v)for∀ u, v ∈

G0.

2.2 Complexity Assumptions

Decisional Bilinear Diffie-Hellman (DBDH) Assumption Let a, b, c, z ∈ Zp be
chosen at random and g be a generator of G0. The DBDH assumption [16]
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states that no probabilistic polynomial-time algorithm B can distinguish the tu-
ples (A = ga, B = gb, C = gc, e(g, g)abc) from the tuple (A = ga, B = gb, C =
gc, e(g, g)z) with non-negligible advantage.

The Decision Linear (D-Linear) Assumption Let z1, z2, z3, z4, z ∈ Zp be chosen
at random and g be a generator of G0. The D-Linear assumption [17] states
that that no probabilistic polynomial-time algorithm B can distinguish the tu-
ple (g, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4) from the tuple (g, gz1 , gz2 , gz1z3 , gz2z4 , gz) with
non-negligible advantage.

3 Definitions and Models

In this section, we present the definition of our abuse-free KP-ABE (AFKP-
ABE) scheme as well as its security definition. The security definition of our
scheme is consistent to traitor tracing schemes [5].

3.1 Description of AFKP-ABE

The AFKP-ABE scheme has the following five algorithms:

Setup(1λ, n) The setup algorithm is a randomized algorithm. It takes as input
the security parameter 1λ and n, the length of a user identity. It outputs a mas-
ter key MK and public parameters PK.

Enc(M , γ, PK). The encryption algorithm is a randomized algorithm. It takes
as input a message M , a set of attributes γ, and the public parameters PK. It
outputs a ciphertext E. On different input γ, this algorithm can be used either
for normal (non-tracing) operations of content distribution, or for the purpose
of tracing.

KeyGen(T , MK, PK). The key generation algorithm is a randomized algo-
rithm. It takes as input an access structure T , the master secret key MK, and
the public parameters PK. It outputs a user secret key SK.

Dec(E, SK, PK). The decryption algorithm is a deterministic algorithm. It
takes as input the ciphertext E for a set of attributes γ, a user secret key SK
for an access structure T , and the public parameters PK. If γ |= T , i.e., γ sat-
isfies T , it outputs the message M . Otherwise it outputs ⊥ with overwhelming
probability.

TraceD(ε) This algorithm takes input a parameter ε (which should be poly-
nomially related to λ), and has black-box access to an ε-useful decoder box D
which is constructed by the adversary. It outputs a set of guilty colluders in
polynomial time.
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3.2 Security Definition

The security of ABKP-ABE is defined by the following two security games.
Game 1. The first game captures the idea of Semantic Security. In our

scheme we follow the definition of the standard game used by KP-ABE [1] which
proceeds with the following steps.

– Init The adversary declares the set of attributes, γ, that he wishes to be
challenged upon.

– Setup The challenger runs the Setup algorithm of AFKP-ABE and gives the
public parameters to the adversary.

– Phase 1 The adversary is allowed to issue queries for private keys for many
access structures Ti , where γ 2 Ti for all i.

– Challenge The adversary submits two equal length messages M0 and M1.
The challenger flips a random coin b, and encrypts Mb with γ. The ciphertext
is passed to the adversary.

– Phase 2 Phase 1 is repeated.
– Guess The adversary outputs a guess b0 of b.

The advantage of an adversary A winning this game is defined as AdvSS =
Pr[b0 = b]− 1

2 .

Game 2. The second game captures the notion of Traceability against partial
collusion. Our definition of the traceability game is based on that of [5]. Given
λ, n, and ε, the game proceeds with the following steps.

– Setup The adversary A outputs a set U = {u1, u2, . . . , ut} of colluding users
with the only restriction that no pair of users have exactly the same access
privilege. The access structure associated with user ui ∈ U is denoted by Ti.

– Key Generation The challenger runs the key generation algorithm KeyGen
to provide the user secret key for each user in U .

– The adversary A outputs a pirate device D.
– The challenger runs TraceD(ε) to obtain a set S.

We say that the adversary A wins the game if the following two conditions
hold:

1. The decoder D is ε-useful. That is, for a randomly chosen M in the finite
message space, we have that Pr[D(Enc(M, γ, PK)) = M ] ≥ ε if there exists
a user ui ∈ U with γ |= Ti, where γ is chosen in the way that Enc runs for
normal (non-tracing) operation.

2. The set S is either empty, or is not a subset of U .

We denote the probability that the adversary A wins this game by AdvTR. If U
contains exactly one user, this game captures the notion of Traceability against
single pirate.
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Definition 1. We say that AFKP-ABE is secure if AdvSS and AdvTR are neg-
ligible (in λ) for any polynomial time adversary A and any constant ε > 0.

To prove the security of AFKP-ABE in Game 2, another required security
game is the Indistinguishability Game which captures the notion that, it is hard
to distinguish ciphertexts generated by normal (non-tracing) operations from
those generated by tracing operations. Its concrete security definition is given in
Appendix B.

4 Our Construction

In this section, we present our construction of the secure AFKP-ABE scheme.

4.1 Main Idea

The intuition of our construction can be summarized as the follows. We define
a n-bit user identity space and each bit of them is defined as an attribute with
two occurrences, one for bit value 0 and the other for bit value 1. Each user is
then assigned a unique ID from the identity space. The encryption algorithm
will associate these identity-related attributes to the ciphertext in the following
way: for normal (non-tracing) operations, all these n attributes are set as “don’t
care”; for tracing operations, they are set to represent the suspicious identity. In
tracing operations, a user is able to decrypt the ciphertext only if his identity
equals the suspicious one. To make tracing ciphertexts indistinguishable from
normal ciphertexts, we hide these identity-related attributes in the way that any
user is not able to tell which and how many of them are set as “interested”
(i.e., not “don’t care”). In addition, we also hide some normal attributes so that
upon a fail decryption the user can not tell if it is caused by the mismatch of his
ID or by his access privilege (without considering his ID). Thus, he is not able
to distinguish a tracing activity from a normal (non-tracing) one. The security
goal of our construction is to build such a KP-ABE scheme in which 1) any user
without the correct decryption key is not able to tell a single bit of the message,
and 2) given a pirate device, the authority is able to trick it into decrypting
tracing ciphertexts and thus discover the identity of the original owner of the
decryption key held by this device.

Definition of Attributes We define three set of attributes: public normal
attributes, hidden normal attributes and hidden identity-related attributes. We
denote the universe of each of them by UPN ,UHN , and UHID respectively. The
letter P in the subscription denotes the word “public”, H means “hidden”, N
represents “normal”, and ID is the abbreviation of “identity”. UPN and UHN

contain attributes to be used by normal encryptions. UHID contains identity-
related attributes for describing the suspected user’s identity and is particularly
used for tracing. In ciphertexts, the associated attributes from UHN and UHID

have to be hidden such that any receiver is not able to tell which and how
many of them are used, while attributes from UPN are public. Each attribute
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attributes from UHID

TR: subtree for attributes from UPN

attributes from UHN
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Fig. 1. Illustration of the construction of our access structure

in UHID has two occurrences, one for bit value 0 and the other for bit value 1.
Similarly, we assume that attributes in UHN also have binary values like those in
UHID. This assumption is just for concise presentation of our scheme. Extending
our scheme to support the non-binary case is trivial. From now on we will call
the union of UHID and UHN as hidden attributes by capturing their common
property of “hidden”. We denote the universe of hidden attributes as UH , and
thus UH = UHN ∪UHID. We denote the number of attributes in UHN by m and
that in UPN by k. Therefore, the total number of hidden attributes is m + n.

According to the above discussion, it is clear that in a ciphertext there
could be three types of attributes: attributes from UPN , attributes from UHN ,
and those from UHID. We denote the set of these three type of attributes
in a ciphertext by γPN , γHN , and γHID respectively. Therefore, we have γ =
γPN ∪γHN ∪γHID, where γ represents the set of all the attributes interested by
the encryptor.

Access Structure Our definition of the access structure (implemented using
an access tree) is the same as KP-ABE [1], i.e., each interior node of the tree
is a threshold gate and the leaves are associated with attributes. However, our
construction has the following restrictions on the access structure: (1) each access
structure should deal with all the hidden attributes and all of them should
appear on the second layer of the tree; (2) the root node has to be an AND gate;
(3) all the attributes from UPN should appear in a subtree which we denote
by TR. Interior nodes of the subtree TR could be any kind of threshold gates.
The structure of the access tree in our construction is illustrated by Fig. 1. In
addition, each non-root node has a unique index given by its parent. For the
convenience of representation, we will denote a node x′s parent by xpa and x′s
index by idx(x).

4.2 AFKP-ABE Scheme

In the description, G0 is a bilinear group of prime order p and g is a generator
of G0. We use e : G0 × G0 → G1 to represent a bilinear map. The Lagrange
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coefficient ∆i,S(x) is defined as follows, where i ∈ Zp, x ∈ Zp are variables, and
S ⊂ Zp is some set.

∆i,S(x) :=
∏

j∈S\{i}

x− j

i− j
.

We use strings of length n to represent user IDs. “don’t care” bit of an ID is
represented by a “∗”.

Setup(1λ, n) Define UH = {1, · · ·n, n + 1, · · ·m + n}, where the first n elements
are for UHID and the last m for UHN , and UPN = {1, 2, · · · k}. For each attribute
i ∈ UPN , choose a random number ti from Zp. Then for each hidden attribute
j ∈ UH , choose random numbers {aj,t, bj,t}t=0,1 from Zp and random points
{Aj,t}t=0,1 from G0. Finally, choose a random number y from Zp. The public
parameters PK are published as

PK = (Y = e(g, g)y, {Ti = gti}i∈UP N
, {Aaj,t

j,t , A
bj,t

j,t }j∈UH ,t=0,1)

and the master key MK is

MK = (y, {ti}i∈UP N
, {aj,t, bj,t}j∈UH ,t=0,1)

Enc(M, γ, PK) Define γ = γPN ∪ γHN ∪ γHID as mentioned before. Let the ID
represented by γHID be XnXn−1 · · ·X1, where Xi = 0, 1 or ∗ for each 1 ≤ i ≤ n.
The encryptor generates ciphertext components for γHID as follows. First choose
a random number s from Zp. Then for each 1 ≤ i ≤ n, pick random numbers
ri,0 and ri,1 from Zp, and compute tuples {[Êi,t, Ěi,t]}t=0,1 as follows.

(1) If Xi = b, where b = 0|1, the encryptor sets [Êi,1−b, Ěi,1−b] as random
(mal-formed), and [Êi,b, Ěi,b] = [(Abi,b

i,b )ri,b , (Aai,b

i,b )s−ri,b ] (well-formed).

(2) If Xi = ∗, for t = 0, 1 the encryptor sets [Êi,t, Ěi,t] = [(Abi,t

i,t )ri,t , (Aai,t

i,t )s−ri,t ]
(well-formed).

Ciphertext components for γHN are generated in the same way as γHID. The
encryptor generates ciphertext components for γPN as follows. For each i ∈ γPN ,
compute Ei = T s

i . Finally, the ciphertext is output as follows.

E = (γPN , Ẽ = MY s, E0 = gs, {Ei}i∈γP N
, {{Êi,t, Ěi,t}t=0,1}i∈γHN∪γHID

)

KeyGen(T , MK, PK) The access structure T is defined as mentioned before:
the root node of the tree is an AND gate, all the hidden attributes appear on the
second layer of the tree, and all the public normal attributes are in the subtree
TR. The trusted authority generates the user secret key as follows.

(1) For the subtree TR, choose a polynomial qx for each node x, including all
the leaf nodes, of the tree in the top-down manner as follows. Starting from the
root node r of TR (with the threshold value kr), choose a random number u from
Zp and set qr(0) = u. Then randomly choose kr − 1 other points to define the
(kr − 1)-degree polynomial qr completely. For any other node x, qx is generated
in the same way and qx(0) = qxpa

(idx(x)).
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After having defined the polynomials, the following secret key component is
generated for each leaf node x in TR:

Dx = g
qx(0)

ti

where i denotes the attribute in UPN associated with node x. We use LTR to
represent the set of all the leaf nodes in TR.

(2) Secret key components for attributes from UHID are generated as follows.
Assume the user is assigned a unique identity ID = XnXn−1 · · ·X1, where
Xi = 0|1 for each 1 ≤ i ≤ n. Then for each attribute i in UHID, the authority
chooses random numbers vi and λi from Zp and outputs a triple [D̃i, D̂i, Ďi] as
follows.

D̃i = gvi(Ai,Xi
)ai,Xi

bi,Xi
λi , D̂i = gai,Xi

λi , Ďi = gbi,Xi
λi .

(3) Secret key components for attributes from UHN are generated in the same
way as UHID.

(4) The authority sets v =
∑

i∈UH
vi and generates a secret key component

D0 = gy−u−v.
Finally, the authority outputs the following as the user secret key (SK):

SK = (D0, {Di}i∈LT R
, {D̃i, D̂i, Ďi}i∈UH

)

Dec(E, SK, PK) The receiver decrypts the ciphertext E by applying his secret
key components to the ciphertext as follows.

(1) Apply secret key components for public normal attributes to the cipher-
text. For each leaf node x of TR, assuming x is associated with attribute i ∈ UPN ,
calculate the following (the result is denoted by Fx):

Fx =
{

e(Di, Ei) = e(g, g)sqx(0), if x ∈ γPN ;
⊥, otherwise.

(1)

Then execute recursively for each non-leaf node z of TR in the bottom-up
manner as follows. For each child node x of z, if Fx 6=⊥ add x into a set Sz

until Sz has kz elements, where the set Sz is initialized to empty. If not able to
construct such a kz-sized set Sz, let Fz =⊥. Otherwise, calculate Fz as follows.

Fz =
∏

x∈Sz

F
∆x,Sz (0)
x

=
∏

x∈Sz

(e(g, g)sqx(0))∆x,Sz (0)

= e(g, g)sqz(0)

where derivation of the last two steps holds because qx(0) = qz(idx(x)) and
qz(0) =

∑
x∈Sz

(qz(idx(x)) ·∆x,Sz
(0)).

This recursion ends up with outputting Fr = e(g, g)sqr(0) if γPN |= TR. Since
qr(0) = u, we have Fr = e(g, g)su.
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(2) Apply secret key components for hidden attributes to the ciphertext. If
the set of hidden attributes in the access structure contains all the attributes in
γHN and γHID, output the result FH as follows.

FH =
∏

i∈UH

e(E0, D̃i)
e(Êi, D̂i)e(Ěi, Ďi)

= e(g, g)sv

The message can be output as follows

M =
Ẽ

e(E0, D0)FrFH

=
Me(g, g)ys

e(gs, gy−u−v)e(g, g)sue(g, g)sv

TraceD(ε) This algorithm takes as input ε and a ε-useful pirate device D.
We first show how to trace D which just holds one decryption key as follows.
The tracing algorithm repeats the following steps 1

ε times for each identity IDi

in the system identity list:

– Step 1. Choose a set of attributes γ = γPN ∪ γHN ∪ γHID such that γ
satisfies the access structure of IDi and γHID just contains the attributes
corresponding to bits of IDi.

– Step 2. Choose a random message M from the finite message space. Let
E ← Enc(M, γ, PK).

– Step 3. Test if D correctly decrypts E. If it does, stop and return with IDi.
Otherwise continue.

If at the end of these repetitions the algorithm does not return with any
identity, return FAIL and stop the experiment. Tracing D which holds more
than one decryption keys is similar with the exception that, in step 3 add IDi

into the guilty user set S instead of returning immediately, where S is initialized
as empty. If at the end of these repetitions S is empty, return FAIL and stop the
experiment.

4.3 Security Proof

We show the security of our scheme as follows.

Lemma 41 If a polynomial-time adversary A can win Game 1 with non-negligible
advantage AdvSS, then we can build a simulator B that is able to solve the DBDH
problem with advantage 1

2AdvSS.

Proof. Security proof of this Lemma is presented in Appendix A.
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Lemma 42 If a polynomial-time adversary A can win our Indistinguishability
Game (see Appendix B) with advantage AdvIND, then we can build a simulator
B that is able to solve the D-Linear problem with advantage 1

2AdvIND.

Proof. Sketch of the security proof for this Lemma is presented in Appendix B.

Lemma 43 If AdvIND and AdvSS are negligible, AdvTR is negligible.

Proof. Given a pirate device D, our tracing algorithm TraceD(ε) will try with
each identity IDi in the system identity list. We denote the attribute set chosen
for testing IDi by γi = γi

PN∪γi
HN∪γi

HID. We define the corresponding attribute
set used for normal (non-tracing) encryption as γ̄i = γi

PN∪γi
HN∪γ̄i

HID. The only
difference between the two sets of attributes is that, in γi

HID all the attributes
corresponding to bits of IDi are set as “interested”, but in γ̄i

HID all the identity-
related attributes are set as “don’t care”. Based on this definition, we define the
following two probabilities:

pi = Pr[D(Enc(M, γi, PK)) = M ]
p = Pr[D(Enc(M, γ̄i, PK)) = M ]

where M is a random message picked from the message space. We distinguish
between the following three types of ε-useful pirate devices that the pirate can
generate, where ε is some fixed constant:

1. Pirate device D for which |p− pi| is non-negligible for some identity IDi.
2. Pirate device D for which |p− pi| is negligible for each identity IDi, but the

tracing algorithm TraceD(ε) outputs an empty set.
3. Pirate device D for which |p− pi| is negligible for each identity IDi, but the

tracing algorithm TraceD(ε) outputs a set which is not contained in the set
of colluding users U .

It is obvious that we can use any pirate producing type 1) devices to win
the Indistinguishability Game with non-negligible advantage. We now show the
rough idea of how we can use any pirate producing type 2) devices to win the
Indistinguishability Game with non-negligible advantage. Assume the set of col-
luding users that the pirate claims to be able to collect is U = {u1, u2, · · · , ut}.
Now denote the challenger of the Indistinguishability Game is C, the simulator
we want to build is B, and the pirate is A. Then the simulator we build executes
as follows.

– Init. B presents C two attribute sets γ0 = γi and γ1 = γ̄i to be challenged
upon, where γi is the attribute set that can be used to test user ui ∈ U by
our tracing algorithm.

– Setup. C generates public parameters and give them to B.
– Phase 1. B asks C to give him secret keys for all the users in U . Then B

gives all these keys to A to answer key queries in the key generation phase
of Game 2.
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– Challenge. B submits two equal length messages M0 and M1 to C. C flips a
coin and encrypts Mb with γb. Then the ciphertext is given to B.

– Phase 2. B submits more secret key queries.
– Guess. B asks A to decrypt the ciphertext given by C. If the message returned

by A is one of M1 and M0, B answers b0 = 1. Otherwise, B answers b0 = 0.

The advantage for our simulator B to win the Indistinguishability Game is 1
ε

times the advantage that the type 2) devices, which are generated by A, output
the empty set.

It is easy to show that type 3) devices can be used to win Game 1 (the
semantic security game). The intuition is that, type 3) devices can correctly
decrypt a message which is encrypted for users whose secret keys are not known
to type 3) devices with non-negligible advantage.

4.4 Efficiency Analysis

In AFKP-ABE, both the ciphertext size and the secret key size are linear to n,
where n is the number of bits in the identity space. As the maximum number
of users it can represent is N = 2n, the complexity can be written as O(logN),
where N is the total number of users. To trace a pirate, AFKP-ABE needs to
try with every user’s identity in the system list. When the number of users in a
system is large, the tracing algorithm would be inefficient. To resolve this issue,
we can first test with some normal ciphertexts using combinations of normal
attributes. For example, we can use different combinations of attributes like
location, age, etc. In practice, this process will hopefully rule out a significant
portion of users. Our tracing algorithm can just test over the remaining set of
users.

5 Application Scenarios of Our Scheme

In general, our proposed scheme is applicable to systems where 1) data can be
categorized by their attributes and a user access privilege should be defined in
the way that just allows the user to access certain intended subset of resources; 2)
abuse of the access privilege should be prohibited. As we mentioned before, one
important application scenario of our abuse free KP-ABE scheme is the area of
copyright-sensitive targeted broadcast, especially commercial media broadcast
systems. In these systems, contents usually have their commercial values and
abuse of the access privilege usually cause legal concerns. Another important ap-
plication scenario of our proposed scheme would be audit log systems. As these
systems would be used widely used in applications such as network management,
audit logs may contain sensitive information and disclose of them to unautho-
rized parties would cause security concerns or privacy violations. Recently, we
also witnessed application of KP-ABE in wireless networks environment. In [18],
Yu et al. proposed a fine-grained data access control scheme for wireless sensor
networks for mission-critical applications. In this paper, data access control is
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well resolved by combining KP-ABE and some other cryptographic primitives.
However, the issue of access privilege abuse is not addressed since it is yet an-
other serious issue if we consider the application of mission-critical scenarios such
as battle fields. We believe our AFKP-ABE can serve to enhance their proposed
scheme as the complexity of AFKP-ABE in terms of ciphertext size and secret
key size is just O(logN), where N is the total number of users.

6 Conclusion and Future Work

In this paper, we focus on the key abuse attacks in KP-ABE enabled broadcast
systems and proposed an abuse free KP-ABE (AFKP-ABE) scheme. To defend
against the key abuse attacks, we introduce hidden attributes in the system such
that the tracing algorithm can use them to identify any single pirate or partial
colluding users. Our design enables black boxing tracing and does not require
the well-formness of the user secret key. The complexity of AFKP-ABE in terms
of ciphertext size and user secret keys size is just O(logN), where N is the total
number of users. Our scheme is provably secure under DBDH assumption and
D-Linear assumption. As a future work, we may focus on designing a tracing
system against arbitrary colluders.
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Appendix

A. Security Proof of Lemma 41

Proof. In the DBDH game, the challenger chooses random numbers a, b, c from
Zp and flips a fair coin µ. If µ = 0, set z = abc; If µ = 1, set z as a random
value in Zp. B is given (A,B, C, Z)=(ga, gb, gc, e(g, g)z) and asked to output µ.
To answer this challenge, B then simulates Game 1 as follows.

Init B runs A. A chooses the set of attributes γ = γPN ∪ γHN ∪ γHID

it wants to be challenged upon. We denote the identity represented by γHID

by XnXn−1 · · ·X0, where Xi = 0, 1 or ∗, for 1 ≤ i ≤ n.We denote the set
γHN ∪ γHID by γH .

Setup B creates public parameters as follows. First, set Y = e(A,B) =
e(g, g)ab. Then, for each attribute i ∈ UPN , generate Ti by the following steps:

– choose a random number ti ∈ Zp.
– if i ∈ γPN , sets Ti = gti ; otherwise, set Ti = gbti = Bti .

For each attribute i ∈ UHID, choose two random numbers hi,0 and hi,1 from
Zp. Then proceed as follows.

– if Xi = ∗, Ai,t = ghi,t , t = 0, 1; otherwise, Ai,Xi
= ghi,Xi and Ai,1−Xi

=
gbhi,1−Xi = Bhi,1−Xi .

– choose random numbers {ai,t, bi,t}t=0,1 from Zp.
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Attributes in UHN are processed in the same way as UHID. Finally, output
PK as in the real scheme.

Phase I A submits a query for secret key of access structure T , where γ 2 T .
Note that T has the structure of 1. B differentiates the following two cases and
answers the query accordingly:

Case 1: In this case, γPN 2 TR. B generates secret key components for hidden
attributes as in the real scheme. To generate secret key components for attributes
attached to TR, B defines a recursive function PolyDef(x) and runs it over the
root node r of TR. For each node x in TR, use kx and px to represent the node’s
threshold value and the number of its satisfied children respectively (the satisfied
child is a child node of x that returns true over γPN ).
PolyDef(x): It is defined by the following steps:

– Define qx as follows.

• If x is not r, set qx(0) = qxpa(idx(x)); otherwise, set qx(0) = ab + br′, r′

is randomly chosen from Zp.
• Select d (= kx − 1) children of x. For each selected child i, choose a

random number r′i from Zp and let qx(idx(i)) = br′i. This completes the
construction of polynomial qx. Note that, if px ≤ d, the set of selected
children should include all the px satisfied ones; otherwise, all the d
selected children should be satisfied ones. We denote the set of these
selected children of x plus x itself by Xs.

– For each remaining child j (not selected by the above step), calculate qx(j) =∑
i∈Xs

qx(idx(i))∆i,Sx
(j).

– For each child i of x, run PolyDef(i).

When PolyDef(r) terminates, B completes the construction of the polyno-
mials for all the nodes in TR. In particular, pr(0) = ab + br′. Note that, in our
construction of polynomials, for each node x, the polynomial values have the
following properties:

(1) If qx(0) has the form of Rxb, then for each of its children i, qi(0) (=
qx(idx(i))) has the form of Rib.

(2) If qx(0) has the form of Cxab + Rxb, then for each of its children i, (i) if
i ∈ Xs (selected), qi(0) has the form of Rib; otherwise, (ii) qi(0) has the form of
Ciab + Rib.

(3) In (1) and (2), Cx, Rx, Ci, and Ri are functions of Lagrange coefficients
and random numbers (i.e., r′j ’s), and independent of a and b.

From these properties, we may categorize a leaf nodes x into one of the
following three types:

(1) Type A: x ∈ γPN , i.e., x is a satisfied node. qx(0) has the form of Rxb.
(2) Type B: x /∈ γPN but one of x’s ancestors (including x itself) is selected

by its parent. qx(0) has the form of Rxb.
(3) Type C: all the other leaf nodes, qx(0) has the form of Cxab + Rxb.
Therefore, the secret key component corresponding to each leaf node x of TR

is given as follows
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Dx =





g
Rxb
tx = B

Rx
tx , x in Type A.

g
Rxb
txb = g

Rx
tx , x in Type B.

g
Cxab+Rxb

txb = A
Cx
tx g

Rx
tx , x in Type C.

(2)

The secret key component D0 of SK is output as follows

gy−u−v = gab−qr(0)−v = g−br′g−v = B−r′g−v

where v is generated when constructing secret key components for hidden at-
tributes. All the other components are generated as in the real scheme.

Case 2: In this case, γPN |= TR, but the hidden attributes of T do not match
with γH . Let a hidden attribute j that is not intended by γHID be the witness.
B generates secret key components corresponding to TR as in the real scheme.
B generates secret key components for hidden attributes as follows.

– For hidden attributes 1 ≤ i ≤ m + n, pick v′i randomly from Zp. Set vj =
ab+v′j and vi = v′i for every i 6= j. Finally set v =

∑m+n
i=1 vi = ab+

∑m+n
i=1 v′i.

– compute the secret key components [D̃j , D̂j , Ďj ] of attribute j as follows.

D̃j = gvj (Aj,Xj
)aj,Xj

bj,Xj
λj

= gab+v′j (Aj,Xj )
aj,Xj

bj,Xj
λj

= gab+v′j (gbhj,Xj )aj,Xj
bj,Xj

λj

= gv′j (gbhj,Xj )aj,Xj
bj,Xj

λ′j

where λ′j is chosen by B and λj = a
hj,Xj

aj,Xj
bj,Xj

+ λ′j . B calculates [D̂j , Ďj ]

and [D̃i, D̂i, Ďi] for i 6= j as in the real scheme.
– Output D0 of SK as: D0 = gab−u−v = g−u−Pm+n

i=1 v′i , where u is generated
when constructing secret key components for TR.

All the other components are generated as in the real scheme.
From the above description, we can see that B is able to construct a secret

key of T in both cases. Furthermore, the distribution of the secret key of T is
the same as that in the original scheme. The adversary A can repeat this step
for polynomial times.

Challenge The adversaryA submits two equal length challenge messages m0

and m1 to B. B flips a fair binary coin v and picks out mv. The ciphertext of mv is
output as: E = (γPN , Ẽ = mvZ,E0 = C, {Ei = Cti}i∈γP N

, {{Êi,t, Ěi,t}t=0,1}i∈γH
).

Note that B can construct {{Êi,t, Ěi,t}t=0,1}i∈γH
because if the occurrence t of

attribute i is in γH , Ai,t does not contain the unknown value b, and if the oc-
currence t of i is not in γH , {Êi,t, Ěi,t} are just chosen at random. If µ = 0 it
is easy to show that the ciphertext is a valid random encryption of message mv.
Otherwise, if µ = 1, then Z = e(g, g)z and Ẽ = mve(g, g)z. Since z is random,
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Ẽ is just a random element of G1 from the adversary’s view and contains no
information about mv.

Phase II The simulator acts exactly as it did in Phase I.
Guess The adversary A submits a guess v′ of v. If v′ = v, B outputs µ′ = 0,

indicating that the given DBDH-tuple is a valid one. Otherwise it outputs µ′ = 1,
indicating that the given DBDH-tuple is just a random quadruple. In the case
of µ = 1, the ciphertext E contains no information about mv. Therefore, v′ is
just a random guess of v, and thus µ′ is just a random guess of µ. Thus, we have
Pr[µ′ = µ|µ = 1] = 1

2 . If µ = 0, the ciphertext E is a valid encryption of mv.
Since by definition A has the advantage of AdvSS to output a correct guess, i.e.,
v′ = v, B outputs µ′ = 0 with the probability of 1

2 + AdvSS , i.e., Pr[µ′ = µ|µ =
0] = 1

2 + AdvSS . Therefore, the overall advantage of B in the DBDH game is
1
2Pr[µ′ = µ|µ = 0]+ 1

2Pr[µ′ = µ|µ = 1]− 1
2 = 1

2 ( 1
2 +AdvSS)+ 1

2
1
2− 1

2 = 1
2AdvSS .

6.1 Indistinguishability Game

This game captures the idea that ciphetexts generated by tracing operations
are indistinguishable from those generated by normal (non-tracing) operations.
In AFKP-ABE, these two types of ciphertexts are generated by running our
encryption algorithm over different sets of attributes. To differentiate these two
types of ciphertexts is actually equal to telling which set of attributes are used
in a given data encryption operation. As we discussed, the attribute set γ used
for an encryption operation is composed of three disjunctive subsets, i.e., γ =
γPN∪γHN∪γHID. In a tracing operation, we set γHID to represent the suspicious
identity, while in a normal (non-tracing) operation we set γHID to represent the
identity of “∗ ∗ · · · ∗”, i.e., each bit if ID is set as “don’t care”. We define the
Indistinguishability Game by the following steps:

Init The adversary A selects two sets of attributes to be challenged upon:
γ0 = γPN ∪ γHN ∪ γHID and γ1 = γPN ∪ γHN ∪ γ∗HID, where γHID represents a
certain identity IDi, and γ∗HID denotes the identity of “∗ ∗ · · · ∗”, i.e., each bit if
ID is set as “don’t care”. A submits these two sets of attributes to the challenger
C.

Setup The challenger B runs the setup algorithm of AFKP-ABE and give
public parameters PK to A.

Phase 1 A asks for the secret key of access structure T . If (γ0 |= T ∧
γ1 |= T ) or (γ0 2 T ∧ γ1 2 T ), the challenger B answers the query and gives
A the corresponding secret key SKT . The adversary A can repeat this step
polynomially many times.

Challenge A submits two equal length messages M0 and M1 to B. If A a
secret key SKT for which (γ0 |= T ∧ γ1 |= T ), it is required that M0 = M1. B
flips a binary fair coin b and encrypts Mb using attribute set γb. The ciphertext
is given to A.

Phase 2 Repeat Phase 1. If M0 6= M1, A can not submit secret key query
for access structure T for which (γ0 |= T ∧ γ1 |= T ).

Guess The adversary A outputs a guess b′ of b.
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Proof. We use a series of games to prove the security of this game as [6]. Game
Ind1 is defined in the same way as the original game except that in γ0, γHID

represents the identity of “∗ ∗ · · · ∗ X1”, i.e., the upper n − 1 bits are set as
“don’t care” but keep the first bit the same as in the original game. Game Ind2

is defined in the same way that γHID represents the identity of “∗ ∗ · · · ∗X2X1”,
i.e., the upper n−2 bits are set as “don’t care” but keep the first bit the same as
in the original game, so on and so forth. Our original game is thus Game Indn. To
prove the security of our scheme, it is enough to prove that it is indistinguishable
between Game Ind i and Game Ind i+1. We can use the similar technique used
by [6] to prove this.
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