
Breaking and Building of Group Inside Signature

S. Sree Vivek!, S. Sharmila Deva Selvi, S.Gopinath, C. Pandu Rangan!

Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras,
Chennai, India-600036

Abstract. Group Inside Signature (GIS) is a signature scheme that allows the signer to designate his signature
to be verified by a group of people, so that members other than the designated group cannot verify the signature
generated by him. In Broadcast Group Oriented Signature (BGOS), an user from one group can designate his
signature to be verified by members of other group. The GIS and BGOS schemes [5], [6] and [7] which we
consider are certificateless schemes. An Adaptable Designated Group Signature (ADGS), is one in which an
user can designate his signature to be verified by a selected set of members who are from different groups.
The ADGS scheme [8] which we consider here is an identity based scheme. In this paper, we present the
cryptanalysis of four schemes that appeared in [5], [6], [7] and [8]. We show that, both GIS schemes [5], [6]
and BGOS scheme [7] suffers from Type-I and Type-II vulnerabilities and ADGS [8] is universally forgeable.
We also present a new scheme for ADGS (N-ADGS) and proved its security in the random oracle model. The
existing model for ADGS did not consider unlinkability which is one of the key properties required for ADGS.
We provide security model for unlinkability and also prove our scheme is unlinkable.

Keywords: Group Inside Signature, Broadcast Group Oriented Signature, Adaptable Designated Group Signature,
Identity Based, Certificateless, Cryptanalysis.

1 Introduction

In 1984, Shamir [10] introduced the concept of identity based cryptography and proposed the first identity based
signature scheme. The first practical identity based encryption scheme [2] was realized by Boneh-Franklin in 2001
using Weil pairing. Since then, pairing was used in designing various cryptosystems. The idea of identity based
cryptography allows any arbitrary string that uniquely identifies the user to be used as his public key. Identity
based cryptography serves as an efficient alternative to Public Key Infrastructure (PKI) based systems.

Certificateless encryption schemes and signature schemes were first defined and proposed by Al-Riyami and
Paterson [1] in 2003. Definitions for certificateless encryption and signature schemes in [1] consists of seven algo-
rithms. The simplified definition for certificateless signature schemes was proposed by Hu, Wong, Zhang and Deng
in [3]. Certificateless cryptography is intended to solve the key escrow problem which is inherent in identity based
cryptography, while at the same time, eliminates the use of certificates which were used in the conventional PKI.
In a certificateless cryptosystem, the Key Generation Center (KGC) issues partial private key to the users whose
identity is assumed to be unique in the system. The user also independently generates additional public/private
key pair. Cryptographic operations such as signing can then be performed successfully only when both the user
partial private key and the user generated private key are used. Knowing only one of them is not sufficient to carry
out any cryptographic operations such as signing a message.

In general, digital signatures are publicly verifiable. Jackbson et.al (1996) [4] proposed a concept called Desig-
nated Verifier Signatures (DVS). In DVS, only a designated person can verify the signature signed by the signer.
DVS achieves this property by providing ability to the designated verifier to simulate the signers signature. In the
same year Jackbson et.al proposed a stronger notion called strong DVS (SDVS), in which the third party cannot
even verify the validity of the signature since it involves the private key of the designated verifier. Even if the
designated verifier gives his private key to a third party, the third party can only check the validity but cannot
authenticate the signature.

Extending a single party verification scheme to a designated group verification scheme is a challenging problem.
In practice, there may be different group models as discussed below.

! Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Computation
sponsored by Department of Information Technology, Government of India

2 Vivek, Sharmila, Gopinath and Pandu Rangan

First, in networks like Local Area Networks, all group members reside in a single network and no member of
the group may hang outside network. Certificateless GIS schemes [5] and [6] provide solutions for designating a
signature to be verified inside such a group.

Secondly, in distributed networks, the users of different companies or institutions naturally come under different
work groups. If a member of one group wants to send a signed document to members of another group, BGOS [7]
can be used. Moreover the signer wants to prevent the members outside the designated group from verifying the
signature. The scheme in [7] focuses on this problem.

Finally, in distributed networks, a signer may want several members to verify his signature, no matter whether
those members are in same or different groups. The signer wants to prevent the members outside the defined group
from verifying the signature. This model can be visualized as a more generalized version of the previous two models.
ADGS scheme in [8] focuses on this problem. In fact even if a designated verifier vi belongs to a group say G, while
vi can verify the signature of the sender, other members of G cannot verify the signature.

1.1 Our Contribution

In this paper, we show that GIS in [5],[6] and BGOS in [7] are not secure against both Type-I and Type-II
adversaries. We also show that the basic ADGS scheme [8] is universally forgeable. We present an extended security
model for ADGS by adding the notion of unlinkability. This is done for the first time and also we propose a new
scheme(New-ADGS) and prove its security formally in random oracle model.

2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2 be a multiplicative cyclic group of
the same order q. A bilinear pairing is a map ê : G1 × G1 → G2 with the following properties.

– Bilinearity. For all P, Q, R ∈R G1 and a, b ∈R Z∗
q

• ê(P + Q, R) = ê(P, R)ê(Q, R)
• ê(P, Q + R) = ê(P, Q)ê(P, R)
• ê(aP, bQ) = ê(P, Q)ab

– Non-Degeneracy. There exist P, Q ∈ G1 such that ê(P, Q) $= IG2 , where IG2 is the identity element of G2.
– Computability. There exists an efficient algorithm to compute ê(P, Q) for all P, Q ∈ G1.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear maps that are relevant to the protocols
we discuss.

Bilinear Diffie-Hellman Problem (BDHP) Given (P, aP, bP, cP) ∈ G4
1 for unknown a, b, c ∈R Z∗

q , the BDH
problem in G1 is to compute ê(P, P)abc.

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the BDH problem in G1

is defined as
AdvBDH

A = Pr
[
A(P, aP, bP, cP) = ê(P, P)abc | a, b, c ∈ Z∗

q

]

The BDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvBDH
A is

negligibly small.

Decisional Bilinear Diffie-Hellman Problem (DBDHP) Given (P, aP, bP, cP, α) ∈ G4
1 × G2 for unknown

a, b, c ∈ Z∗
q , the DBDH problem in G1 is to decide if α = ê(P, P)abc.

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the DBDH problem
in G1 is defined as AdvDBDH

A = |Pr
[
A(P, aP, bP, cP, ê(P, P)abc) = 1

]
− Pr [A(P, aP, bP, cP, α) = 1] | The DBDH

Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvDBDH
A is negligibly small.

Cryptanalysis of Group Inside Signatures 3

Computation Diffie-Hellman Problem (CDHP) Given (P, aP, bP) ∈ G3
1 for unknown a, b ∈ Z∗

q , the CDH
problem in G1 is to compute abP .

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the CDH problem in G1

is defined as
AdvCDH

A = Pr
[
A(P, aP, bP) = abP | a, b ∈ Z∗

q

]

The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDH
A is

negligibly small.

2.3 Forgeries in Digital Signature schemes.

– A total break results in the recovery of the signers secret key.
– An universal forgery attack results in the ability to forge signatures for any message on behalf of user

without knowing the private key of the user.
– A selective forgery attack results in a signature on a message of the adversary choice.
– An existential forgery merely results in some valid message/signature pair not already known to the adversary.

2.4 Adversarial models for GIS[5] and BGOS[7] Schemes.

Both GIS [5] and BGOS [7] are in the certificateless setting, therefore we consider both Type-I and Type-II
adversaries. We explain the distinguishing abilities of these adversaries below.
Type I Adversary: This type of adversary named as AI does not have access to the master private key, but AI

has the ability to replace the public key of any entity with a value of its choice. The objective behind the definition
of this adversary is to capture the attacks by entities other than the KGC.
Type II Adversary: This type of adversary named as AII has access to the master private key. However, AII

cannot perform public key replacement. This adversary is defined to capture the attacks by dishonest KGC.

Now, we present the security model for existential unforgeability of a certificateless signature (CLS) scheme
under chosen message attack for both Type-I and Type-II attacks.

Type-I Adversary(AI).

– Initialization: The Challenger C runs the Setup and generates a master private key masterkey and the public
parameters params. C keeps the masterkey secret and gives params to the adversary. Now the adversary
chooses a target identity ID∗ and gives it to the challenger C. AI is supposed to generate a valid forgery for
the target identity ID∗ on some message and it is not allowed to query partial private key for target identity
ID∗. Note that AI does not know the masterkey.

– Training -Phase: AI interacts with C and is allowed to perform Partial-Private-Key queries, Public-
Key-Replacement queries and Sign queries queries. These queries are answered by the corresponding
oracles as explained below.
• Partial-Private-Key Oracle: AI can request the PartialPrivateKey of the user whose identity is ID.
C returns the PartialPrivateKey SID to AI as response.

• Public-Key-Replacement Oracle: For any user whose identity is ID (including user with identity ID∗),
AI can choose a new privatevalue and compute the new public key Q

′
. AI can also set Q

′
as the new

public key of the user by submitting (Q
′
, ID) to C. C will replace the existing public key Q with Q

′
and

after this replacement , only Q
′
is used as public key of ID.

• Sign Oracle: AI can ask the signature on a message m with ID as signer. C send to AI a signature σ for
the message m which is a valid signature under the current public key of ID.

– Forgery: Finally, AI outputs a message/signature pair (m∗, σ∗) of the user whose identity is ID∗. This mes-
sage/signature pair must satisfy the following requirements:
• This signature should be valid under the current public key Q

′
of ID∗.

• AI should not have queried the Partial-Private-Key oracle for this user whose identity is ID∗.
• σ∗ should not be the output of any previous queries to the Sign oracle.

Type-II Adversary(AII).

– Initialization: The challenger C runs the Setup and generates a master private key masterkey and the public
parameters params. C gives the masterkey, params to AII . AII chooses an user identity ID∗ and gives it to
C. AII is supposed to generate a valid forgery for the identity ID∗ on some message. Note that AII has access
to masterkey but cannot replace the public key of the users.

4 Vivek, Sharmila, Gopinath and Pandu Rangan

– Phase-I: AII interacts with C and can access only the Sign Oracle alone. Here AII is prohibited to replace
public key and AII cannot request the PartialPrivateKey.
• Sign Oracle: AII can request a signature on a message m with ID as signer. C sends to AII the signature

σ for the message m.
– Forgery: Finally, AII outputs a target message/signature pair (m∗, σ∗) of the user whose identity is ID∗. This

message/signature pair must satisfy the following requirements:
• This signature σ∗ should pass the verification algorithm.
• σ∗ should not be the output of any previous queries to Sign oracle.

3 Review and Cryptanalysis of Certificateless Group Inside Signature [5].

In this section we review GIS scheme and show that the scheme does not resist both Type-I and Type-II attacks.

3.1 Review of GIS scheme [5].

Let A= {a1, a2, ..., an} be a group of n users. The set {ID1, ID2...IDn} is the corresponding identities of users
{a1, a2, ..., an}. Let ai ∈ A is the signer who wants to sign a message m, verifiable only by members of group A.

– Initialize:
Let G1 and G2 be two groups of same prime order q. Let P be a generator of additive group G1 and G2

is a multiplicative group. Let H0 and H1 be cryptographic hash functions defined as H0 :{0, 1}∗ → G1 and
H1:{0, 1}∗ × G1 → Z∗

q .
– Key Generation:

To generate partial private keys for its members, the KGC performs the following:
• Chooses k ∈R Z∗

q for the group A and
• Computes Sj = kH0(IDj), 1≤ j ≤ n.
• Sends Sj to aj in a secure way.

To generate public key Pj = 〈Pj1, Pj2〉 and private key Dj , user aj , where 1≤ j ≤ n, does the following:
• Chooses xj ∈R Z∗

q and computes Dj = xjSj .
• Computes Pj1 = xjH0(IDj), Pj2 = xjP .

The user aj takes Dj as its private key and Pj = {Pj1, Pj2} as its public key, 1≤ j ≤ n.
– GIS Generation.

In order to sign a message m, that is verifiable by members of A, ai performs the following:
• Chooses r ∈R Z∗

q and computes U = rPi1.
• Computes h = H1(m, U) and computes V = (r + h)Di.
• Broadcasts the signature σ as 〈m, U, V 〉 to the group A.

– GIS Verification.
To verify the signature σ is sent by user ai, whose identity is IDi and public key is Pi = 〈Pi1, Pi2〉, the user aj

∈ A performs the following checks:

• Checks whether e(Pi1, P) ?= e(Pi2, H0(IDi)). If this does not hold, return error.

• Checks the validity of the signature as e(V, Pj1)
?= e(U, Dj)e(hPi1, Dj), where h = H1(m, U). If both

equations hold good then the user aj accepts the signature σ on message m as valid.

3.2 Cryptanalysis of Certificateless Group Inside Signature (GIS) [5].

GIS scheme given in [5] allows the signer to designate his signature to be verified by a group of people who belong to
the signer’s group. Members other than the designated group should not be able to verify the signature generated
by him. The scheme in [5] is not secure against Type-I and Type-II attacks.

Cryptanalysis of Group Inside Signatures 5

Type-I Attack. On seeing a valid signature by an user on some message, anyone can commit a forgery on
any message. During the unforgeability game between the challenger C and adversary AI , C gives AI the public
parameters params and AI gives to C a target identity ID∗. AI is supposed to generate a valid forgery for the
target identity ID∗ on some message and AI is not allowed to query partial private key for the target identity
ID∗. AI interacts with C and access all the oracles with the restrictions given in the model. AI can query signature
on any message and user identity pair 〈m, ID〉. AI can replace the public keys of suppose any user including user
with identity ID∗. During the training-phase AI receives a valid signature σ = 〈m, U, V 〉 on a message m with
target identity ID∗ using the Sign oracle. Now we show how AI can generate a valid signature σ∗ on an arbitrary
message m∗ for the target identity ID∗, such that σ∗ is not the output of previous queries to Sign oracle. This can
be shown by the following computation done by AI

– Computes U∗ = U + hPi1 - H0(ID∗), where h= H1(m, U) computed from σ.
– Computes h∗ = H1(m∗, U∗)
– Replaces public keys of ID∗ as P ∗

i1 = 1
h∗ H0(ID∗) and P ∗

i2 = 1
h∗ P .

– V ∗ = V .

Now we claim that σ∗ = 〈m∗, U∗, V ∗〉 is a valid signature on the message m∗ by the user with identity ID∗

(with respect to its newly replaced public key). C can check the validity of the forged signature σ∗ as follows.

Correctness of public keys. It is clear that 〈P ∗
i1, P ∗

i2〉 satisfies the verification
e(P ∗

i1, P) ?= e(P ∗
i2, H0(IDi)).

Correctness of forged signature. Note that C will use the current public key of ID∗ that was set by AI .
– C has to check whether e(V ∗, Pj1)

?= e(U∗, Dj1) e(h∗P ∗
i1, Dj1). In fact

R.H.S = e(U∗, Dj1) e(h∗P ∗
i1, Dj1)

= e(U + hPi1 − H0(ID∗), Dj1) e(h∗P ∗
i1, Dj1)

= e(U + hPi1 − H0(ID∗), Dj1) e(H0(ID∗), Dj1)
= e(U, Dj1) e(hPi1, Dj1).
= e(V, Pj1).
= e(V ∗, Pj1)
= L.H.S

Thus the forged signature σ∗ passes the verification successfully.

Type-II Attack. Type-II attack is also possible on the same scheme. During the unforgeability game between the
challenger C and adversary AII , AII can interacts with C and access the Sign oracle with the restrictions given in
the model. AII can ask signature on any message and identity pair 〈m, ID〉. AII has access to the master private
key. So it can compute the private key of any user from its public keys 〈Pi1Pi2〉 as Di = kPi1. Since the public key
Pi1=xiH0(IDi), so AII can generate signature on behalf of any user and AII can verify the signature of any user.
Here, we can visualize AII as the KGC because it knows the master private key in the scheme.

4 Review and Cryptanalysis of Broadcast Group Oriented Signatures [7].

In this section we review BGOS scheme and present the cryptanalysis of the same.

4.1 Review of Broadcast Group Oriented Signatures [7].

Let A= {a1, a2, ..., an} and B = {b1, b2, ..., bn} be two groups. The set {IDa1, IDa2...IDan} is the corresponding iden-
tities of users {a1, a2, ..., an} and the set {IDb1, IDb2...IDbn} is the corresponding identities of users {b1, b2, ..., bn}.
Let IDA and IDB be the identities of group A and group B.

– Initialize:
Let G1 and G2 be two groups of same prime order q. Let P be a generator of additive group G1 and G2

is a multiplicative group. Let H0 and H1 be cryptographic hash functions defined as H0 :{0, 1}∗ → G1 and
H1:{0, 1}∗ × G1 → Z∗

q .

6 Vivek, Sharmila, Gopinath and Pandu Rangan

– Key Generation:
The KGC chooses t, s ∈R Z∗

q and computes public key pair (PA, QA) for group A, where PA = {P (1)
A , P (2)

A } and
QA = {Q(1)

A , Q(2)
A } are defined as follows.

• {P (1)
A , P (2)

A } = {tsP, tP}.
• {Q(1)

A , Q(2)
A } = {tsH0(IDA), tH0(IDA)}.

• Computes partial private keys for each member of group A as sH0(IDai) and tH0(IDai) and then sends
them to the corresponding member in a secure way.

Each user ai ∈ A chooses xi ∈R Z∗
q and computes private key Dai = {D(1)

ai , D(2)
ai } as {xisH0(IDai), xitH0(IDai)}

and sets the public key as Pai = xiH0(IDai) and Qai = xiP .

Similarly, KGC chooses s
′ ∈R Z∗

q uniformly at random and uses the same t used during the key generation for
group A, generates public key pair (PB , QB) for group B, where PB ={P (1)

B , P (2)
B } and QB = {Q(1)

B , Q(2)
B } are

defined as follows.

• {P (1)
B , P (2)

B } = {ts′
P, tP}.

• {Q(1)
B , Q(2)

B } = {ts′
H0(IDB), tH0(IDB)}.

• Computes partial private keys as s
′
H0(IDbi) and tH0(IDbi) and sends them to each member bi of group B

in secure way.

Each user bi ∈ B chooses yi ∈R Z∗
q and computes private key Dbi = {D(1)

bi , D(2)
bi } as {yis

′
H0(IDbi), yitH0(IDbi)}

and sets the public key as Pbi = yiH0(IDbi) and Qbi = yiP .
– Public Key Verification:

Each members of group A can verify the validity of group A’s public keys as follows:

• e(P (1)
A , H0(IDA)) = e(P, Q(1)

A) and
• e(P (2)

A , H0(IDA)) = e(P, Q(2)
A).

Similarly members of group B can verify the validity of group B’s public keys as:

• e(P (1)
B , H0(IDB)) = e(P, Q(1)

B) and
• e(P (2)

B , H0(IDB)) = e(P, Q(2)
B).

Public keys of member of group A can be verified by anyone as:
e(Pai, P) = e(Qai, H0(IDai)).
Public keys of member of group B can be verified by anyone as:
e(Pbi, P) = e(Qbi, H0(IDbi)). With these steps, the public keys can be verified even with out certificate.

– Signature Generation:
Assume that user bi of group B wants to generates a signature of message m so that only members of group
A can verify and no one outside the group A should not be able to verify the signature. User bi generate the
signature as follows:

• Chooses k ∈R Z∗
q and computes U1 = kPbi and U2 = kP (2)

A .

• Computes h = H1(m, U1) and generates V = (h + k)(D(2)
bi + P (1)

A).
• bi broadcasts the signature σ = 〈m, U1, U2, V 〉 to group A.

– Signature Verification:
User ai of group A can verify the signature σ on m by performing the following check.
• Computes h

′
= H1(m, U1).

• Verifies e(V, Pai)
?= e(h

′
Pbi +U1, D

(2)
aj)e(h

′
P (2)

A +U2, D
(1)
aj). If the check holds then accept the signature else

reject.

4.2 Cryptanalysis of Broadcast Group Oriented Signature.

In BGOS, an user from one group can designate its signature to be verifiable by members of other group. In this
section we present the cryptanalysis of BGOS scheme, which too has both Type-I and Type-II attacks.

Cryptanalysis of Group Inside Signatures 7

Type-I Attack on BGOS Scheme [7] On seeing a valid signature by an user on some message, anyone can
commit a forgery on any message. During the unforgeability game between the challenger C and adversary AI , C
gives AI the public parameters params and AI gives to C a target identity ID∗

bi. AI is supposed to generate a
valid forgery for the target identity ID∗

bi on some message and it is not allowed to query partial private key for
target identity ID∗

bi. AI interacts with C and access all the oracles with the restrictions given in the model. AI can
query signature on any message and user identity pair 〈m, ID〉. AI can replace the public keys of suppose any user
including user with identity ID∗

bi. During the training-phase AI receive a valid signature σ = 〈m, U1, U2, V 〉 on a
message m with target identity ID∗

bi using the Sign oracle. Now we show how AI can generate a valid signature
σ∗ on an arbitrary message m∗ for the target identity ID∗

bi, such that σ∗ is not the output of previous queries to
Sign oracle. This can be shown by the following computation done by AI

– Computes U∗
1 = U1 + hPbi-H0(ID∗

bi) and U∗
2 = U2 + hP (2)

A - P .
– Computes h∗ = H1(m∗, U∗

1).
– Replaces ID∗

bi’s public keys as P ∗
bi = 1

h∗ H0(ID∗
bi) and Q∗

bi = 1
h∗ P .

– Replaces group A’s public keys as P (2)∗
A = 1

h∗ P and Q(2)∗
A = 1

h∗ H0(IDA).
– V ∗ = V .

Now we claim that σ∗ = 〈m∗, U∗
1 , U∗

2 , V ∗〉 is a valid signature on the message m∗ by the user with identity ID∗. C
can check the validity of the forged signature σ∗ as follows.

Correctness of Public Keys: The replaced public keys of group A 〈P (2)∗
A , Q(2)∗

A 〉 passes the verification

e(P (2)∗

A , H0(IDA)) ?= e(P, Q(2)∗

A)

The replaced public keys of user bi 〈P ∗
bi,Q

∗
bi〉 also passes the following verification:

e(P ∗
bi, P) ?= e(Q∗

bi, H0(IDbi))

Correctness of forged signature: Note that C will use the current public key of ID∗ that was set by AI . C has to
check e(V ∗, Pai)

?= e(h∗P ∗
bi + U∗

1 , D(2)
aj)e(h∗P (2)∗

A + U∗
2 , D(1)

aj). Now,

R.H.S =e(h∗P ∗
bi + U∗

1 , D(2)
aj)e(h∗P (2)∗

A + U∗
2 , D(1)

aj)
=e(h∗P ∗

bi + U1 + hPbi − H0(ID∗
bi), D

(2)
aj)e(h∗P 2∗

A + U2 + hP (2)
A − P, D(1)

aj)
=e(hPbi + U1, D

(2)
aj)e(hP (2)

A + U2, D
(1)
aj)

=e(V, Pai)
=e(V ∗, Pai)
=L.H.S

Thus the forged signature σ∗ passes the verification successfully.

Type-II Attack on BGOS Scheme [7]. Type-II attack is also possible on BGOS [7] scheme. During the
Unforgeability game between the challenger C and adversary AII , AII can interact with C and can access Sign
oracle with the restrictions given in the model. AII can ask signature on any message and identity pair 〈m, ID〉.
The adversary AII can access the master private key. So, AII can compute the full private key of any user from
group A using the public keys 〈Pai, Qai〉 as 〈{D(1)

ai , D(2)
ai }〉 = 〈sPai, tPai〉 and any user from group B with public

keys 〈Pbi, Qbi〉 as 〈{D(1)
bi , D(2)

bi }〉 = 〈sPbi, tPbi〉 . As a result the KGC can generate signature on behalf of any user
and also verify the signature of any user in any group, which contradicts the statement of the authors.

5 Review of another Group Inside Signature (GIS) [6]

5.1 Review of GIS [6]

Let A= {a1, a2, ..., an} be a group of n users. The set {ID1, ID2...IDn} is the corresponding identities of users
{a1, a2, ..., an}. Let ai ∈ A is the signer who wants to sign a message m, verifiable only by members of group A.

8 Vivek, Sharmila, Gopinath and Pandu Rangan

Initialization: This algorithm is run by KGC. It takes security parameter 1k as input and outputs public pa-
rameters params as output. The public parameters include the following.
– The public key pair Ppub = 〈Ppub1, Ppub2〉 is defined as 〈gk2

, gk3〉.
– Two cryptographic hash functions namely H0 and H1 defined as H0 :{0, 1}∗ → G1 and H1:{0, 1}∗ → G1.

Key Extract: This a two step process. First KGC generates partial private key ppk for each user and transmits
it in a secure way. Second each user after getting partial private key, computes his private key and public keys.
The above process can be defined by the following steps.
– The KGC computes ppk for any user A as DA = g(k+H1(IDA))−1k−1

.
– Any user A computes his private key after receiving ppk by selecting xA ∈R Z∗

q SA as SA = DxA
A .

– Any user A computes and publishes his public keys 〈XA, YA〉 as 〈P x−1
A

pub1, P
x−1

A
pub2〉

Sign: To sign a message m, user A performs following steps.
– Chooses a ∈R Z∗

q , computes r = e(SA, XH1(IDA)
A .YA)a and then computes V = H0(m||r).

So σ = (m, U, V, IDA) is the signature generated by user A on message m.
Verification: Without loss of generality we assume that user B who is the part of the group can performs the

following steps for verifying a signature σ = (m, U, V, IDA) signed by user A.
– Computes r

′
= e(U, XH1(IDA)

A .YA)e(SB , XH1(IDB)
B .YB)−V

– Checks V
?= H0(m||r′

) if it holds output valid else output invalid.

5.2 Cryptanalysis of GIS [6].

Chunbo Ma et al. have proposed another GIS [6] scheme. In this section, we present Type-I forgery on the scheme
[6]. Here adversary AI who considered to be inside the group can sign on behalf of any user on any message. During
the unforgeability game between the challenger C and adversary AI , C gives AI the public parameters params and
a target identity IDA. AI is supposed to generate a valid forgery for the target identity IDA on some message
and it is not allowed to query partial private key for the target identity IDA. AI interacts with C and access all
the oracles with the restrictions given in the model. AI can query signature on any message and user identity pair
〈m, ID〉. AI can replace the public keys of any user including user with identity IDA. During the training-phase
AI receives a valid signature σ = 〈m, U, V 〉 on a message m with target identity IDA as the signer from the Sign
oracle and also obtains the private key of some other user say IDB from the Key Extract oracle. Now AI can
generate a valid signature σ∗ on a message m∗ for the target identity IDA by using the private key of IDB, such
that σ∗ is not the output of previous queries to Sign oracle. This can be shown by the following computation
done by AI .First AI computes the value e(g, gk) even though AI may not know the value e(g, gk) directly, it can
compute e(g, gk) as follows.

e(DB, Ppub2)e(DB, (Ppub1)H1(IDB))= e(g
k2

k+H1(IDB) , g)e(g
kH1(IDB)

k+H1(IDB) , g)

= e(g
k2

k+H1(IDB) g
kH1(IDB)

k+H1(IDB) , g)
= e(g, gk)

Hence, e(g, gk) can be computed by AI and subsequently AI generates the forgery by performing the following:

– Computes r∗ = e(g, gk)a∗
.

– Computes V ∗ = H0(m∗||r∗).
– Computes U∗ = SK(a∗+v∗)

B .
– Replaces IDA’s public keys X∗

A = XA and Y ∗
A = X(−H1(IDA))

A XH1(IDB)
B YB.

– Broadcasts the signature σ∗ (m∗, U∗, V ∗, IDA).

Now challenger C can verify the validity of the signature using the private key of any group member say C as
follows:

Computes r
′
as

e(U∗, (X∗
A)H1(IDA).Y ∗

A)e(SC , XH1(IDC)
C YC)−V ∗

=
=e(U∗, XH1(IDA)

A .X−H1(IDA)
A XH1(IDB)

B YB) e(SC , XH1(IDC)
C .YC)−V ∗

=e(g, g)k(a∗+V ∗)e(g, g)−V ∗k.
=e(g, g)ka∗

=r′

Checks V ∗ ?= H0(m∗||r′
) if it holds σ∗ is a valid forgery other wise not.

Since σ∗ is a valid forgery which we showed now, we can claim that the scheme given in [6] is having Type-I
forgery.

Cryptanalysis of Group Inside Signatures 9

6 Adaptable Designated Group Signature(ADGS)

This section explains generic model of ADGS and the security notion for GDS namely unforgeability and unlinka-
bility. Unforgeability notion is same as that of any digital signature scheme but this paper is the first in literature
to consider the notion of unlinkability, which is a very essential property of ADGS. The definition of unlinkability
will be given shortly.

6.1 Generic model

An Adaptable designated group signature scheme consists of the following four algorithms: Initialize,Key Gen-
eration,Sign and Verify. The algorithms are described as follows.

– Initialize: This algorithm takes security parameter 1k as input. The PKG runs this algorithm to produce
public parameters params available globally and Msk, the master private key. The public parameters include
master public key Ppub , cryptographic hash functions and the group definitions used in the scheme.

– Key Generation/Extract: This algorithm takes master private key s and identity of user IDA as input and
compute the private key DA corresponding to IDA. This is run by the PKG.

– Sign: The inputs to this algorithm are an identity IDA and corresponding private key DA, message m, and a
list of designated group members as verifiers. Sign algorithm outputs σ, the signature on the message m which
can be verified only by the group members.

– Verify:This oracle takes (m, IDS , IDR, DR, σ), where IDS is signers identity and IDR is the designated verifier,
as input and output true if σ is a valid signature on message m with IDR as designated verifier and IDS as
the signer. Members of the designated group alone can verify the signature.

6.2 Security notion for ADGS Scheme

Unforgeability. The most general notion of security for identity based signature scheme is security against
existential forgery under adaptive chosen message and identity attack. We can say an identity based signature
is secure against existential forgery under adaptively chosen message and ID attacks if no polynomial time
adversary A has non-negligible advantage against a challenger C in the following game.

C runs Setup of the scheme and gives simulated params to A. First, A will fix the target identity ID∗ and gives
it to C.

Training Phase. A can access the following oracles with the restriction that A cannot ask the private key of
ID∗.
– Hash Oracles. If the hash oracle is queried for the same input again it retrieves and returns the value

from the list to A else C chooses a random value from the output range of the hash function for the given
input, saves it in the list and returns the value to A.

– Extract Oracle. Given an identity ID $= ID∗, C returns the private key corresponding to that ID.
– Sign Oracle. Given an ID and a message m, C returns the signature σ corresponding to (ID, m).
– Verify Oracle.This oracle takes (IDS , IDR, DR, σ) where IDS is signers identity and IDR is the designated

receiver as input and output true if σ is a valid signature with IDR as designated verifier and IDS as the
signer. Members of the designated group alone can verify the signature.

Forgery. A outputs (ID∗, m∗, σ∗), where ID∗ is the target identity, m∗ is a message and σ∗ is a signature such
that σ∗ was not the output of previous Sign query with 〈m∗, ID∗〉 as input. A wins the game if σ∗ is a valid
signature of m∗ by ID∗.

Unlinkability. For showing a ADGS scheme is not verifiable outside the designated group, we first propose the
model for unlinkability. This can be viewed as a game between challenger C and adversary Al.

Initialize The C runs the Setup algorithm and generates the system parameters params and the master private
key Msk. It then delivers params to Al and keeps msk secret. Al outputs a list of identities L∗ to C, for which
A is not allowed to ask Extract query.

Phase-1
– The adversary Al can access the oracles as follows:

• Extract Oracle. Given an ID /∈ L∗, C returns the private key corresponding to that ID. All the other
oracles are the same as that of the unforgeability game.

10 Vivek, Sharmila, Gopinath and Pandu Rangan

Challenge: Al produces two message of equal length and an arbitrary sender identity IDA. The challenger C
flips a coin, sampling a bit b ∈R {0, 1} and computes σ∗ = Sign (mb, IDA, {ID1, ID2, ..., IDt}, DA). Here
{ID1, ID2, ..., IDt} ∈ L∗. σ∗ is returned to Al as challenge signature.

Phase-2: A is allowed to make polynomially bounded number of new queries to the oracles with the restrictions
that adversary should not query the Extract oracle for the private keys of users in L∗ and Al should ask
verication of σ∗ to verify oracle.

Guess: At the end of this game, A outputs a bit b
′
. A wins the game if b

′
= b.

7 Review and Cryptanalysis of ADGS Scheme [8]

7.1 Review of ADGS Scheme [8]

Consider a collection of n + 1 users {a0, ..., an} with identities {ID0, ID1, ..., IDn} where the users may be from
different groups. Let a0 be an user who wants to sign a message to the remaining people U = {a1, ..., an} such that
only members ai ∈ U for 1 ≤ i ≤ n should be able to verify its signature. The group U is defined by user a0.

– Initialize:
Let G1 and G2 be two groups of same prime order q. Let P be a generator of additive group G1 and G2

be a multiplicative group. Let H0 and H1 be cryptographic hash functions defined as H0 :{0, 1}∗ → G1 and
H1:{0, 1}∗ × G1 → Z∗

q .
– Key Generation:

Let IDi denote the identity of user ai. The PKG selects a random number s ∈R Z∗
q , sets ai’s private key is Di

= sH0(IDi) and ai’s public key is Qi = H0(IDi). It then communicates the private key of the users in a secure
way and publishes the public parameters params = 〈G1, G2, q, H0, H1, P, Ppub = sP 〉.

– Designated Group Signature Generation(Sign):
To sign a message m the signer a0 selects r,k,t ∈R Z∗

q and computes the value Ti = kQi , where ai ∈R U
1 ≤ i ≤ n. Then a0 computes the following values
• V0 = tsP .
• V1 = tkP .
• V2 = rkD0.
• T0 = kQ0.
• h = H1(m)
• V = (r + h)D0.

The signer a0 produces the signature on message m as σ = (m, V, V0, V1, V2, T0, ..., Tn).
– Signature Verification:

• Judge Verifier. The aim of this step is to judge who can verify the signature. Using the value Ti, any
member of the set U can verify whether he is eligible to perform verification by checking whether e(Ti, V0)
?= e(Di, V1). If the equation holds, then the corresponding member has the ability to verify the signature.

• Verify Signature. The member ai ∈ U, who passes the above verification, can perform the signature verifi-
cation as follows. Check whether e(V, Ti)

?= e(V2, Qi)e(hT0, Di). If it holds then the signature is valid.

7.2 Cryptanalysis of ADGS [8] Scheme.

In this section, we present the cryptanalysis of ADGS [8]. We show that the ADGS scheme in [8], is universally
forgeable by demonstrating two different ways to proceed with the attack.

Universal Forgery without having access to any previous signature. The scheme ADGS described above
is universally forgeable. The adversary A can forge the signature of any user without seeing any valid signature
previously signed by any user. A selects r∗, k∗, t∗ ∈R Z∗

q , computes T ∗
i = k∗Qi for(i = 1 to n ai ∈ U). and then

computes the following values.

– V ∗
0 = t∗s∗P .

– V ∗
1 = t∗k∗P .

– V ∗
2 = r∗k∗P .

– h∗ = H1(m∗).
– T ∗

0 = 1
h∗ k∗P .

Cryptanalysis of Group Inside Signatures 11

– V ∗ = r∗P + Ppub.
A produces σ∗ = (m, V ∗, V ∗

0 , V ∗
1 , V ∗

2 , T ∗
0 , ..., T ∗

n) as a valid signature on message m∗.

Now the correctness of the forged signature σ∗ can be shown as follows:
Correctness: The L.H.S is

e(V ∗, T ∗
i) = e(r∗P + Ppub, k∗Qi)

= e(r∗P, k∗Qi)e(Ppub, k∗Qi)
= e(r∗k∗P, Qi)e(k∗P, sQi)
= e(V ∗

2 , Qi)e(1
h∗ T ∗

0 , Di)
= R.H.S

Thus, we show that A is capable of generating a valid ADGS on behalf of user with out knowing users secret key.

Universal Forgery on seeing a signature of an user On seeing a valid signature by an user on some message,
anyone can commit a forgery on any message. During the unforgeability game between the challenger C and
adversary A, C gives A the public parameters params and a target identity ID∗. A is supposed to generate a
valid forgery for the target identity ID∗ on some message and it is restricted to query private key for the target
identity ID∗. A interacts with C and accesses all the oracles with the restrictions given in the model. A can query
signature on any message and user identity pair 〈m, ID〉. A can replace the public keys of any user including user
with identity ID∗. During the training-phase on receiving a valid signature σ = 〈m, V, V0, V1, V2, T0, ..., Tn〉 on a
message m with target identity ID∗ from the Sign oracle, A can generate a valid signature σ∗ on a message m∗

for the target identity ID∗, such that σ∗ is not the output of previous queries to Sign oracle. This can be shown
by the following computation done by A

– Dividing V by h. 1
hV = (r

h + 1)D0 where h = H1(m).
– Computes h∗ = H1(m∗).
– V ∗

0 = V0 and V ∗
1 = V1.

– V ∗
2 = h∗

h V2.
– The remaining parameters T0, ..., Tn, V0 and V1 are same as that of original signature.
– V ∗ = h∗ V

h .

Now σ∗ = σ∗ (m∗, V ∗, V0, V1, V ∗
2 , T0, ..., Tn) is a valid signature on the message by the user with identity ID∗. C

can check the validity of the forged signature σ∗ as follows.

Correctness: The L.H.S is

e(V ∗, Ti) = e((h∗

h r + h∗)D0, k∗Qi)
= e(h∗

h rD0, kQi)e(h∗D0, kQi)
= e(h∗

h rkD0, Qi)e(h∗kQ0, Di)
= e(V ∗

2 , Qi)e(1
h∗ T ∗

0 , Di)
= R.H.S

Now, it is clear that the forged signature σ∗ passes the verification successfully.

8 New ADGS scheme(N-ADGS).

In this section we present a new identity based ADGS scheme. Assume that a signer a0 has to designate his signature
to be verified by n users namely {a1, ..., an}. All the n users may be from different groups and are selected by a0.
The signer a0 forms the set U = {a1, ..., an} to generate the signature. In our scheme designated members of the
group cannot simulate the signers signature.

– N-ADGS Initialize:
The PKG initializes the system by executing this algorithm. This algorithm takes the security parameter 1k

as input and produces two groups G1 and G2 of prime order q, where |q| = k, a generator P of G1, a bilinear
map e : G1 × G1 → G2 and two cryptographic hash functions H1 :{0, 1}∗ × G2 × G1 × G1 × G1 → Z∗

q and
H2 :{0, 1}∗ → G1. The master private key is s ∈R Z∗

q and the master public key is set to be Ppub = sP . Sets
θ = e(Ppub, R) where R ∈R G1. The public parameters are 〈G1, G2, e, P, Ppub, Ppub, H1, H2, θ, R〉.

12 Vivek, Sharmila, Gopinath and Pandu Rangan

– N-ADGS Key Generation/Extract: This algorithm is executed by the PKG and on input of identity IDi,
PKG computes Qi = H2(IDi) and sets the private key as Di = sQi. Now, Di is sent to the user in a secure
way.

– N-ADGS Sign: To sign a message m for a designated group of users U = (a1, ..., an) with identities (ID1, ..., IDn)
the user with identity ID0, private key D0 and public key Q0 performs the following steps:
• Chooses r,k,t ∈R Z∗

q and computes Ti = 〈Ti1, Ti2〉 as 〈t(Qi + R), kQi〉 for(i = 1 to n).
• Computes U1 = rQ0, U2 = rkP and U3 = tP .
• Computes ω = e(D0, U3) and Computes W = θtω.
• Computes h = H1(m,ω, U1, U2, U3) and V = rPpub + hD0.

Now σ = (m, V, W, U1, U2, U3, T1, ..., Tn, U) is a valid signature on message m by ID0, with the user group
U as designated verifiers.

– N-ADGS Verify: Verification is a two step process. First step is to verify whether the verifier belongs to the
group U and second step is to verify the validity of the signature.
• Judge Verifier: Using the value Ti2 = kQi, the verifier checks whether e(Ti2, Q0)

?= e(Qi, U1). If the verifi-
cation holds then user with public key Qi will do the next step in verification.

• Verify Signature: Each designated verifier ai ∈ U can verify the signature by performing the following steps.
∗ Computes ω

′
= We(Di, U3)e(Ppub, Ti1)−1.

∗ Computes h
′
= H1(m,ω

′
, U1, U2, U3).

∗ Checks whether e(V, Ti2)
?= e(h

′
U1, Di)e(U2, Di).

If the above check hold then the signature is valid. Otherwise the signature is invalid.

8.1 Security proof for N-ADGS

In this section we formally prove the security of N-ADGS. The two notions of security for N-ADGS are unforgeability
and unlinkability. Unforgeability ensures that N-ADGS is not be forgeable. Unlinkability ensures that members
other than the designated group cannot be able to verify the signature. We prove the security of our scheme in the
random oracle model.

Unforgeability Proof:

Theorem 1. Our N-ADGS scheme is existentially unforgeable under chosen message and identity attack if CDHP
is hard in G1.

Proof. The challenger C receives an instance of CDHP 〈P, aP, bP 〉 and it aims to compute abP . C uses A who is
capable of breaking the existential unforgeability of N-ADGS to solve this instance. Now, C sets Ppub = aP , chooses
R ∈R G1 and sets θ = e(Ppub, R) and sends params to A. A on receiving system parameters, chooses the target
identity ID∗ and gives it to C. A can access the following oracles which are controlled by C.

Training Phase: Assume that for any identity ID, A queries H2 and Extract oracle at most once and A queries
H2 oracle before it queries Extract, H1 and Sign oracles.
– H2 Oracle:

C maintains a list L2 to reply the H2 oracle queries. It replies as follows
• It searches list L2 and if it finds a match in a tuple it will return the corresponding value.
• Otherwise, it sets H2(IDi) as

∗ H2(IDi) = bP , if IDi = ID∗ and adds tuple 〈ID∗, bP,⊥,⊥〉 to L2.
∗ H2(IDi)= xiP and computes Di = xiPpub, if IDi $= ID∗ and adds 〈IDi, xiP, xi, Di〉 to L2.

– Keygen/Extraction Oracle: For any given identity IDi $= ID∗, C searches for private key Di in list L2,
finds the corresponding xi value and returns it to IDi.

– H1 Oracle:(m,ω, U1, U2, U3). Let L1 be the list associated with this oracle. If the tuple 〈m,ω, U1, U2, U3〉
is not queried already, C chooses randomly hi ∈R Z∗

q and adds 〈m,ω, U1, U2, U3, hi〉 to the list L1 and
returns hi to A. Else if 〈m,ω, U1, U2, U3〉 is queried previously, returns hi from 〈m,ω, U1, U2, U3, hi〉 which
is already stored in L1.

– Sign Oracle: A queries the signature on message m for a signer identity ID0 $= ID∗, C responds according
to the signing algorithm. If ID = ID , C responds as follows.
• Chooses r, k, t and z ∈R Zq.
• Computes V = zPpub and U1 = kbP .
• Chooses h ∈R Z∗

q , computes U2 = zkP - hU1, U3 = tP , Ti1 = kQi and Ti2 = t(Qi + R).

Cryptanalysis of Group Inside Signatures 13

• Chooses ω ∈R G2, computes W = θtω and adds 〈m,ω, U1, U2, U3, h〉 to the list L2.
• Returns the signature σ= (m, V, W, U1, U2, U3, T1, ..., Tn, U) to A.

The correctness of σ can be shown as below. Let ai ∈ U be a member of the designated group U. ai performs

• Compute ω
′
= We(Di, U3)e(Ppub, Ti1)−1 and h

′
= H1(m∗, ω

′
, U∗

1 , U∗
2 , U∗

3).

e(V, Ti2)= e(h
′
U1 + U2, Di)

= e(h
′
kbP + zPpub − h

′
kbP, kQi)

= e(zPpub, kQi)
= e(V, Ti2)

Thus we have shown that σ is a valid signature on m.
– Verify Oracle: This oracle takes (IDS , IDR, σ) where IDS is signers identity and IDR is the designated

receiver as input. This oracle output true if σ is a valid signature on m with IDR as designated verifier and
IDS as the signer. If the receivers identity IDR $= ID∗, the oracle proceeds as per the verifying algorithm.
Else IDR = ID∗, it performs computations as follows
• Computes ω

′
= e(DS , U3) and h

′
= H1(m,ω

′
, U1, U2, U3).

• Computes X = V - h
′
DS .

• Checks e(X, QS) ?= e(U1, Ppub) if it holds it returns valid else it returns invalid.

Forgery : After the training phase is over, eventually, A outputs a forgery σ∗ = (ID∗, m∗). C checks the validity
of the signature σ∗ since it knows the private key of all designated verifiers in U. If σ∗ is a valid signature
then by applying Forking Lemma [9], C replays the interaction with A with same random value but different
hash function, and obtains two valid signatures as σ∗ = (ID∗, m∗, V, W, U1, U2 , U3, T1, ..., Tn, U) and σ∗′

=
(ID∗, m∗, V

′
, W, U1, U2, U3, T1, ..., Tn, U). Let D∗ be the private key of ID∗.

Since V =rPpub + hD∗ and V
′
=rPpub + h

′
D∗ are two valid signatures C gets V -V

′
= (h − h

′
)abP and abP =

(h − h
′
)−1 (V − V

′
). Which is the solution for the CDHP instance C has received.

Thus, if A can forge N − ADGS scheme, with almost the same probability C can solve CDHP .

Unlinkability Proof.

Theorem 2. Our N-ADGS scheme is unlinkable in the sense that members outside the group cannot verify the
signature if DBDHP is hard in G1.

Proof. The challenger C receives an instance (P, aP, bP, cP, α) of the DBDH problem. Its aim is to decide whether α
= e(P, P)abc or not. Suppose there exist an adversary Al who is capable of breaking the unlinkability of N-ADGS,
we can show that C uses Al to solve DBDHP. C sets Ppub = cP , R = bP , and ω = e(R, Ppub)e(R, cP) and gives
Al the system parameters params. Now the adversary Al outputs the list of identities L∗ = {ID∗

0 , ID∗
1 , ..., ID∗

t }
which is the set of target users, on which it is to be challenged.

Phase-1 In this phase Al can access the various oracles which are maintained and manipulated by C. The oracles
respond as follows for the queries done by A:
– H2 Oracle:

C maintains a list L2 to reply the H2 oracle queries. It replies as follows
• It searches list L2 and if it finds match it will return the corresponding value.
• Otherwise, it sets H2(IDi) as

∗ H2(IDi) = xiP -R if IDi /∈ L∗ and computes Di = xiPpub, adds tuple 〈IDi, xiP −R, xi, Di〉 to L2.
∗ H2(IDi)= xiP if IDi ∈ L∗, adds tuple 〈IDi, xiP, xi,⊥〉 to L2.

– Extraction Oracle: For any given identity IDi /∈ L∗, C searches the private key Di in list L2, finds the
corresponding xi value and returns it to Al.

– H1 Oracle:((m,ω, U1, U2, U3)). Let L1 be the list associated with this oracle. If the tuple 〈m,ω, U1, U2, U3〉
is not queried already, C chooses randomly hi ∈R Z∗

q and adds 〈m,ω, U1, U2, U3, hi〉 to the list L1 and
returns hi to Al. Else if 〈m,ω, U1, U2, U3〉 is queried previously, returns hi from 〈m,ω, U1, U2, U3, hi〉 which
is already stored in L1.

– Sign Oracle: Al queries the signature on message m with signer identity ID0 /∈ L∗ then it responds
according to the signing algorithm. Otherwise, the oracle responds as follows.
• Chooses randomly r,k,t and z ∈R Z∗

q .

14 Vivek, Sharmila, Gopinath and Pandu Rangan

• Chooses h ∈R Z∗
q .

• Computes U1 = kbP U2 = zkP - hU1 and U3 = tP .
• Computes Ti1 = kQi and Ti2 = t(Qi + R).
• Chooses ω ∈R G2, computes W = θtωand computes V = zPpub.
• Adds 〈m,ω, U1, U2, U3, hi〉 to the list L1.

It returns σ = to Al which is verifiable by Al.
– Verify Oracle: This oracle takes (IDS , IDR, σ) where IDS is signers identity and IDR is the designated

receiver as input and output true if σ is a valid signature on m with IDR as designated verifier and IDS

as the signer. If the receivers identity IDR /∈ L∗, the oracle proceeds as per the verifying algorithm. Else
IDR ∈ L∗, it performs computations as follows
• Computes ω

′
= e(DS , U3) and h

′
= H1(m,ω

′
, U1, U2, U3).

• Computes X = V - h
′
DS .

• Checks e(X, QS) ?= e(U1, Ppub) if it holds it returns true else it returns false.
Challenge After the first query stage, Al outputs two plain text messages m0 and m1 of equal length, together

with a senders’s identity IDA on which he wishes to be challenged and a list of designated verifiers U ⊆ L∗.
Now, C chooses a random bit b ∈R 0, 1 and signs message mb as follows.
– Chooses randomly r,k,t and z ∈R Z∗

q .
– Chooses h ∈R Z∗

q .
– Computes U1 = kbP U2 = zkP - hU1 and U3 = aP .
– Computes Ti1 = kQi and Ti2 = xiaP , for i = 1 to t.
– Chooses ω ∈R G2, compute W = αω and V = zPpub.
– Adds 〈m,ω, U1, U2, U3, hi〉 to the list L1.
– Returns σ = (m, V, W, U1, U2, U3, T1, ..., Tn) as a challenge to Al.

Phase-2 Al can adaptively perform queries as in phase-1, with the restrictions that Al should not query Ver-
ify oracle with(m,σ, IDA, IDi) where IDi ∈ U and the Extract oracle for the private keys of identities
ID1, ID2, ..., IDt.

Guess:
At the end of this phase, Al outputs a bit b

′
. Al wins the game if b

′
= b. If b = b

′
then σ∗ is a valid signature on

mb from IDA to the receivers in L∗. It means Al has successfully verified the signature and Al has computed
ω which is given as

We(Di, U3)e(Ppub, Ti1)−1 = αω e(Di, U3)e(Ppub, Ti1)−1. (since W = αω)
= ω α (e((xi − b)cP, aP)e(cP, xiaP)−1)−1.
= ω α (e(xiaP, cP)e(−bcP, aP)e(cP,−axiP))−1.
= ω α (e(−abcP, P))−1.
= ω iff α = ê(P, P)abc.

These calculations show that Al get a correct ω if and only if α = e(P, P)abc.Thus if Al can break our N−ADGS
scheme, with almost the same probability C can solve DBDHP .

Note: Our scheme can be extended to multi-receiver signcryption scheme.

9 Conclusion

In this paper we have presented attacks on certificateless schemes GIS [5], [6] BGOS [7] and an identity based ADGS
[8]scheme. We have proposed a new identity-based ADGS scheme and we have deviced the model for linkability of
identity based ADGS scheme. Also, we have formally proved the security of our scheme in random oracle model.
We leave as an open problem to construct efficient identity based ADGS with constant size signature independent
of the number of designated verifiers. Our scheme is secure against existential forgery on adaptively chosen message
and ID attack under the hardness assumption of CDHP.

References

1. Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless public key cryptography. In ASIACRYPT, volume 2894
of Lecture Notes in Computer Science, pages 452–473. Springer, 2003.

2. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. SIAM J. Comput., 32(3):586–615,
2003.

Cryptanalysis of Group Inside Signatures 15

3. Bessie C. Hu, Duncan S. Wong, Zhenfeng Zhang, and Xiaotie Deng. Key replacement attack against a generic construc-
tion of certificateless signature. In ACISP, volume 4058 of Lecture Notes in Computer Science, pages 235–246. Springer,
2006.

4. Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their applications. In EURO-
CRYPT, volume 1070 of Lecture Notes in Computer Science, pages 143–154. Springer, 1996.

5. Chunbo Ma, Faliang Ao, and Dake He. Certificateless group inside signature. pages 194–200, April 2005.
6. Chunbo Ma and Jun Ao. Certificateless group oriented signature secure against key replacement attack. Cryptology

ePrint Archive, Report 2009/139, 2009. http://eprint.iacr.org/.
7. Chunbo Ma, Dake He, and Jun Ao. Broadcast group oriented signature. Information, Communications and Signal

Processing, 2005 Fifth International Conference on, pages 454–458, 2005.
8. Chunbo Ma and Jianhua Li. Adaptable designated group signature. In ICIC (1), volume 4113 of Lecture Notes in

Computer Science, pages 1053–1061. Springer, 2006.
9. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures. Journal of

Cryptology, 13(3):361–396, 2000.
10. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO 84, Lecture Notes in Computer Science,

pages 47–53. Springer-Verlag, 1985.

