
Evaluating Process Quality based on Change Request
Data – An Empirical Study of the Eclipse Project

Holger Schackmann, Henning Schaefer, Horst Lichter

Research Group Software Construction, RWTH Aachen University

Ahornstr. 55, 52074 Aachen, Germany
{schackmann|lichter}@swc.rwth-aachen.de, henning.schaefer@rwth-aachen.de

Abstract. The information routinely collected in change request management
systems contains valuable information for monitoring of the process quality.
However this data is currently utilized in a very limited way. This paper
presents an empirical study of the process quality in the product portfolio of the
Eclipse project. It is based on a systematic approach for the evaluation of
process quality characteristics using change request data. Results of the study
offer insights into the development process of Eclipse. Moreover the study
allows assessing applicability and limitations of the proposed approach for the
evaluation of process quality.

Keywords: Process Metrics, Open Source Development, Change Request
Management, Process Improvement, Metric Specification, Mining Software
Repositories

1 Introduction

Managing a large portfolio of software products requires continuous monitoring of
project status and process quality. Collecting the required data by regularly status
reporting can be expensive and intrusive and furthermore ignores the past history of
the process [1].

The routinely collected information during processing of enhancement requests
and defect reports with a change request management system reflects many
characteristics of process quality. However this data is currently only used in a very
limited way for a systematic evaluation of the process. This is caused by
methodological problems and lack of appropriate tool support. Existing change
request management systems usually provide a set of fixed metric evaluations with
limited adaptability, like specifying the considered product or time period [2]. Metrics
of interest depend on the objectives of the organization [3]. In order to ensure that a
metric is a correct numerical characterisation of the quality of interest, a metric
definition must be validated and usually be refined. Thus metrics must typically be
implemented in custom scripts [4], which is time-consuming and costly. On the
methodological side, it is not clear how measurement values can be interpreted with
respect to high-level quality characteristics of interest.

We have developed a new approach that is based on defining an organization-
specific quality model representing a decomposition of the quality characteristics of
interest, and their relations to metrics used as quality indicators [5]. Interpretation of
the measurement values is guided by comparisons within a peer group of projects.
Complementary tool support allows specifying metrics in a declarative language,
which simplifies developing and validating new metrics [2].

This case study demonstrates the comprehensive application of the mentioned
approach to a large portfolio of projects that follow a common development process.
The objective of the exploratory case study is to quantitatively characterize the
process quality, based on the analysis of change request data. We focus on the change
request process of Eclipse as the object of study. The units of analysis are the projects
under the Eclipse umbrella.

Related work will briefly be sketched in section 2. The development process of
Eclipse is described in section 3. Questions regarding quality characteristics of the
process are formulated in section 4. The evaluation approach is then illustrated in
section 5, followed by the evaluation results for the Eclipse project in section 6. In
section 7 we comment on threats to validity. Lessons learnt from this case study
related to the applicability and limitations of the approach are discussed in section 8.

2 Related Work

There are numerous approaches that use routinely collected data available in version
control systems or change request management systems in order to analyze different
aspects of software evolution. A survey is given by Kagdi et al [6]. Since Eclipse is
one of the most intensively studied open source development projects, many of these
approaches are also applied in case studies related to Eclipse. The analyzed aspects
encompass architectural evolution [7][8][9], communications patterns of developers
and users via newsgroups [10], classification of developer contributions according to
topics [11], and predictive models, e.g. for the number of changes [12], growth of
defects [13], or bug lifetimes [14].

Some approaches target the analysis of specific aspects of the process, like
developer contributions and defect density [15][16], performance characteristics of
the bug fixing process [17][18], the frequency of fix-inducing changes [19], typical
defect-lifecycles [20], or the usage of the bug reporting form [21][22].

Summarizing it can be stated that the mentioned approaches facilitate insights to
isolated aspects of the process quality. Hence the related scripts and tools for data
extraction are tailored for a specific change request management system and the
research questions at hand. We do not know about a generalized approach for
analyzing process quality characteristics based on change request data.

3 The Eclipse Development Process

In order to assess the process quality within Eclipse projects it must be clarified which
are the underlying goals of the development process.

The Eclipse Foundation practices its own agile development approach that sets
guidelines for the 105 projects that fall under the Eclipse umbrella1. Known as the
“Eclipse Way” [23], it encompasses a set of complementary practices which target at
achieving predictability and quality delivery on time. However most of the project
culture is not documented in every detail, as the process is defined and evolved by the
development teams of the various projects.

Community involvement should be fostered by timely feedback and reactions, and
by a transparent development process. For example it must be published which features
are available with a new milestone to create an incentive for users to move to this
milestone build. The guidelines recommend a release cycle that is structured into
milestones every 6 weeks, and the endgame - a stabilization phase before the final
release.

Some more detailed advice is given on the usage of Bugzilla2. Incoming Change
Requests (CRs) should be triaged at the start of each day. If further information on a
CR is requested, and there is no response in a week, the CR should be closed with the
status Resolved/Invalid or Resolved/WontFix. CRs that should get fixed in the current
release should be marked with an appropriate target milestone. When a developer
fixes a CR the status is set to Resolved/Fixed. A fixed CR should be assigned to
another committer on the team to verify. When a project does a major release, the
verified CRs are changed to Closed.

Additionally Eclipse has a process description3 that defines the structure and
organization of Eclipse projects, and the phases that projects undergo (Proposal,
Incubation, Mature, and Top-Level). However this part of the process description
does not give guidelines for the change request process.

4 Questions Addressed

As mentioned in the previous section, some of the main goals of the “Eclipse Way” of
development are quality delivery on time, predictability, and promotion of community
involvement. Based on these organization-specific goals we identified several quality
characteristics related to steps in the change request process. They are illustrated in
the following by one or several questions addressed.
A. Quality of the Reported CRs
Although the development team has only limited influence on the quality of CRs
reported by general users, the quality of incoming CRs facilitates permits to draw
conclusions on the competence and maturity of the user community of a product. So,
we want to know:
• What is the quality of the reported CRs in terms of completeness,

understandability, and redundancy freeness?
B. Quality of the CR Triage

1 http://www.eclipse.org/projects/listofprojects.php
2 http://wiki.eclipse.org/Development_Resources/howto/Bugzilla_Use
3 http://www.eclipse.org/projects/dev_process/development_process.php

Timely reactions and appropriate classification of incoming CRs influences the
perception of the project by general users. Hence we derived these questions:
• How fast does the organization react on an incoming CR?
• Are the triaged CRs correctly classified?
• To which degree does the prioritization of defect reports take into account the

perception of the severity by the user?
C. Quality of Planning
Predictability and transparency of the availability of new features are essential in
order to motivate users to move to current milestone builds. On the level of change
requests this manifests in assigning a target milestone for scheduled CRs:
• How many of the fixed CRs are planned with a specified target milestone?
• How often are target milestones changed? This usually means that a CR has been

postponed to a later milestone.
D. Quality of CR Processing
Again a timely and correct resolution of CRs by the development team can foster
community involvement and permits to draw conclusions on the internal quality of
the product. Moreover we are interested in the frequency of problems during
processing CRs, which can for example be indicated by many high priority defect
reports, frequent assignee changes, or breaking the feature freeze during the endgame
phase. All these problems cause unwanted friction or interruptions during
development. Hence we consider these questions:
• How long does it take to fix a new CR?
• How often has a fixed CR to be reopened?
• How friction-less is the processing of CRs?

E. Quality of CR Verification
The process guidelines require fixed CRs to be verified by another committer. Hence
we are interested in the quality of this verification process:
• How many of the CRs are explicitly verified?
• How often has a verified CR to be reopened?

5 Evaluation approach

Our approach is based on calculating metrics on the change request data that can be
used as indicators for the quality characteristics of interest. To calculate metrics we
applied the open source tool BugzillaMetrics [2]. It supports the specification of metrics
in a declarative language. Thus metrics can be described precisely on a higher
abstraction level, which simplifies the process of developing and validating metrics [5].

5.1 Metrics Used as Quality Indicators

Based on the questions formulated in section 4 we derived a number of corresponding
metrics that are listed in table 1 with brief descriptions. Each metric is normalized

such that its results are not directly dependent on factors like size or age of the
product. Furthermore each metric is specified in a way such that minimal values are
considered to be optimal. The precise and complete specification of each metric is
made available on www.bugzillametrics.org.

These metrics can then be evaluated for a number of selected products and a given
time interval. The value distribution of the results for each metric in a time interval
gives an impression on how good the different products perform in general and how
large are the differences between the products.

Table 1. Metrics used as quality indicators
Id Metric Description
A.1 Duplicated CRs Number of CRs marked as Duplicate relative to the number of all

resolved CRs in a time interval.
A.2 Invalid CRs Number of CRs marked as Invalid relative to the number of resolved

CRs in a time interval.
A.3 Defect reports

without version
Number of reported defects with unspecified version number relative to
the number of all reported defects in a time interval.

A.4 Comments before
leaving status New

Average number of comments before a CR changes into status
Assigned or Resolved for the first time.

B.1 CRs with no reac-
tion within 2 days

Percentage of CRs created in a time interval where the first reaction
takes longer than 2 days.

B.2 Reopened rate of
rejected CRs

Number of triaged CRs with resolution Duplicate, Invalid, NotEclipse,
WontFix, or WorksForMe that have been reopened, relative to the
number of rejected CRs in a time interval.

B.3 Priority of severe
bugs

Average priority of CRs with severity critical or blocker that had been
resolved in a time interval.

C.1 Assigned without
milestone

Number of CRs that change into status Assigned with no valid target
milestone relative to the number of all CRs that change into Assigned.

C.2 Fixed without
milestone

Number of CRs that are fixed and have no valid target milestone
relative to the number of all CRs fixed in a time interval.

C.3 Frequency of
milestone changes

Number of changes to defined target milestones relative to the number
of CRs with a defined target milestone.

D.1 Time until fixed Median age in days of CRs that change into the status Resolved/Fixed.
D.2 High Priority

Lifetime Ratio
Average lifetime of fixed CRs with priority P1 relative to the average
lifetime of all fixed CRs.

D.3 Reopened Rate of
fixed CRs

Number of fixed CRs that are reopened relative to the number of fixed
CRs in a time interval.

D.4 High priority CRs Number of fixed CRs with priority P1 relative to the number of all CRs
resolved in a time interval.

D.5 Average Assignee
Changes

Number of assignee changes relative to the number of CRs assigned in
a time interval.

D.6 Enhancements
during Endgame

Number of enhancement requests fixed during the Endgame phase
relative to the number of all enhancement requests fixed in the release
cycle.

E.1 Closed/ Resolved
Ratio

Number of closed CRs in a time interval relative to the number of
resolved CRs in a time interval.

E.2 Closed without
Verified

Number of closed CRs in a time interval that had not been in the status
Verified.

We will briefly delineate some of the underlying assumptions. Metric A.4 assumes
that a CR with incomplete or vague information needs more comments until it can
eventually be assigned or resolved.

 The metrics B.1 – B.3 reflect that users expect timely and appropriate reactions on
their change requests. Otherwise users will perceive that their feedback will not have
any impact and stop providing valuable input. It was not possible to define a metric
that counts false positive triage decisions, since a status like Unconfirmed is not used
by the majority of the projects.

Metrics C.1 and C. assume that CRs with an undefined target milestone can be
considered as lack of transparency. Metric D.4 reflects that the occurrence of high-
priority CRs might interrupt work on other CRs. In D.5 it is assumed that problems
like unclear responsibilities, overburdened developers, or vague requirements lead to
frequent assignee changes of a CR.

5.2 Evaluation of Quality Characteristics

By means of these metrics we get basic data concerning the change request
management process. Moreover we want to aggregate these raw results in order to
assess the quality characteristics introduced in section 4. However defining thresholds
for metric results in order to classify the quality would be an intricate task. The
process description of the “Eclipse Way” of development does not impose absolute
goals for the outcome of these metrics. Trying to define reasonable thresholds upfront
is likely to be based on unrealistic assumptions. Thus we prefer to use the value
distribution of the metric evaluated for a set of comparison projects as base for
classifying metric results. The Eclipse projects itself in a selected time interval can for
example be used as comparison data. This pragmatic approach facilitates to assess a
quality characteristic of the development process of a certain project relative to other
Eclipse projects. Moreover it can be analysed how quality characteristics evolved
over time.

In order to specify the quality model, we used the QMetric quality model editor
and evaluation tool [24]. The quality model defines how individual metric results are
aggregated in order to assess a quality characteristic. The QMetric evaluation tool
supports an automatic evaluation of the quality model based on results of a metric tool
like BugzillaMetrics.

 The evaluation of the quality characteristics is based on classifying each
individual metric value according to the quartiles of the metric results for comparison
products. Using quartiles also facilitates the application of the approach on a small
number of comparison products. A linear equation is used to aggregate the results. In
detail this can be defined as follows:

Let
Cm be a set of values for a given metric m measured for a number of
products used as comparison data,

Qi(Cm) be the i-th quartile of Cm, i= 1..3.

A.1

E.2

E.1
D.6
D.5
D.4
D.3
D.2
D.1
C.3
C.2

C.1
B.3

B.1
A.4
A.3
A.2

B.2

Quality of incoming CRs

Resolution Time

Resolution Quality

Planning Stability

Planning Transparency

Triage

Friction during Processing

Planning

Processing

Verification

quality indicators quality characteristics

Figure 1. Eclipse process quality model

The quartile classification q of a metric value vm with respect to the
corresponding comparison data Cm is defined as:

)(
)(
)(

)(
)(
)(

4
3
2
1

),(

1

2

3

1

2

3

m

m

m

m

m

m

m

m

m

m

mm

CQ
CQ
CQ

v
v
v
v

CQ
CQ
CQ

Cvq

≤
≤
≤

<
<
<

⎪
⎪
⎩

⎪
⎪
⎨

⎧

= (1)

A quality characteristic QC with underlying metrics m1, …, mn can then be
evaluated as:

∑
=

=
n

i
mmn ii

CvqQCe
1

1),()(. (2)

Hence the evaluation of a quality characteristic is normalized to a number between
1 and 4 with the following interpretation:
• 4 indicates that the considered product performs better than 75% of the products

used as comparison data for each of the underlying metrics
• 1 indicates that the quality is poorer than in 75% of the compared products
• 2.5 can be interpreted as average quality.

The complete quality model is shown in Figure 1. In general the quality model can
be a DAG. The sink nodes and inner nodes of the DAG represent quality

characteristics. Source nodes represent quality indicators. Each quality indicator
includes a metric specification, and some guidance for the interpretation of the metric
result. In the given model the metric results are classified according to the quartiles of
the value distribution of comparison projects.

The quality characteristics introduced in section 4 are partly refined into sub
characteristics, and finally led back to a number of quality indicators. The evaluation
of the each quality characteristic is normalized to the interval 1-4. In the given model
each incoming quality indicator is equally weighted, as the “Eclipse Way”
development process does not impose a definitive precedence of the considered
aspects. Of course the quality model editor supports to express more refined models,
e.g. a weighting of the different metrics, or finer structuring of quality characteristics
as tree or DAG.

6 Evaluation Results

Most of the mature Eclipse projects ship a major release each year and take part in a
coordinated simultaneous release at the end of June. Thus we consider these release
cycles as time intervals for the evaluation. As comparison group we selected all 29

Table 2. Value distribution of the metric results for the products of the Ganymede release
(July 1, 2007 – June 30, 2008)

M
etric Id

U
nit

M
inim

um

Low
er

Q
uantile

M
edian

U
pper

Q
uantile

M
axim

um

A.1 % 1,01 4,27 9,17 13,07 19,64
A.2 % 0,53 3,03 4,64 6,03 9,17
A.3 % 0,00 7,71 21,94 53,31 100,00
A.4 comments/CR 0,58 1,27 2,51 2,99 4,98
B.1 % 11,41 20,97 30,28 36,73 48,30
B.2 % 0,00 2,70 7,46 11,76 26,67
B.3 priority P1-P5 1,15 2,54 2,92 3,00 3,00
C.1 % 3,70 55,40 73,97 90,41 100,00
C.2 % 1,26 23,04 41,17 69,34 100,00
C.3 milestone changes/CR 0,00 0,08 0,44 0,64 2,31
D.1 days 0,86 4,63 9,26 17,14 48,66
D.2 ratio 0,00 0,00 0,31 0,86 2,90
D.3 % 0,00 3,80 6,36 8,64 18,16
D.4 % 0,00 0,12 1,06 4,41 57,29
D.5 assignee changes/CR 1,00 1,06 1,16 1,27 1,55
D.6 % 0,00 0,00 0,00 0,01 0,07
E.1 % 0,34 2,66 5,40 23,12 78,23
E.2 % 50,00 82,19 92,98 98,49 100,00

products that took part in the latest simultaneous release4 in June 2008. The
corresponding value distribution is given in table 2. Metric Ids refer to the metrics
given in table 1.

The value distribution already allows drawing conclusions on the projects. We will
briefly point out some observations. A relatively high percentage of the incoming
defect reports lack a version number (A.3). It takes typically around 2.5 comments
until a CR leaves the status New (A.4). TPTP contributes the maximum value, thus
usually more discussion is needed in this project.

In most of the projects the percentage of CRs with the first reaction later than two
days is around 30% (B.1). Most of the projects have a reopened rate of rejected CRs
higher than 7% (B.2). For half of the projects the average priority of severe CRs is
near the default P3 (B.3). Thus priority does not correlate with the severity specified
by the user.

Setting a target milestone to inform about the availability of new features is rather
neglected by most of the developers (C.1, C.2). CRs are relatively often postponed to
another milestone (C.3).

The median time until a CR varies around 10 days for most of the projects (D.1).
At first sight the minimum value of less than a day looks astonishing. Detailed
analysis shows that in the related project M2M some committers use Bugzilla to keep
log of their day-to-day work, such that a high number of CRs is reported and resolved
by the same person just on the same day. The median value for metric D.2 indicates
that it typically takes only one third of the time to fix a CR with priority P1, compared
to the resolution time of all CRs. However there are some projects (e.g. BIRT and
Eclipse Platform) where it takes more than twice as long to resolve P1 CRs. Hence
the high-priority CRs in these products seem to be rather intricate tasks. Most of the
projects have a reopened rate of fixed CRs higher than 6% (D.3).

Most of the projects have a low percentage of CRs processed with a high priority
(D.4). The maximum value for metric D.4 is contributed by TPTP Profiling. A
detailed analysis shows that most of the CRs for TPTP Profiling had been escalated to
P1 before eventually being fixed.

Assigning CRs to responsible assignees seems to run relatively smoothly (D.5).
Adding enhancements after the feature freeze is very rare (D.6). Due to the uneven
spread of the resulting values, it is inappropriate to use them as comparison data. Thus
we dropped D.6 from the quality model.

None of the projects does consistently use the status values Verified and Closed
(E.1 and E.2). If a CR enters the status Closed it has most often not been explicitly
verified before. Since most of the projects obviously neglect using the Verified state,
it is not possible to draw further conclusions about the verification process.

In the next step we will focus on the evolution of the quality characteristics over
time. The aggregated results of the release cycles 2004 – 2008 are shown in Figure 2.
For the sake of readability we concentrate on 9 projects that are developed since at
least 2003.

The quality of the incoming CRs remains relatively stable for most of the projects
(Figure 2 A). In some projects like EMF and Equinox the triage process was improved
in the last years, while it worsened in the GMF project (Figure 2 B). Quality of the

4 http://wiki.eclipse.org/Ganymede_Simultaneous_Release

A. Quality of the reported CRs

1

1,5

2

2,5

3

3,5

2004 2005 2006 2007 2008

JDT Web Tools MDT
PDE CDT GEF
Equinox Platform EMF

B. Quality of CR Triage

1,0

1,5

2,0

2,5

3,0

3,5

2004 2005 2006 2007 2008

C. Quality of Planning

1,5

2

2,5

3

3,5

4

2004 2005 2006 2007 2008

D. Quality of Processing the CRs

1,5

2

2,5

3

3,5

2004 2005 2006 2007 2008

Figure 2. Evolution of quality characteristics in the major releases 2004-2008.

planning process is near the average value of 2.5 in most of the selected projects
(Figure 2 C). Planning in MDT is notably better. Regarding the quality of processing
the CRs, a group of projects (MDT, EMF, and PDE) maintains a good quality for all
the considered releases. Processing quality has decreased gradually in GEF and
WebTools (Figure 2 D). In order to validate these interpretations of the results of the
quality model, they have to be compared to expert opinions on the considered
projects.

Based on the experience gained during the development of an EMF and GEF
based toolset at our research group5, we can confirm the results for these projects.
CRs filed for EMF had been quickly responded, and fixed timely. In GEF we could
increasingly observe no, late or inappropriate reactions on reported CRs. Additionally
it can be stated that GEF has provided few major new features in the Europa and
Ganymede release, and concentrated more on fixing defects.

An exhaustive validation of the results would require in-depth experience with all
considered projects.

The performance in the four categories A-D is quite heterogeneous between all
projects. Thus it was not reasonable to aggregate the results to some general process
quality, or to distinct between different maturity levels of the projects.

7 Threats to Validity

As this case study did not examine causal relationships we focus on threats to the
construct validity. In general the following threats to construct validity exist for the
described approach:

Data quality: The Bugzilla database can reveal some inconsistencies e.g. due to
maintenance like renaming or restructuring of products, or importing data from other
Bugzilla instances. This affects the product Mylyn which was renamed (previously
Mylar), and TPTP which was restructured into several products within Bugzilla. In
this case those CRs, which had been moved between products, can not always be
correctly associated to the original product.

Validity of the underlying metrics: It must be carefully validated that each metric
is a proper numerical characterization of the qualities of interest, and that the
measurements can be compared between different products. To ensure this, we
applied a systematic stepwise validation approach [5]. It includes inspecting
measurement results for sample CRs in order to find out whether the intended
interpretation of a measurement value matches with the interpretation of the events
happened during the lifecycle of the CR.

Homogeneity of Bugzilla usage: The interpretation of different CR attributes can
deviate between different products. We tried to base the metrics on CR attributes with
a commonly accepted interpretation. Results can also be distorted if issues are
reported on other channels, like mailing lists. However this situation should be rare,
as users are explicitly requested to use Bugzilla6.

5 ViPER: Visual Tooling Platform for Model-Based Engineering. http://www.viper.sc
6http://www.eclipse.org/mail/

8 Discussion

In the following we first discuss observations related to the process quality of Eclipse
projects and second, the lessons learnt related to the evaluation approach.

8.1 Process Quality in Eclipse

The analyzed quality characteristics remain relatively stable for most of the projects,
or changes only gradually. This matches with the experience that discontinuous
improvements can only seldom be achieved for large projects.

There is no statistically significant correlation between the different considered
quality characteristics of the projects.

Further on one might ask the question whether projects in the mature phase
perform better than those in the incubation phase. This is generally not the case.
However some differences can be observed. Incubating projects have typically fewer
duplicate or invalid CRs and less discussion until assigning a CR. Transparency with
respect to of setting target milestones is lower than in mature projects. Reopened rate
and the age of fixed CRs are lower for the incubating projects, while friction during
processing is similar in both groups.

While existing analyses based on change request data typically focus on evaluating
a selected aspect of the process quality (see section 2), the presented study offers a
broader view on a range of quality characteristics.

As the assessment is based on comparisons to real projects, careful analysis of the
evaluation results for a single project can give valuable advice on realistic potential
for improvement.

8.2 Evaluation Approach

 The case study confirms that quality models have to be organization- or even
product-specific. Even if one relies on the default status workflow that comes with
Bugzilla, there are different schemes of using Bugzilla, which have to be reflected in
the quality model and its underlying metrics.

The specification of metrics in a declarative language enables to describe each
metric in a compact form, and forces to deal with details of the metric definition that
would often be overlooked when using a structured natural language description. A
lesson from the case study is that the definition of the metrics is often an intricate
task. When defining metrics, not only the current usage scheme of the change request
workflow has to be considered, but also its evolution in the past. An example is that in
the past it was possible to set a CR to the status Resolved with resolutions called Later
and Remind. Since this does not indicate that the CR had really been resolved, these
field values had been deprecated7. Instead such CRs should be marked either by

7 http://wiki.eclipse.org/Bug_Reporting_FAQ

setting a target milestone named future, by adding the needinfo keyword, or by
decreasing their priority. When counting status transitions to Resolved the CRs with
resolutions Later and Remind must therefore be excluded.

Moreover the process documentation is not fully consistent and up to date, as the
Bugzilla usage guide8 still recommends setting the resolution Later for CRs that will
not be fixed in the current release.

Another difficulty for the definition of appropriate metrics is the inconsistent use
of Bugzilla fields by different developers. An example is the priority field. While the
Bugzilla usage guide7 recommends using the priority independent from the severity
field, some developers use the priority to subclassify the severity field 21. If this
usage pattern is applied for many CRs, an underlying assumption of metric D.4 is
broken. Thus metric results are potentially distorted. It remains difficult to prevent
such conditions when defining metrics, as these usage patterns can often not be
differentiated in retrospective.

However a detailed analysis of the metric results can unveil the existence of such
different usage schemes, and direct the attention to increase the uniformity of the
usage scheme. Lack of uniformity is not only a problem when evaluating the process
quality; it is probably also confusing if CRs are passed from one developer to another.

Generally the assessment of quality characteristics is limited to those aspects that
are made visible in the CR database. An example is the verification of resolved CRs.
As the corresponding status transition is not used by most of the projects, it is not
possible to draw substantive conclusions on the quality of the verification process.

9 Summary and Outlook

This case study presents the derivation of a quality model for process characteristics
of Eclipse projects. It is based on evaluating metrics on the change request data, and
classification of metric results according to the value distribution of a set of
comparison projects.

The usage of declarative metric specifications is essential for the practical
application of the approach, as it simplifies development and validation of metrics.
Major attention to the details of the underlying metric definitions is required in order
to achieve interpretable results. A prerequisite is to have at least some degree of
uniformity in the usage scheme of the change request system.

A generalized quality model can be complementary to approaches for quality
evaluation of open source projects [25][26].

Change request systems in an industrial environment usually have more fine-
grained workflow definitions and collect more detailed information, like estimated
and actual effort, or information on scheduled deadlines. Thus the proposed approach
can be applied for a wider range of quality characteristics. An evaluation based on an
appropriate quality model can help to identify weaknesses in the development
process, and improve transparency in order to support planning and resource
allocation.

8 http://wiki.eclipse.org/Development_Resources/howto/Bugzilla_Use

References

1. Cook, J. E., Votta, L. G., Wolf, A. L.: Cost-Effective Analysis of In-Place Software
Processes. IEEE Trans. Softw. Eng. 24, 8 (Aug. 1998), pp. 650-663 (1998)

2. Grammel, L., Schackmann, H., Lichter, H.: BugzillaMetrics: An Adaptable Tool for
Evaluating Metric Specifications on Change Requests. In Ninth Intl. Workshop on
Principles of Software Evolution (Dubrovnik, Croatia, Sep. 03 - 04, 2007). IWPSE '07, pp.
35-38. ACM, New York (2007)

3. Ebert, C., Dumke, R.: Software Measurement. Establish – Extract – Evaluate - Execute.
Springer, Berlin, Heidelberg (2007)

4. Kanat-Alexander, M.: The Bugzilla Survey – August 2008.
http://wiki.mozilla.org/Bugzilla:Survey (2008)

5. Schackmann, H., Lichter, H.: Comparison of Process Quality Characteristics Based on
Change Request Data. In Proc. of the Intl. Conf. on Software Process and Product
Measurement (Munich, Germany, Nov. 18 - 19, 2008). R. R. Dumke et al., Eds. LNCS
5338, pp. 127-140. Springer, Berlin, Heidelberg (2008)

6. Kagdi, H., Collard, M. L., Maletic, J. I.: A Survey and Taxonomy of Approaches for
Mining Software Repositories in the Context of Software Evolution. J. Softw. Maint. Evol.
19, 2 (Mar. 2007), pp. 77-131. (2007)

7. Breu, S., Zimmermann, T., Lindig, C.: HAM: Cross-Cutting Concerns in Eclipse. In Proc.
of the 2006 OOPSLA Workshop on Eclipse Technology Exchange (Portland, Oregon, Oct.
22-23, 2006), pp. 21-24. ACM, New York (2006)

8. Hou, D.: Studying the Evolution of the Eclipse Java Editor. In Proc. of the 2007 OOPSLA
Workshop on Eclipse Technology Exchange (Montreal, Quebec, Canada, Oct. 21, 2007),
pp. 65-69. ACM, New York (2007)

9. Wermelinger, M., Yu, Y.: Analyzing the Evolution of Eclipse Plugins. In Proc. of the 2008
Intl. Working Conf. on Mining Software Repositories (Leipzig, Germany, May 10-11,
2008), pp. 133-136. ACM, New York (2008)

10. Kidane, Y., Gloor, P.: Correlating Temporal Communication Patterns of the Eclipse Open
Source Community with Performance and Creativity. In Proc. of NAACSOS 2005 (Notre
Dame, Indiana, June 26-28, 2005) (2005)

11. Linstead, E., Rigor, P., Bajracharya, S., Lopes, C., Baldi, P.: Mining Eclipse Developer
Contributions via Author-Topic Models. In Proc. of the Fourth Intl. Workshop on Mining
Software Repositories (Minneapolis, MN, May 19-20, 2007), p. 30. IEEE, Washington, DC
(2007)

12. Herraiz, I., Gonzalez-Barahona, J. M., Robles, G.: Forecasting the Number of Changes in
Eclipse Using Time Series Analysis. In Proc. of the Fourth Intl. Workshop on Mining
Software Repositories (Minneapolis, MN, May 19-20, 2007), p. 32. IEEE, Washington, DC
(2007)

13. Zhang, H.: An Initial Study of the Growth of Eclipse Defects. In Proc. of the 2008 Intl.
Working Conf. on Mining Software Repositories (Leipzig, Germany, May 10-11, 2008),
pp. 141-144. ACM, New York (2008)

14. Panjer, L. D.: Predicting Eclipse Bug Lifetimes. In Proc. of the Fourth Intl. Workshop on
Mining Software Repositories (Minneapolis, MN, May 19-20, 2007), p. 29. IEEE,
Washington, DC (2007)

15. Schuler, D., Zimmermann, T.: Mining Usage Expertise from Version Archives. In Proc. of
the 2008 Intl. Working Conf. on Mining Software Repositories (Leipzig, Germany, May
10-11, 2008), pp. 121-124. ACM, New York (2008)

16. Mockus, A., Fielding, R. T., Herbsleb, J. D.: Two Case Studies of Open Source Software
Development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11, 3 (Jul. 2002),
309-346. (2002)

17. Francalanci, C., Merlo, F.: Empirical Analysis of the Bug Fixing Process in Open Source
Projects. Open Source Development, Communities and Quality, pp. 187-196. Springer,
Boston (2008)

18. Michlmayr, M., Senyard, A.: A Statistical Analysis of Defects in Debian and Strategies for
Improving Quality in Free Software Projects. In: Bitzer, J., Schröder, P. J. H. (Eds.), The
Economics of Open Source Software Development. pp. 131–148. Elsevier, Amsterdam
(2006)

19. Śliwerski, J., Zimmermann, T., Zeller, A.: When Do Changes Induce Fixes? In Proc. of the
2005 Intl. Workshop on Mining Software Repositories (St. Louis, Missouri, May 17, 2005),
pp. 1-5. ACM, New York, NY (2005)

20. Koponen, T: RaSOSS - Remote Analysis System for Open Source Software. In Proc. of the
Intl. Conf. on Software Eng. Advances (Papeete, Tahiti, French Polynesia, Oct. 29 – Nov.
03, 2006), pp. 54-59. IEEE, Washington, DC (2006)

21. Herraiz, I., German, D. M., Gonzalez-Barahona, J. M., Robles, G.: Towards a
Simplification of the Bug Report Form in Eclipse. In Proc. of the 2008 Intl. Working Conf.
on Mining Software Repositories (Leipzig, Germany, May 10-11, 2008), pp. 145-148.
ACM, New York (2008)

22. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.: What
Makes a Good Bug Report? In Proc. of the 16th ACM SIGSOFT Intl. Symp. on
Foundations of Software Engineering (Atlanta, Georgia, Nov. 09-14, 2008), pp. 308-318.
ACM, New York (2008)

23. Gamma, E.: Agile, Open Source, Distributed, and On-Time – Inside the Eclipse
Development Process. Keynote Talk, 27th Intl. Conf. on Software Engineering., 15-21 May
2005, St. Louis, Missouri (2005)

24. Schackmann, H., Jansen, M., Lischkowitz, C., Lichter, H.: QMetric - A Metric Tool Suite
for the Evaluation of Software Process Data. In Companion Proc. of the 31th Intl. Conf. on
Software Engineering (Vancouver, Canada, May 16-22, 2009), pp 415-416. ACM, New
York (2009)

25. Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The SQO-OSS Quality Model:
Measurement Based Open Source Software Evaluation. In Open Source Development,
Communities and Quality (Milano, Italy, Sep. 7-10), IFIP vol. 275, pp. 237-248. Springer,
Boston (2008)

26. Ciolkowski, M., Soto, M.: Towards a Comprehensive Approach for Assessing Open Source
Projects. In Proc. of the Intl. Conf. on Software Process and Product Measurement
(Munich, Germany, Nov. 18-19, 2008). R. R. Dumke et al. Eds., LNCS 5338, pp. 316-330.
Springer, Berlin, Heidelberg (2008)

