SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND EBINEERING 1

Building a Communication Bridge with Mobile
Hubs

Onur TekdasStudent Member, |EEE,Yokesh KumarSudent Member, |EEE, Volkan Isler, Senior Member, |EEE,
Ravi JanardanSenior Member, |1EEE.

Abstract—Mobile robots can be used as mobile hubs to

provide communication services on-demand. This capabilt is
especially valuable in disaster response scenarios wheréere
is no communication infrastructure. In such scenarios, mobe
hubs can provide a communication infrastructure in a dynamic
fashion.

In this paper, we study the problem of building a communica-
tion bridge between a sources and a destinationt with mobile
robots. Given a set of robotsP and their initial locations, our goal
is to find a subsetS of robots and their final locations such that
the robots in S create a communication bridge betweers and ¢
in their final locations. We introduce a new optimization problem
for building communication bridges. The objective is to mirimize
the number of hubs (i.e.|.S|) while simultaneously minimizing the
robots’ motion. The two mobility measures studied in this pger
are: (i) maximum travel distance and (ii) total travel distance
of the robots. For a geometric version of the problem where
the robots must move onto the line segments, ¢, we present
polynomial time algorithms which use the minimum number of
hubs while remaining within a constant factor of a given moton
measure.

Note to Practitioners — Mobile robotic hubs can provide
connectivity service in applications such as disaster regmse
where the underlying communication infrastructure is broken.
In such applications, often a communication bridge between

two sites (e.g. a command center and a specific site) must be

established. In such scenarios, robots can autonomously pley
themselves and create a communication bridge.

In this work, we study the efficient use of mobile robots
to create a communication bridge between a sources and
a destination ¢. This yields a challenging resource allocation
problem in which mobility and communication constraints must
be addressed simultaneously. Specifically we study the folling
problem: Given s and ¢, and the initial locations of the mobile
hubs, find their final locations so as to minimize the number
of hubs used in the bridge and (either maximum or total)
distance traveled by the hubs. We present efficient, provakl
correct approximation algorithms for a special version of tis
optimization problem in which the hubs are required to move
onto the line segment[s,t]. From a practical perspective, this
special case is important because on the open plane it minizés
the overall number of hubs on the bridge. Thus, our algorithns
can be used in scenarios such as robots operating in open spac
(land, water, or air). From a theoretical perspective, it provides
an important first step toward the solution of the general prcblem
where the hubs can be placed at arbitrary locations.

Index Terms—data mules, robotic routers, sensor networks
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|. INTRODUCTION

The task of building a communication bridge connecting
two locations arises frequently. For example, when fighting
forest fires, a high capacity connection between the command
center and a temporary base may be needed. When there is no
underlying communication infrastructure (which is typiga
the case in emergency response scenarios), mobile emtities
communication capabilities can be used to build a communi-
cation bridge. In particular, with recent advances in rast
using mobile robots for this purpose is becoming feasible.

In this work, we address the problem of building a com-
munication bridge in an efficient fashion. Imagine that we
are given a source and a destinatiort (the two locations
that need to be connected), and initial locations:ofobots
(or mobile hubs). The goal is to pick a small subset of these
robots and determine their final locations, so that when the
robots arrive at their final locations, there is a path betwee
andt in the underlying communication graph. In this case,
we say that acommunication bridge betweens and ¢ has
been established. Throughout the paper, we assume that two
entities can communicate if and only if they are within a give
communication radius. See also Figure 1. Further, we study
the problem in the open plane without obstacles. Even though
we focus on simple communication and environment settings,
we believe that the problem is important for two reasons.
First, as we show in the paper, finding solutions with global
performance guarantees is a hard problem even for this basic
version. Our results provide a starting point for the stufly o
more sophisticated versions of the problem. Second, threre a
practical scenarios such as robots operating in open spaces
(which can be on the land, on the water surface, or in the air
at a fixed height) in which our setup is applicable.
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Fig. 1. Initial locations of the robots are;, i« = 1,...,6; s andt cannot

communicate. By movings — x4, 3 — x4, x4 — z; andzs — xf a
communication bridge with four hubs connectisgndt is established. The
circles around the nodes illustrate the communicationusadi
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We focus on two measures of efficiency. The first one is the r
distance traveled by the robots to establish the commuaitat
bridge. Relevant objectives are minimizing the maximum or
the total Euclidean () distance traveled. This measure is s
important when the robots have limited battery power. The
maximum distance traveled also determines how quickly the
bridge can be established. The second measure is the number
of robots required to establish the communication briddes T
is an important parameter because if we use a small number
of robots for the given taSk’, Fhen the remalnmg, I‘ObO_tS can p% 2. Robota (resp. robotb) can reach points inside the line segment
used for other tasks. In addition, a communication bridgé wif;,,. r,] (resp. segmenii,, 5] ). Althougha is to the left ofb, a must move
a small number of hubs is desirable in order to minimize the the right ofb, to ra, andb must move to the left of;, to ,, to establish
latency of the network. girct::(l)erzlmumcatlon bridge. The final locations of robots arenshby unfilled

Our results and techniques. We believe that the two
metrics mentioned above are equally important. Therefoee,
study the resulting bi-criteria optimization problem. 8ifie algorithm for theL, case (Section II-B).
cally, we present algorithms to minimize the number of hubs The algorithms we present are dynamic programming solu-
in the communication bridge for a given maximum (or totakjons which exploit the ordering property. However, evethwi
travel distance inL, metric. the ordering property, the dynamic programming solutiames a

The general problem where the environment is representgst straight-forward. This is mainly because the final lwrat
with an arbitrary graph is NP-hard and, in fact, cannot hsf the robots must be chosen from the continuous set of points
approximated efficiently [2]. Hence, in this paper, we foons on the line segmers, t]: There are instances in which robots
a geometric version where the underlying environment is thgust be placed precisely to achieve the optimal solutiod, an
Euclidean plane, and the chosen robots are required to meughtly perturbing the optimal solution (to a finite set of
onto the straight line segmefy, ¢] to form a communication points) breaks connectivity. Therefore, our algorithmsidv
bridge. This special case is important from a practicaldtanan apriori discretization of the line segment.
point because moving the robots onto this line segmentyield Finally, we present an interesting property regarding the
the minimum number of hubs in the communication bridg@umber of hubs. Lef, > r be the distance betweenandt.
as compared to any other curve joiningand . Another Clearly, at leask* = [L/r] — 1 hubs are required to connect
motivation for this model is low power, inexpensive infedr s and¢. However, building a bridge witm* hubs may not
communication which is becoming a popular choice for smale feasible due to the motion constraint. We show that any
robots: In an extreme case, if each robot is equipped with orthinimal solution which satisfies the motion constraint uses
two IR receivers/transmitters such that the pairs are placgost 2n* hubs (Section Ill). This means that by removing

180 degrees apart, a straight line communication is negess@onstraints on distance we gain a factor of at nbst the
to establish a communication bridge betweeandt¢. From number of hubs.

a theoretical perspective, these problems turn out to b qui

challenging. One of the major sources of difficulty is theklac

of an “ordering property” in the optimal solution (We makd" Related Work

the ordering property explicit in Section 1I-A.) As an exdmp In the robotics literature, the interactions between rsbot

consider the version where we are given a maximum travad a static sensor network have been studied for network

distance for each robot. Suppose rohofresp. roboth) can repair [3], connectivity [4] and data-collection probleif&g.

reach points inside the line segmét, r,] (resp.[l, 7). It From a systems perspective, researchers have proposed arch

is possible to build instances wherg is to the left ofr, but tectures that exploit controlled mobility [6], [7], [8], [9A

in the optimal solution robot moves to the right of robok recent review on the state of the art in exploiting sink migpil

(Figure 2). can be found in [10]. However, there are very few results
For the maximum distance versioMéxDist), we overcome which establish bounds regarding the number of necessary

this hurdle by relaxing the distance requirement: if theéropt  robots to accomplish a communication related task.

algorithm can build a communication bridge with at mést In [2], Demaine et al. studied the problem of moving

hubs by moving each robot at most distan;ewe present pebbles along the edges of a graph (withvertices) so as

an approximation algorithm which builds a communicatioto achieve various connectivity objectives while minimigi

bridge with & hubs by moving each robot at most distancthe number of moves. In particular, they sketch @tn)-

V/2d (Section II-A). The key result enabling the algorithm isapproximation algorithm for the problem of creating a path

the presence of an ordering property for the relaxed versiaf pebbles between two given vertices with minimum sum

For the sum versionumDist), we show that there is andistance. They also show that minimizing the total or max-

ordering property but for thé; metric (sum of absolute valuesimum distance is NP-hard, and that the maximum distance

of coordinate differences). We present an algorithm whiatase cannot be approximated within a facn'=<). Since

exploits this ordering property and returns the optimalisoh connectivity and mobility are coupled in their model, their

for the L; metric. This in turn yields a/2-approximation results do not directly apply to the problems studied here.
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In this paper, we present the first results for the problemg, — 4 . x; +d zr —d xr +d
of building a communication bridge while minimizing the i Tk
number of hubs and the distance traveled by them for a given IS ; < P> <l

- : T {
communication radius. z;—d .g z; +d

II. BUILDING A BRIDGE WITH THE MINIMUM NUMBER OF
Fig. 3. Letx; be the projection of the initial location of robgt. We relax

HuBs the final location ofp; to I; : [x; — d, x; + d] which is shown as the left-most
In this section, we study the problem of building a commuiné segment.

nication bridge betweer andt¢ while optimizing the number
of hubs and the movement of the robots. We present soluti
to two bi-criteria optimization problems: In the first prebt f
(MaxDist), we seek a solution with the minimum number oP
hubs subject to the constraint that each robot moves at m
a given distanced. In the second problemSgmDist), the
constraint is that the total movement must not exc&dn
this paper, we present algorithms for givéror B. To find
the minimum value ofl (resp.B), one can perform a binary

search oni (resp. B resp.). Proposition 1: For any final locationt) € [z; — d, x; + d]

A couple_of remarks: Wher_l the distance betweemdt IS wherep; € P’, the distance traveled is not greater tha®d,
less tharv, i.e. |st| < r, there is no need for any intermediate lugvi] < v/2d
€. |uv;| < .

robots. Hence, we consider the case whetg¢ > r. Also,

Cht,’r(%.arly, removing these robots does not change the feiagibil
the problem.

For each robop; € P’, we compute a line segmei :
%sit_ d,z; + d] (Figure 3). We will pick the final location
of p;, from this line segment. Note that this is a relaxation
because the robot may have to move more than distdnce
But the deviation is bounded as it is stated in the following
proposition?:

The number of hubs required for the relaxed version is

in order to achieve a bridge betweenand ¢, it is both ¢ o6 that the number of hubs required for the original
necessary and sufficient that the distance algng between problem:

every consecutive pair in the communication bridge is attmos Proposition 2: Let k*
r. Therefore,|st| < (n + 1)r holds. Hence, we assume thaj '
the number of robots is at least[|st|/r] — 1.

and k£ be the number of hubs used
n an optimal solution to the original problem and an optimal
solution to the relaxed problem, respectively. Thens k*.

The relaxed version of the problem satisfies a simple order-
A. MaxDist: Minimizing Maximum Distance ing property which allows us to design an efficient algorithm

In MaxDist, we are given points and¢ and a setp = AS mentioned previously (Figure 2) the original problem may
{p1,p2,...,pn}, of point-robots in the plane and a maximuniot have the ordering property. We now explain the ordering
traveling distanced. Any two members ofP U {s,¢} can Property satisfied in the relaxed version. _ _
communicate with one another if they are within (Euclidean) Consider a placement of robots érwhere the final location
distancer of each other. Lety; = (z;,y;) be the initial Of €ach robop; is chosen from the line segmejmt —d, z;+d].

position ofp;. We wish to select a subs§tC P and compute We order the robots according ig values in non-decreasing
a final positionv; = (2,y]) on the line segmenis, ¢] for order. We say that the placementvigll-ordered if for any

eachp; € S such that (i)s and¢ are connected via point-to- WO robotsp; andp; such thate; < z; we haver; < /.
point communication links where points are selected froen th Lemma 3 (Ordering Property): There exists a well-ordered
final locations of robots ir§ and link lengths are not greateroPtimal solution for the relaxed problem.
than the communication distanee (i) the distance traveled Proof: In an optimal placement, let us cab;( p;) an
by each robop; is not greater thawl (i.e. V,, cs|usvi| < d), unordered consecutive pair if two robots p; and p; which _
and (iii) the total number of hubs in the communication beidg@'® consecutive in the final bridge, are placed at respective
(i.e. |S|) is minimized. IOCf':ItlonS @ and_:v;- with z < xg but x; > zj. We

Let L be the line passing through and t. We place a claim that there is an optimal solution with zero unordered
coordinate frame where the-axis is aligned withZ, s is at consecutive pairs. Consider an optimal solution which has
0 (i.e. zs = 0) and ¢ is at locationz; > 0. Without loss the minir_num number of unordered pairs. Suppose th.at this
of generality, we defineight as the positive direction of this NUmber is non-zero. Lep; and p; be two robots forming
frame. The final location of robots; € S can be determined & consecutive unordered pair (if an unordered pair exists, s
asv; = («},0) in this new coordinate frame. Hence, we cafoes a consecutive one). We show that th_e final locations of
usez’ to denote the final location; = (z,0). Also note that these two robots can be swapped, reducing the number of
the projection of the initial locatiom; = (z;,y;) on to L is unordered pairs by one. This cpntradlcts with the miningalit
simply ;. of the number of unordered pairs. o

We start by pruning the sé® and removing robots which ~ First, from the relaxed segment assumptionu{i)< z; +d
are more than distancé away fromL (i.e. if |y;| > d then @nd (i) z; — d < 2’ holds. Since this is an unordered pair,
p; is removed). Moreover, we can remove the rohgtsuch We have: (i) z; < z; and (iv) z; > zj. From (i)-(iv) we
that z; < —d or x; > x; + d. This is because these robots . ) .

The proofs of these two propositions are straightforward arnll be

CannOt rea‘?h the line segrne[r;t t]. Let us call the new Set omitted in the final version. We included them in the Apperfdixverification
which consist of robots satisfying the above constraint®as purposes.
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have:z, —d < z; —d < x; <z, < z; + d. Observe that hubs which are selected from the seti,ps,...,pi—1}. If
z, —d < x; < z; + d holds, hence we can moyg to x; [x; — d,z; + d] intersects withOPT(k — 1,7 — 1) then the
which is in its feasible region. optimum solution will putp; to the rightmost possible location
Similarly, we find thatz; — d < a:; <z, < x +d < whichisz, = min(x; +d,OPT(k—1,i—1)) and we set the
xj +d. Hence,z} is in the feasible region gf; which makes reach OPT'(k,i) = «,+r. (2) The last hub is nqi;: Then the
it possible to movey; to 7. k" hub should be selected from sgt;, ps, . . ., pi—1} Whose
Finally, we can conclude that we can swap the final locationsaximum value is calculated ByPT'(k,i—1) in the previous
of p; andp; and decrease the number of unordered pairs bgrations. If the first case suffices, we pick it since it exie
one whilep; andp, remain in their respective feasible regionsteach more than the second case (due to the ordering property)
Moreover, since; andp; are consecutive, swapping does nottherwise we pick the second case and set iD10T'(k, 7).
introduce additional unordered pairs. This contradicesfett Using the above formula, we calculate the dynamic pro-
that the solution has the minimum number of unordered paigramming table where both andi vary betweerd and m
B wherem < n is the cardinality of pruned se®’. From this
The ordering property allows us to use dynamic prograrteble we find the minimunk such thatOPT(k,m) > .
ming to compute an optimal solution. This yields the optimal solution to the relaxed problem. By
Before presenting the algorithm, we define tleach of a Proposition 1, our solution gives @2 approximation on the
solutionS = {p1,p2, ..., pm}. Without loss of generality, let maximum distance traveled by using at most the same number
us assume tha$' is sorted in increasing order. If there is af hubs used in the optimal solution (due to Proposition 2).
communication bridge between and p,,, then we have a  The running time of our algorithm i©(n?). This is because
reachable region frond to z/, + r where we can place athe size of the table i®(n?) and for each entry we take the
robot connected t®. As we assume that reach starts frormaximum of two values (Equation 4).
0, we can define theeach of S with a single parameter, i.e. Theorem 4. If there exists a solution td/azDist that uses

reach(S) =z, +r. k hubs such that each robot moves at most distahdéen
Let OPT'(k, i) be the maximunmeach which usest robots we can compute a solution where we use at niokstibs and
from the set{pi,ps,...,p;} to form a connected set with each hub moves at most2d in O(n?) time.

whereY<;<; p; € P’. To simplify the notation, we define the
function conn(k,i). This function returns true if and only if B. SumDist: Minimizing the Total Distance
[z; — d, z; + d] intersects with theeach of OPT'(k,i—1).In ' g
other words, this function tests whether a robptan extend In SumDist, we are given points and¢ and a setP =
the reach OPT (k,i — 1) by moving inside its feasible region {p1,p2; - - ., pn} Of mobile hubs, as well as a budgston the
1; and extend theeach of s. This condition is satisfied if the total distance traveled. Let; = (z;,y;) be the initial position
following holds:OPT (k,i — 1) > z; — d andz; +d > 0. of p; on the plane. We wish to select a subsetC P and
We now present the dynamic programming algorithm. ~ compute a final position; = (z},y;) on the line segmerjs, ¢|
for eachp; € S such that (i)s andt are connected via point-

OPT(0,i) =r (1) to-point communication links, (i) the totaL, (Euclidean)
. min(z; +d,r) +7r if conn(0,%) distance traveled is not greater thari.e. > 5 |u;v;| < B),
OPT(1,1) = o (2)  and (iii) the total number of hubs in the communication beidg
(i.e.]S]) is minimized.
OPT(k,i) =0 if i<k ®3) Similar to MaxDist, we place a coordinate frame where the
min(z; + d, z-axis is aligned withL (the line passing throughk andt),
OPT(k,i) = OPT(k —1,i — 1)) +r if conn(k —1,7) 1S atz=0andtisatz, > 0. Thereach of a solution is
OPT(k,i— 1) ol defined as before.

Unfortunately, there exist instances where the ordering
) property does not hold in thé, metric. However, it turns
The first two equations constitute the base cases. When oud that when the underlying distance metrid.is there is an
do not use any robots (i.&. = 0) then thereach is » which optimal solution which satisfies an ordering property, \hic
is the reachability region of (first equation). The secondin turn enables a dynamic programming based solution. We
equation sets the initial values forPT'(1, 7). If feasible region say that a placement isell-ordered if for any two robotsp;
l; intersects with0, r| then we put the robgp; at min(z; + andp; such thatr; < z; we havez; < 2.

d,r) and set thaeach of OPT(1,i) asmin(z; + d,r) + r. Lemma 5: If the distance metric id;, then there exists a
Otherwise since; cannot be connected towe put a0 value. well-ordered optimal solution.

Since OPT (k, i) usesk robots from the se{p1,po,...,p:} Proof: Let us assume tha® PT;" is an optimal solution
the cardinality of this set cannot be less tharThis condition which includes the least number of unordered pairs. jet
is addressed by Equation 3. andp; be consecutive hubs used (W7} such thatz; < x;

In the last equation, we compute all remaining entrigsut z; > z’;. We will show that swapping; andp;’s final
OPT (k,i). We know that the optimal solution chooses oncations does not increase the budget, i.é.4f |z; — 2}| +
of the j < i as thek’” hub. We consider two cases: (1) thez; —2;| andb’ = |z;—a|+|z; —}| thenb > b holds. On the
last hub isp;: we look up the optimal solution wittk — 1  other hand, the number of unordered pairs decreases by one.



SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND EBINEERING

an edge between two vertices if the distance between them is
at mostr. If G has a path betweenandp; of length at most

k, then a communication bridge fromto p; can be formed
with budgeto.

Here, we discuss only how to extend the first dimension
Fig. 4. Figure shows the case’ < z; < z} < x;. Upper line segments Of the dynamic programming formulation (Equation 8). The
show the total cost for the initial’ solution and lower linggseents show the argument for the other dimension (Equation 9) is similar.
costs after swapping. When we swap the final locations oftsplvee decrease . . .
the total cost while satisfying the ordering property. To calculateT'(k + 1,4, B), we consider the optimakach

with k& hubs when using the; as thek* hub for all j < i

(due to the ordering property we do not need to consider the
This contradicts the minimality of the number of unordereldcations of earlier hubs in the optimal solution). LBt =
pairs. Note that, since we only swap the final locations of tfe(k, j, B — b) be the maximunreach achievable by using
hubs, the connectivity is preserved. Further, swapping doé robots withp; as the last hub and a total budget Bf— b.
change the total budget used in thelirection. Therefore, the The final location ofp; in this optimalreach is R — r. We
overall budget does not increase as well. need to compute theeach for £ + 1 hubs wherep; is the last

Assume that we fix the locations af; and z;: we have hub andp; travels at mosb units. For this, we consider all
three “bins” ¢ < z;, 2; < = < z; andz; < «) for possibilities forR.
possible locations of;, andxfj. The following set of equations  Note that the distance of the initial location = (z;, ;)
correspond to all 6 possible cases. In each case, the cladn is y;. Hence,b > y; must hold forp; to act as a hub.
above holds. In Figure 4, the second statement in the fimst linet v/ = b — y;, then,[z; — b, z; + b'] is the region that robot

~
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We now solveSumDist optimally for the L; metric (up
to an arbitrarily small additive cost). We start by buildiag

p; can be placed on the liné with a budget oft/. Due to
the ordering propertyp; must be placed to the right gf;.
Therefore, its location is afteR — r and beforeR (otherwise
p; andp; cannot communicate). In other words, valid locations
for p; are given by the intersection ¢f; — o', z; + '] and
[R — r, R], and this set should be non-empty.

We now compute the set of valid budgétdor robot p;.
Since the robot has to travg] for the vertical component, the
remaining budget for the horizontal component’is= b — ;.
Let C(z;) be the set of possible values fof. This set is
computed as follows:

tableT (k, i, B) which stores the maximuneach usingk hubs ~ C(%i) = W < B —yi A Z(wi, R)} (10)
subject to: (i) thei*” robot is thek!” hub, and (ii) the budget R—r—2;<V<R-z; ifa; <R-7r
for the firstk robots is at mos. The entries are computedz(z;, R) ={ 0 <t < R—x; if R—r<z; <R
as follows: V=2 —R olw
(11)
T(Oa ia B) =r vi (5) P . . .
Tk, i, B) =0 Yo ©6) Fo_r a budg_e_b to be valid, we must have < B. This gives
» g the first condition fory’: ¥’ < B — ;. We use the functio
T(k,i,0) = {:vi +7r if a k& hub bridge exists initially to constrainy’ as a function ofz; and the currenteach R.
N 0 olw We consider the three cases based on the locatian wfith
@) respect to the location of the last robat;) and thereach

T(k+ 1,4, B) = max max min(T(k,j, B —b),z; +b')+r
k<j<ib eC(z;)
(8)

T(k,i,B+¢) = max max min(T(k,j,B+e—b),x;+1)
k<j<ib' e€C(xz;)
©)

where B is discretized by, V' = b —y; andC(z;) is a set
of possible values fob’. We will discusss andC'(z;) shortly.
The first two equations are the base cases. If initially thet®
create a communication bridge betweeandp; with k£ hubs,
then Equation 7 sets threach T'(k, 4, 0) to =; +r. This can be
checked by building a grap# whose vertices ar@’ U {s, t}
where P’ is the set of hubs that are initially ds, t|. There is

R =z, +r. See Figure 5.

Case lg; < :cfj):, In this case, we must have> R—r—ux;,
(otherwisep; cannot extend the currergach) andy’ < R—u;
(if ,p; moves further to the righfs; andp; can’t communicate).

Case 2 ¢ < z; < R): Similar to case 1)’ should not
be greater tharkR — z;. The lower bound is obtained by the
non-negativity oft’.

Case 3: Whene; is to the right of the currenteach R,
there is only one value robot; should move: the rightmost
reachable point.

The newreach after placing robop; to min(R,z; + b) is
min(R, z;+b)+r. In order to computd’(k+1, 7, B), among
all possiblej < i and all possible budgeté € C(z;), we find
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i =V T; zi + 0 complexity of our algorithm i@(@).
> d Theorem 7: If there exists a solution t&umDist that uses
¢ e L k hubs such that the total movement of robotsAsin the
s Tj R=az;+r L (Euclidean) metric, then we can compute a solution where
2 — Y we use at mosk hubsgand the total movement of robots is at
Li mostyv/2B+ne in O(2£~) time, where: is the discretization
o D—Tq . constant.
/ /
s K fi=ay+r I11. BOUNDS ONNUMBER OF HUBS
zi =V z; Lt o' Let OPT(d) be the number of hubs in an optimal solution to
>—— MaxDist with distance constrainf. How does this constraint
° ® | affect the number of hubs on the bridge? In other words, if
s o R=zal+r OPT(o0) = [|st|/r] —1 is the number of hubs required in the
unrestricted version, how far © PT(d) from OPT(c0)? In
o &xl Ly this section, we show thad PT'(d)/OPT(co) < 2.
° : Assume thain — 1 < |st|/r < m, for some integem > 1.
s @) R=2a)+r ('_rhe casemn = 1 is uninteresting, as and¢ are then within
distancer, hence connected.)
Fig. 5. Leta’ be the last hub location at theach and p; be the robot  Partition [s, t] into m equal-length intervals, labeled from

considered at the current iteratiofop Figure: When ' is too large both
end points of feasible region is out of the the regiar}, R], henced’ is
redundant in this examplé&ext Three Figures: The three cases considered
in Equation 11 are illustrated.

stotasly,Is,...,I,. Each interval has length greater than
(1—1/m)r and at most. Consider any solution foDPT(d).
This solution connects andt with the fewest number of hubs.
In such a solution, we can have at most two hubs inside any
I;,2 < j <m—1. To see this, note that if there were three or
the optimalreach. Since the size of the sét(x;) is bounded more hubs in/;, then all but the two extreme onesip could
by r/e, each entry can be calculated (n(nr/e) time. be removed without losing connectivity (since the lengthi of

We now show how this result yields an approximatioi$ at mostr), thereby obtaining a solution f@®PT(d) that has
algorithm for L,. Let OPT; andOPT; be optimal solutions fewer hubs than the original optimal solution—a contraditt
for L, and L, metrics, respectively. The following lemmaAlong similar lines note thaf; and /,, can each contain at
bounds the deviation betwe&nPT; and O PTy. most one hub; if there was more than one hullin(resp.

Lemma 6. Let OPT; be the optimal solution for the., 1,,), then all the ones except the one fa_rt_hest fronesp.t)
metric with a given budgeB. SupposeD PT; can connecs Can be removed without losing connectivity.
andt using k hubs. There exists optimal solutighPT; for It follows that for any optimal solution, we ha\@PT(d)
the L; metric which can conneatandt by usingk hubs and 2(m —2) +2 = 2(m — 1). Also, OPT(c0) = [[st|/r] — 1
a budget ofv/2B. m — 1. Hence, we have the following.

Proof: Let (2, 4:) be the initial location of a robot used -emma 8: OPT(d)/OPT(co) < 2.

in OPT; andz!, be the final location. Thé, andL, distances =~ USing similar argumenzts, it can be shown that the same
are|x; — x| +y; and+/]z; — o2 + 42, respectively. Without bound applies foSumDist. _ o _
loss of generality, we scale the distanceslby; so that the  Next, we show that the bound in Lemma 8 is tight: We claim
L, and L, distances become+ 1 andv/a2 + 1, respectively thaF, for any flnlted, there is an instance dflaxDist with the
wherea = |z; — 2| /y;. From elementary calculus, it is easy’Ptimal solutionOPT(d) for which OPT'(d)/OPT (c0) = 2.
to show that:f(a) atl /9 - Let |st|/r = m > 1; thus, each intervaly, I, ..., I,, de-

Vaiil = i ;
To obtain the optimalL; solution for budgetB, we solve flned above Das Iengbh_Lets be a real number in the (open)
interval (0, === ). Consider a seV’ = {v1,v2,...,V3(m-1)}

T (k, i, B) for all possiblek, i, B (whereB is discretized with £ ooint defined as follows: for — 2.4 5
¢ intervals). Due to the discretization, the total budgetduse pomio?[s,t],j € med ?S 'OSWT'?)Oﬂ _2’ Y (m:
here can be at most e than the budget used yPT; where %7 — 3¢ tgn anoiory = 1,93,...,2m = 3, vj =

<

2
k7 is the number of hubs used WYPT}. In other words,
our dynamic programming algorithm can find a solution wit
k7 hubs by using at mosB; + ke budget whereB; is the
used budget withl.; metric. This means thaB’, the total
budget used by our solution will be bounded By + ne.

Hle + &1y, See Figure 6.

h The setV satisfies the following (easily-verifiable) proper-
ties: () vi # s € Iy andvy(,—1) # t € Ly, (ii) successive
points inV U{s, ¢t} are within distance; and (iii) at least one
pair of successive points i’ U {s, ¢} is not within distance
forany V' c V.

Consequently, the total budget used by our algorithm will Be
N Y g y g Let P be a set ofn > 2(m — 1) robots {p1,p2,...,pn}

at mosty/2B + ne whereB is the given budget i, metric. d ch heir initial " in3Ras foll fori o
We can choose to achieve an arbitrarily small additive error@Nd choose their initia posmqn_s_ in-ras Toflows. forj =
.,2(m — 1), placep; at initial positionu; = (v;,d).

. . . . 1,2,..
We now establish the running time of the algorithm. The’ ™
. . 2B . .
size of the table i)(*= ).and as we discussed ear“er. each 2peyiewers can find the proof in the Appendix section whichl \wi
entry can be calculated i®(nr/c) time. Hence, the time removed in the final revision.
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I L Is L [9] M. M. B. Tariq, M. Ammar, and E. Zegura, “Message ferry t@ulesign
sl w1 ‘ Vg U3 ‘ Vg4 Us ‘ V6 | ¢ for sparse ad hoc networks with mobile nodes,MobiHoc '06, 2006,
s o —o g pp. 37-48.
T T I ( I ( [10] J. Ma, C. Chen, and J. P. Salomaa, “mWSN for large scalbilmo
€ r e 7 c r sensing,”J. Sgnal Process. Syst., vol. 51, no. 2, pp. 195-206, 2008.
Fig. 6. Selection of points1,v2, ..., va(m—1) ON [s,t], with m = 4. APPENDIX

Proof: [Proposition 1]
The maximum distance traveled fgr is /d? + y? when the

Place any remaining hubs iR at some distance areater tharHnovement is relaxed td,. Sincey; < d holds, the claim follows,
y Ining hu ! 9 e, /d2 +y? < +2d. ]

d from [s, ]. Proof: [Proposition 2]
Observe that only, pa, . .., Pa(m—1) CaAN Move ontds, ¢] An optimal solution to the original problem cannot place hato

and, moreover, each suq[rb- can move only to the loca- pi outside ofl; : [z; — d,z; + d]. Because otherwise the distance
tion V). By properties (ii) and (i) above, it follows that traveled inz-direction exceeds the distance constraintHence an

. . gptimal solution to the original problem is also a solutiar the
P1,DP2; - - - P2(m—1) @re necessary and sufficient to establish r’é)laxed case, antl cannot exceed*. -
communication bridge betwearandt. ThereforeOPT(d) = Proof: [Lemma 8 for sum case]
2(m — 1) and the claim follows. Letm = [|st|/r], we partition[s, t] into m equal-length intervals,

Iy, Iz, ..., In. For eachl;, (1—1/m)r < |I;] < r holds wherdI;|

is the length of the interval. L&DPT(B) be the solution which uses

the minimum number of hubs. IOPT(B) we can have at most
In this paper, we introduced the problem of building &vo hubs inside anyi;, 2 < j < m — 1. As claimed in the max

communication bridge between two pointsand ¢ while case, if there were three or more hubslip then all but the two

minimizing the number of hubs on the bridge and satisfyi treme ones irn/; could be removed without losing connectivity.

. . . is is a contradiction with the minimality assumption of solution.
a maximum (or total) distance constraint for the robots. F%rimilarly I, and I, can each contain at most one sensor.

both versions we presented constant factor approximationt follows that for any optimal solution, we ha@PT(B) < 2(m—

algorithms for the geometric version where the robots mugt+2 = 2(m—1). Also, OPT(c0) = [|st|/r]—1 = m—1. Hence,

move ontos, t]. we have:OPT(d)/OPT(oco) < 2. u
There are many interesting directions for future work. It

is not clear whether the/2 approximation factor for the

geometric version can be improved. The general version in

which the final locations of hubs can be anywhere on the plane

seems difficult. Solving the version where there are mutipl

source and destination pairs seems to be even harder.

IV. CONCLUSION
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