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Abstract—Mobile robots can be used as mobile hubs to
provide communication services on-demand. This capability is
especially valuable in disaster response scenarios where there
is no communication infrastructure. In such scenarios, mobile
hubs can provide a communication infrastructure in a dynamic
fashion.

In this paper, we study the problem of building a communica-
tion bridge between a sources and a destination t with mobile
robots. Given a set of robotsP and their initial locations, our goal
is to find a subsetS of robots and their final locations such that
the robots in S create a communication bridge betweens and t
in their final locations. We introduce a new optimization problem
for building communication bridges. The objective is to minimize
the number of hubs (i.e.|S|) while simultaneously minimizing the
robots’ motion. The two mobility measures studied in this paper
are: (i) maximum travel distance and (ii) total travel distance
of the robots. For a geometric version of the problem where
the robots must move onto the line segment[s, t], we present
polynomial time algorithms which use the minimum number of
hubs while remaining within a constant factor of a given motion
measure.

Note to Practitioners – Mobile robotic hubs can provide
connectivity service in applications such as disaster response
where the underlying communication infrastructure is broken.
In such applications, often a communication bridge between
two sites (e.g. a command center and a specific site) must be
established. In such scenarios, robots can autonomously deploy
themselves and create a communication bridge.

In this work, we study the efficient use of mobile robots
to create a communication bridge between a sources and
a destination t. This yields a challenging resource allocation
problem in which mobility and communication constraints must
be addressed simultaneously. Specifically we study the following
problem: Given s and t, and the initial locations of the mobile
hubs, find their final locations so as to minimize the number
of hubs used in the bridge and (either maximum or total)
distance traveled by the hubs. We present efficient, provably
correct approximation algorithms for a special version of this
optimization problem in which the hubs are required to move
onto the line segment[s, t]. From a practical perspective, this
special case is important because on the open plane it minimizes
the overall number of hubs on the bridge. Thus, our algorithms
can be used in scenarios such as robots operating in open spaces
(land, water, or air). From a theoretical perspective, it provides
an important first step toward the solution of the general problem
where the hubs can be placed at arbitrary locations.

Index Terms—data mules, robotic routers, sensor networks
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I. I NTRODUCTION

The task of building a communication bridge connecting
two locations arises frequently. For example, when fighting
forest fires, a high capacity connection between the command
center and a temporary base may be needed. When there is no
underlying communication infrastructure (which is typically
the case in emergency response scenarios), mobile entitieswith
communication capabilities can be used to build a communi-
cation bridge. In particular, with recent advances in robotics,
using mobile robots for this purpose is becoming feasible.

In this work, we address the problem of building a com-
munication bridge in an efficient fashion. Imagine that we
are given a sources and a destinationt (the two locations
that need to be connected), and initial locations ofn robots
(or mobile hubs). The goal is to pick a small subset of these
robots and determine their final locations, so that when the
robots arrive at their final locations, there is a path between s
and t in the underlying communication graph. In this case,
we say that acommunication bridge betweens and t has
been established. Throughout the paper, we assume that two
entities can communicate if and only if they are within a given
communication radiusr. See also Figure 1. Further, we study
the problem in the open plane without obstacles. Even though
we focus on simple communication and environment settings,
we believe that the problem is important for two reasons.
First, as we show in the paper, finding solutions with global
performance guarantees is a hard problem even for this basic
version. Our results provide a starting point for the study of
more sophisticated versions of the problem. Second, there are
practical scenarios such as robots operating in open spaces
(which can be on the land, on the water surface, or in the air
at a fixed height) in which our setup is applicable.
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Fig. 1. Initial locations of the robots arexi, i = 1, . . . , 6; s and t cannot
communicate. By movingx2 → x′

2, x3 → x′

3, x4 → x′

4 andx5 → x′

5 a
communication bridge with four hubs connectings and t is established. The
circles around the nodes illustrate the communication radius.
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We focus on two measures of efficiency. The first one is the
distance traveled by the robots to establish the communication
bridge. Relevant objectives are minimizing the maximum or
the total Euclidean (L2) distance traveled. This measure is
important when the robots have limited battery power. The
maximum distance traveled also determines how quickly the
bridge can be established. The second measure is the number
of robots required to establish the communication bridge. This
is an important parameter because if we use a small number
of robots for the given task, then the remaining robots can be
used for other tasks. In addition, a communication bridge with
a small number of hubs is desirable in order to minimize the
latency of the network.

Our results and techniques. We believe that the two
metrics mentioned above are equally important. Therefore,we
study the resulting bi-criteria optimization problem. Specifi-
cally, we present algorithms to minimize the number of hubs
in the communication bridge for a given maximum (or total)
travel distance inL2 metric.

The general problem where the environment is represented
with an arbitrary graph is NP-hard and, in fact, cannot be
approximated efficiently [2]. Hence, in this paper, we focuson
a geometric version where the underlying environment is the
Euclidean plane, and the chosen robots are required to move
onto the straight line segment[s, t] to form a communication
bridge. This special case is important from a practical stand-
point because moving the robots onto this line segment yields
the minimum number of hubs in the communication bridge,
as compared to any other curve joinings and t. Another
motivation for this model is low power, inexpensive infra-red
communication which is becoming a popular choice for small
robots: In an extreme case, if each robot is equipped with only
two IR receivers/transmitters such that the pairs are placed
180 degrees apart, a straight line communication is necessary
to establish a communication bridge betweens and t. From
a theoretical perspective, these problems turn out to be quite
challenging. One of the major sources of difficulty is the lack
of an “ordering property” in the optimal solution (We make
the ordering property explicit in Section II-A.) As an example,
consider the version where we are given a maximum travel
distance for each robot. Suppose robota (resp. robotb) can
reach points inside the line segment[la, ra] (resp.[lb, rb]). It
is possible to build instances wherera is to the left ofrb but
in the optimal solution robota moves to the right of robotb
(Figure 2).

For the maximum distance version (MaxDist), we overcome
this hurdle by relaxing the distance requirement: if the optimal
algorithm can build a communication bridge with at mostk
hubs by moving each robot at most distanced, we present
an approximation algorithm which builds a communication
bridge with k hubs by moving each robot at most distance√
2d (Section II-A). The key result enabling the algorithm is

the presence of an ordering property for the relaxed version.
For the sum version (SumDist), we show that there is an
ordering property but for theL1 metric (sum of absolute values
of coordinate differences). We present an algorithm which
exploits this ordering property and returns the optimal solution
for the L1 metric. This in turn yields a

√
2-approximation
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Fig. 2. Robota (resp. robotb) can reach points inside the line segment
[la, ra] (resp. segment[lb, rb] ). Althougha is to the left ofb, a must move
to the right ofb, to ra, andb must move to the left ofa, to lb, to establish
a communication bridge. The final locations of robots are shown by unfilled
circles.

algorithm for theL2 case (Section II-B).
The algorithms we present are dynamic programming solu-

tions which exploit the ordering property. However, even with
the ordering property, the dynamic programming solutions are
not straight-forward. This is mainly because the final locations
of the robots must be chosen from the continuous set of points
on the line segment[s, t]: There are instances in which robots
must be placed precisely to achieve the optimal solution, and
slightly perturbing the optimal solution (to a finite set of
points) breaks connectivity. Therefore, our algorithms avoid
an apriori discretization of the line segment.

Finally, we present an interesting property regarding the
number of hubs. LetL > r be the distance betweens and t.
Clearly, at leastn∗ = ⌈L/r⌉− 1 hubs are required to connect
s and t. However, building a bridge withn∗ hubs may not
be feasible due to the motion constraint. We show that any
minimal solution which satisfies the motion constraint usesat
most 2n∗ hubs (Section III). This means that by removing
constraints on distance we gain a factor of at most2 in the
number of hubs.

A. Related Work

In the robotics literature, the interactions between robots
and a static sensor network have been studied for network
repair [3], connectivity [4] and data-collection problems[5].
From a systems perspective, researchers have proposed archi-
tectures that exploit controlled mobility [6], [7], [8], [9]. A
recent review on the state of the art in exploiting sink mobility
can be found in [10]. However, there are very few results
which establish bounds regarding the number of necessary
robots to accomplish a communication related task.

In [2], Demaine et al. studied the problem of moving
pebbles along the edges of a graph (withn vertices) so as
to achieve various connectivity objectives while minimizing
the number of moves. In particular, they sketch anO(n)-
approximation algorithm for the problem of creating a path
of pebbles between two given vertices with minimum sum
distance. They also show that minimizing the total or max-
imum distance is NP-hard, and that the maximum distance
case cannot be approximated within a factorΩ(n1−ǫ). Since
connectivity and mobility are coupled in their model, their
results do not directly apply to the problems studied here.
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In this paper, we present the first results for the problem
of building a communication bridge while minimizing the
number of hubs and the distance traveled by them for a given
communication radius.

II. BUILDING A BRIDGE WITH THE M INIMUM NUMBER OF

HUBS

In this section, we study the problem of building a commu-
nication bridge betweens andt while optimizing the number
of hubs and the movement of the robots. We present solutions
to two bi-criteria optimization problems: In the first problem
(MaxDist), we seek a solution with the minimum number of
hubs subject to the constraint that each robot moves at most
a given distanced. In the second problem (SumDist), the
constraint is that the total movement must not exceedB. In
this paper, we present algorithms for givend or B. To find
the minimum value ofd (resp.B), one can perform a binary
search ond (resp.B resp.).

A couple of remarks: When the distance betweens andt is
less thanr, i.e. |st| ≤ r, there is no need for any intermediate
robots. Hence, we consider the case where|st| > r. Also,
in order to achieve a bridge betweens and t, it is both
necessary and sufficient that the distance along[s, t] between
every consecutive pair in the communication bridge is at most
r. Therefore,|st| ≤ (n + 1)r holds. Hence, we assume that
the number of robotsn is at least⌈|st|/r⌉ − 1.

A. MaxDist: Minimizing Maximum Distance

In MaxDist, we are given pointss and t and a set,P =
{p1, p2, . . . , pn}, of point-robots in the plane and a maximum
traveling distanced. Any two members ofP ∪ {s, t} can
communicate with one another if they are within (Euclidean)
distancer of each other. Letui = (xi, yi) be the initial
position ofpi. We wish to select a subsetS ⊆ P and compute
a final positionvi = (x′

i, y
′
i) on the line segment[s, t] for

eachpi ∈ S such that (i)s and t are connected via point-to-
point communication links where points are selected from the
final locations of robots inS and link lengths are not greater
than the communication distancer, (ii) the distance traveled
by each robotpi is not greater thand (i.e. ∀pi∈S |uivi| ≤ d),
and (iii) the total number of hubs in the communication bridge
(i.e. |S|) is minimized.

Let L be the line passing throughs and t. We place a
coordinate frame where thex-axis is aligned withL, s is at
0 (i.e. xs = 0) and t is at locationxt > 0. Without loss
of generality, we defineright as the positive direction of this
frame. The final location of robotspi ∈ S can be determined
as vi = (x′

i, 0) in this new coordinate frame. Hence, we can
usex′

i to denote the final locationvi = (x′
i, 0). Also note that

the projection of the initial locationui = (xi, yi) on to L is
simply xi.

We start by pruning the setP and removing robots which
are more than distanced away fromL (i.e. if |yi| > d then
pi is removed). Moreover, we can remove the robotspi such
that xi < −d or xi > xt + d. This is because these robots
cannot reach the line segment[s, t]. Let us call the new set
which consist of robots satisfying the above constraints asP ′.

xi
xi − d xi + d

xjxj − d xj + d

xk
xk − d xk + d

Fig. 3. Letxi be the projection of the initial location of robotpi. We relax
the final location ofpi to li : [xi−d, xi+d] which is shown as the left-most
line segment.

Clearly, removing these robots does not change the feasibility
of the problem.

For each robotpi ∈ P ′, we compute a line segmentli :
[xi − d, xi + d] (Figure 3). We will pick the final location
of pi from this line segment. Note that this is a relaxation
because the robot may have to move more than distanced.
But the deviation is bounded as it is stated in the following
proposition1:

Proposition 1: For any final locationx′
i ∈ [xi − d, xi + d]

wherepi ∈ P ′, the distance traveled is not greater than
√
2d,

i.e. |uivi| ≤
√
2d.

The number of hubs required for the relaxed version is
not more that the number of hubs required for the original
problem:

Proposition 2: Let k∗ and k be the number of hubs used
in an optimal solution to the original problem and an optimal
solution to the relaxed problem, respectively. Then,k ≤ k∗.

The relaxed version of the problem satisfies a simple order-
ing property which allows us to design an efficient algorithm.
As mentioned previously (Figure 2) the original problem may
not have the ordering property. We now explain the ordering
property satisfied in the relaxed version.

Consider a placement of robots onL where the final location
of each robotpi is chosen from the line segment[xi−d, xi+d].
We order the robots according toxi values in non-decreasing
order. We say that the placement iswell-ordered if for any
two robotspi andpj such thatxi ≤ xj we havex′

i ≤ x′
j .

Lemma 3 (Ordering Property): There exists a well-ordered
optimal solution for the relaxed problem.

Proof: In an optimal placement, let us call (pi, pj) an
unordered consecutive pair if two robots pi and pj which
are consecutive in the final bridge, are placed at respective
locations x′

i and x′
j with xi ≤ xj but x′

i > x′
j . We

claim that there is an optimal solution with zero unordered
consecutive pairs. Consider an optimal solution which has
the minimum number of unordered pairs. Suppose that this
number is non-zero. Letpi and pj be two robots forming
a consecutive unordered pair (if an unordered pair exists, so
does a consecutive one). We show that the final locations of
these two robots can be swapped, reducing the number of
unordered pairs by one. This contradicts with the minimality
of the number of unordered pairs.

First, from the relaxed segment assumption (i)x′
i ≤ xi + d

and (ii) xj − d ≤ x′
j holds. Since this is an unordered pair,

we have: (iii) xi ≤ xj and (iv) x′
i > x′

j . From (i)-(iv) we

1The proofs of these two propositions are straightforward and will be
omitted in the final version. We included them in the Appendixfor verification
purposes.
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have:xi − d ≤ xj − d ≤ x′
j < x′

i ≤ xi + d. Observe that
xi − d ≤ x′

j < xi + d holds, hence we can movepi to x′
j

which is in its feasible region.
Similarly, we find thatxj − d ≤ x′

j < x′
i ≤ xi + d ≤

xj + d. Hence,x′
i is in the feasible region ofpj which makes

it possible to movepj to x′
i.

Finally, we can conclude that we can swap the final locations
of pi and pj and decrease the number of unordered pairs by
one whilepi andpj remain in their respective feasible regions.
Moreover, sincepi andpj are consecutive, swapping does not
introduce additional unordered pairs. This contradicts the fact
that the solution has the minimum number of unordered pairs.

The ordering property allows us to use dynamic program-
ming to compute an optimal solution.

Before presenting the algorithm, we define thereach of a
solutionS = {p1, p2, . . . , pm}. Without loss of generality, let
us assume thatS is sorted in increasing order. If there is a
communication bridge betweens and pm, then we have a
reachable region from0 to x′

m + r where we can place a
robot connected tos. As we assume that reach starts from
0, we can define thereach of S with a single parameter, i.e.
reach(S) = x′

m + r.
Let OPT (k, i) be the maximumreach which usesk robots

from the set{p1, p2, . . . , pi} to form a connected set withs
where∀1≤j≤i pj ∈ P ′. To simplify the notation, we define the
function conn(k, i). This function returns true if and only if
[xi − d, xi+ d] intersects with thereach of OPT (k, i− 1). In
other words, this function tests whether a robotxi can extend
the reach OPT (k, i− 1) by moving inside its feasible region
li and extend thereach of s. This condition is satisfied if the
following holds:OPT (k, i− 1) ≥ xi − d andxi + d ≥ 0.

We now present the dynamic programming algorithm.

OPT (0, i) = r (1)

OPT (1, i) =

{

min(xi + d, r) + r if conn(0, i)

0 o/w
(2)

OPT (k, i) = 0 if i < k (3)

OPT (k, i) =











min(xi + d,

OPT (k − 1, i− 1)) + r if conn(k − 1, i)

OPT (k, i− 1) o/w
(4)

The first two equations constitute the base cases. When we
do not use any robots (i.e.k = 0) then thereach is r which
is the reachability region ofs (first equation). The second
equation sets the initial values forOPT (1, i). If feasible region
li intersects with[0, r] then we put the robotpi at min(xi +
d, r) and set thereach of OPT (1, i) asmin(xi + d, r) + r.
Otherwise sincepi cannot be connected tos we put a0 value.
SinceOPT (k, i) usesk robots from the set{p1, p2, . . . , pi}
the cardinality of this set cannot be less thank. This condition
is addressed by Equation 3.

In the last equation, we compute all remaining entries
OPT (k, i). We know that the optimal solution chooses one
of the j ≤ i as thekth hub. We consider two cases: (1) the
last hub ispi: we look up the optimal solution withk − 1

hubs which are selected from the set{p1, p2, . . . , pi−1}. If
[xi − d, xi + d] intersects withOPT (k − 1, i − 1) then the
optimum solution will putpi to the rightmost possible location
which isx′

i = min(xi+ d,OPT (k− 1, i− 1)) and we set the
reach OPT (k, i) = x′

i+r. (2) The last hub is notpi: Then the
kth hub should be selected from set{p1, p2, . . . , pi−1} whose
maximum value is calculated byOPT (k, i−1) in the previous
iterations. If the first case suffices, we pick it since it extends
reach more than the second case (due to the ordering property)
otherwise we pick the second case and set it toOPT (k, i).

Using the above formula, we calculate the dynamic pro-
gramming table where bothk and i vary between0 andm
wherem ≤ n is the cardinality of pruned setP ′. From this
table we find the minimumk such thatOPT (k,m) ≥ xt.
This yields the optimal solution to the relaxed problem. By
Proposition 1, our solution gives a

√
2 approximation on the

maximum distance traveled by using at most the same number
of hubs used in the optimal solution (due to Proposition 2).

The running time of our algorithm isO(n2). This is because
the size of the table isO(n2) and for each entry we take the
maximum of two values (Equation 4).

Theorem 4: If there exists a solution toMaxDist that uses
k hubs such that each robot moves at most distanced, then
we can compute a solution where we use at mostk hubs and
each hub moves at most

√
2d in O(n2) time.

B. SumDist: Minimizing the Total Distance

In SumDist, we are given pointss and t and a setP =
{p1, p2, . . . , pn} of mobile hubs, as well as a budgetB on the
total distance traveled. Letui = (xi, yi) be the initial position
of pi on the plane. We wish to select a subsetS ⊆ P and
compute a final positionvi = (x′

i, y
′
i) on the line segment[s, t]

for eachpi ∈ S such that (i)s andt are connected via point-
to-point communication links, (ii) the totalL2 (Euclidean)
distance traveled is not greater thanB (i.e.

∑

pi∈S |uivi| ≤ B),
and (iii) the total number of hubs in the communication bridge
(i.e. |S|) is minimized.

Similar to MaxDist, we place a coordinate frame where the
x-axis is aligned withL (the line passing throughs and t),
s is at x = 0 and t is at xt > 0. The reach of a solution is
defined as before.

Unfortunately, there exist instances where the ordering
property does not hold in theL2 metric. However, it turns
out that when the underlying distance metric isL1, there is an
optimal solution which satisfies an ordering property, which
in turn enables a dynamic programming based solution. We
say that a placement iswell-ordered if for any two robotspi
andpj such thatxi ≤ xj we havex′

i ≤ x′
j .

Lemma 5: If the distance metric isL1, then there exists a
well-ordered optimal solution.

Proof: Let us assume thatOPT ∗
1 is an optimal solution

which includes the least number of unordered pairs. Letpi
andpj be consecutive hubs used inOPT ∗

1 such thatxi ≤ xj

but x′
i > x′

j . We will show that swappingpi and pj ’s final
locations does not increase the budget, i.e. ifb = |xi − x′

i|+
|xj−x′

j | andb′ = |xi−x′
j |+|xj−x′

i| thenb ≥ b′ holds. On the
other hand, the number of unordered pairs decreases by one.
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xi xjx′
ix′

j

Fig. 4. Figure shows the case:x′

j ≤ xi < x′

i ≤ xj . Upper line segments
show the total cost for the initial solution and lower line segments show the
costs after swapping. When we swap the final locations of robots, we decrease
the total cost while satisfying the ordering property.

This contradicts the minimality of the number of unordered
pairs. Note that, since we only swap the final locations of the
hubs, the connectivity is preserved. Further, swapping does not
change the total budget used in they direction. Therefore, the
overall budget does not increase as well.

Assume that we fix the locations ofxi and xj : we have
three “bins” (x ≤ xi, xi < x ≤ xj and xj < x) for
possible locations ofx′

i andx′
j . The following set of equations

correspond to all 6 possible cases. In each case, the claim
above holds. In Figure 4, the second statement in the first line
is illustrated.

x′
j < x′

i ≤ xi ≤ xj ⇒ b = b′

x′
j ≤ xi < x′

i ≤ xj ⇒ b > b′

x′
j ≤ xi ≤ xj < x′

i ⇒ b ≥ b′

xi ≤ x′
j < x′

i ≤ xj ⇒ b > b′

xi ≤ x′
j ≤ xj < x′

i ⇒ b ≥ b′

xi ≤ xj ≤ x′
j < x′

i ⇒ b = b′

We now solveSumDist optimally for the L1 metric (up
to an arbitrarily small additive cost). We start by buildinga
tableT (k, i, B) which stores the maximumreach usingk hubs
subject to: (i) theith robot is thekth hub, and (ii) the budget
for the firstk robots is at mostB. The entries are computed
as follows:

T (0, i, B) =r ∀i (5)

T (k, i, B) =0 ∀k>i (6)

T (k, i, 0) =

{

xi + r if a k hub bridge exists initially

0 o/w
(7)

T (k + 1, i, B) = max
k≤j<i

max
b′∈C(xi)

min(T (k, j, B − b), xi + b′) + r

(8)

T (k, i, B + ε) = max
k≤j<i

max
b′∈C(xi)

min(T (k, j, B + ε− b), xi + b′) + r

(9)

whereB is discretized byε, b′ = b− yi andC(xi) is a set
of possible values forb′. We will discussε andC(xi) shortly.
The first two equations are the base cases. If initially the robots
create a communication bridge betweens andpi with k hubs,
then Equation 7 sets thereach T (k, i, 0) to xi+r. This can be
checked by building a graphG whose vertices areP ′ ∪{s, t}
whereP ′ is the set of hubs that are initially on[s, t]. There is

an edge between two vertices if the distance between them is
at mostr. If G has a path betweens andpi of length at most
k, then a communication bridge froms to pi can be formed
with budget0.

Here, we discuss only how to extend the first dimension
of the dynamic programming formulation (Equation 8). The
argument for the other dimension (Equation 9) is similar.

To calculateT (k + 1, i, B), we consider the optimalreach
with k hubs when using thepj as thekth hub for all j < i
(due to the ordering property we do not need to consider the
locations of earlier hubs in the optimal solution). LetR =
T (k, j, B − b) be the maximumreach achievable by usingk
robots withpj as the last hub and a total budget ofB − b.
The final location ofpj in this optimal reach is R − r. We
need to compute thereach for k+1 hubs wherepi is the last
hub andpi travels at mostb units. For this, we consider all
possibilities forR.

Note that the distance of the initial locationui = (xi, yi)
to L is yi. Hence,b ≥ yi must hold forpi to act as a hub.
Let b′ = b− yi, then,[xi − b′, xi + b′] is the region that robot
pi can be placed on the lineL with a budget ofb′. Due to
the ordering property,pi must be placed to the right ofpj .
Therefore, its location is afterR− r and beforeR (otherwise
pj andpi cannot communicate). In other words, valid locations
for pi are given by the intersection of[xi − b′, xi + b′] and
[R− r, R], and this set should be non-empty.

We now compute the set of valid budgetsb for robot pi.
Since the robot has to travelyi for the vertical component, the
remaining budget for the horizontal component isb′ = b− yi.
Let C(xi) be the set of possible values forb′. This set is
computed as follows:

C(xi) = {b′|b′ ≤ B − yi ∧ Z(xi, R)} (10)

Z(xi, R) =











R− r − xi ≤ b′ ≤ R− xi if xi ≤ R− r

0 ≤ b′ ≤ R− xi if R− r < xi ≤ R

b′ = xi −R o/w
(11)

For a budgetb′ to be valid, we must haveb ≤ B. This gives
the first condition forb′: b′ ≤ B − yi. We use the functionZ
to constrainb′ as a function ofxi and the currentreach R.
We consider the three cases based on the location ofxi with
respect to the location of the last robot (x′

j) and thereach
R = x′

j + r. See Figure 5.
Case 1 (xi ≤ x′

j):, In this case, we must haveb′ ≥ R−r−xi,
(otherwisepi cannot extend the currentreach) andb′ ≤ R−xi

(if pi moves further to the right,pj andpi can’t communicate).
Case 2 (x′

j < xi ≤ R): Similar to case 1,b′ should not
be greater thanR − xi. The lower bound is obtained by the
non-negativity ofb′.

Case 3: Whenxi is to the right of the currentreach R,
there is only one value robotpi should move: the rightmost
reachable point.

The newreach after placing robotpi to min(R, xi + b) is
min(R, xi+b)+r. In order to computeT (k+1, i, B), among
all possiblej < i and all possible budgetsb′ ∈ C(xi), we find
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xi − b′ xi
xi + b′

x′
j R = x′

j + rs

xi − b′ xi
xi + b′

x′
j R = x′

j + rs

xi − b′ xi
xi + b′

x′
j R = x′

j + rs

xi − b′
xi

xi + b′

x′
j R = x′

j + rs

Fig. 5. Let x′

j be the last hub location at thereach and pi be the robot
considered at the current iteration.Top Figure: When b′ is too large both
end points of feasible region is out of the the region[x′

j , R], henceb′ is
redundant in this example.Next Three Figures: The three cases considered
in Equation 11 are illustrated.

the optimalreach. Since the size of the setC(xi) is bounded
by r/ε, each entry can be calculated inO(nr/ε) time.

We now show how this result yields an approximation
algorithm forL2. Let OPT ∗

1 andOPT ∗
2 be optimal solutions

for L1 and L2 metrics, respectively. The following lemma
bounds the deviation betweenOPT ∗

1 andOPT ∗
2 .

Lemma 6: Let OPT ∗
2 be the optimal solution for theL2

metric with a given budgetB. SupposeOPT ∗
2 can connects

and t usingk hubs. There exists optimal solutionOPT ∗
1 for

theL1 metric which can connects andt by usingk hubs and
a budget of

√
2B.

Proof: Let (xi, yi) be the initial location of a robot used
in OPT ∗

2 andx′
i be the final location. TheL1 andL2 distances

are|xi−x′
i|+ yi and

√

|xi − x′
i|2 + y2i , respectively. Without

loss of generality, we scale the distances by1/yi so that the
L1 andL2 distances becomea+1 and

√
a2 + 1, respectively

wherea = |xi − x′
i|/yi. From elementary calculus, it is easy

to show that:f(a) = a+1√
a2+1

≤
√
2.

To obtain the optimalL1 solution for budgetB, we solve
T (k, i, B) for all possiblek, i, B (whereB is discretized with
ε intervals). Due to the discretization, the total budget used
here can be at mostk∗1ε than the budget used byOPT ∗

1 where
k∗1 is the number of hubs used byOPT ∗

1 . In other words,
our dynamic programming algorithm can find a solution with
k∗1 hubs by using at mostB1 + k∗1ε budget whereB1 is the
used budget withL1 metric. This means thatB′, the total
budget used by our solution will be bounded byB1 + nε.
Consequently, the total budget used by our algorithm will be
at most

√
2B+nε whereB is the given budget inL2 metric.

We can chooseε to achieve an arbitrarily small additive error.
We now establish the running time of the algorithm. The

size of the table isO(n
2B
ε

) and as we discussed earlier each
entry can be calculated inO(nr/ε) time. Hence, the time

complexity of our algorithm isO(n
3Br
ε2

).
Theorem 7: If there exists a solution toSumDist that uses

k hubs such that the total movement of robots isB in the
L2 (Euclidean) metric, then we can compute a solution where
we use at mostk hubs and the total movement of robots is at
most

√
2B+nε in O(n

3Br
ε2

) time, whereε is the discretization
constant.

III. B OUNDS ONNUMBER OF HUBS

LetOPT (d) be the number of hubs in an optimal solution to
MaxDist with distance constraintd. How does this constraint
affect the number of hubs on the bridge? In other words, if
OPT(∞) = ⌈|st|/r⌉−1 is the number of hubs required in the
unrestricted version, how far isOPT (d) from OPT(∞)? In
this section, we show thatOPT (d)/OPT(∞) ≤ 2.

Assume thatm− 1 < |st|/r ≤ m, for some integerm > 1.
(The casem = 1 is uninteresting, ass and t are then within
distancer, hence connected.)

Partition [s, t] into m equal-length intervals, labeled from
s to t asI1, I2, . . . , Im. Each interval has length greater than
(1− 1/m)r and at mostr. Consider any solution forOPT(d).
This solution connectss andt with the fewest number of hubs.
In such a solution, we can have at most two hubs inside any
Ij , 2 ≤ j ≤ m−1. To see this, note that if there were three or
more hubs inIj , then all but the two extreme ones inIj could
be removed without losing connectivity (since the length ofIj
is at mostr), thereby obtaining a solution forOPT(d) that has
fewer hubs than the original optimal solution—a contradiction.
Along similar lines note thatI1 and Im can each contain at
most one hub; if there was more than one hub inI1 (resp.
Im), then all the ones except the one farthest froms (resp.t)
can be removed without losing connectivity.

It follows that for any optimal solution, we haveOPT(d) ≤
2(m− 2) + 2 = 2(m− 1). Also, OPT (∞) = ⌈|st|/r⌉ − 1 =
m− 1. Hence, we have the following.

Lemma 8: OPT (d)/OPT(∞) ≤ 2.
Using similar arguments, it can be shown that the same

bound applies forSumDist.2

Next, we show that the bound in Lemma 8 is tight: We claim
that, for any finited, there is an instance ofMaxDist with the
optimal solutionOPT(d) for which OPT (d)/OPT (∞) = 2.

Let |st|/r = m > 1; thus, each intervalI1, I2, . . . , Im de-
fined above has lengthr. Let ε be a real number in the (open)
interval (0, r

m−1 ). Consider a setV = {v1, v2, . . . , v2(m−1)}
of points on[s, t], defined as follows: forj = 2, 4, . . . , 2(m−
1), vj = j

2ε + j

2r, and for j = 1, 3, . . . , 2m − 3, vj =
j+1
2 ε+ j−1

2 r. See Figure 6.
The setV satisfies the following (easily-verifiable) proper-

ties: (i) v1 6= s ∈ I1 and v2(m−1) 6= t ∈ Im; (ii) successive
points inV ∪{s, t} are within distancer; and (iii) at least one
pair of successive points inV ′ ∪ {s, t} is not within distance
r for anyV ′ ⊂ V .

Let P be a set ofn ≥ 2(m − 1) robots{p1, p2, . . . , pn}
and choose their initial positions in IR2 as follows: forj =
1, 2, . . . , 2(m − 1), placepj at initial positionuj = (vj , d).

2Reviewers can find the proof in the Appendix section which will be
removed in the final revision.
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s tv1 v2 v3 v4 v5 v6

εεε rrr

I1 I2 I3 I4

Fig. 6. Selection of pointsv1, v2, . . . , v2(m−1) on [s, t], with m = 4.

Place any remaining hubs inP at some distance greater than
d from [s, t].

Observe that onlyp1, p2, . . . , p2(m−1) can move onto[s, t]
and, moreover, each suchpj can move only to the loca-
tion vj . By properties (ii) and (iii) above, it follows that
p1, p2, . . . , p2(m−1) are necessary and sufficient to establish a
communication bridge betweens andt. Therefore,OPT (d) =
2(m− 1) and the claim follows.

IV. CONCLUSION

In this paper, we introduced the problem of building a
communication bridge between two pointss and t while
minimizing the number of hubs on the bridge and satisfying
a maximum (or total) distance constraint for the robots. For
both versions we presented constant factor approximation
algorithms for the geometric version where the robots must
move onto[s, t].

There are many interesting directions for future work. It
is not clear whether the

√
2 approximation factor for the

geometric version can be improved. The general version in
which the final locations of hubs can be anywhere on the plane
seems difficult. Solving the version where there are multiple
source and destination pairs seems to be even harder.
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APPENDIX

Proof: [Proposition 1]
The maximum distance traveled forpi is

√

d2 + y2
i when the

movement is relaxed toli. Sinceyi ≤ d holds, the claim follows,
i.e.,

√

d2 + y2
i ≤

√
2d.

Proof: [Proposition 2]
An optimal solution to the original problem cannot place a robot

pi outside ofli : [xi − d, xi + d]. Because otherwise the distance
traveled inx-direction exceeds the distance constraintd. Hence an
optimal solution to the original problem is also a solution for the
relaxed case, andk cannot exceedk∗.

Proof: [Lemma 8 for sum case]
Let m = ⌈|st|/r⌉, we partition[s, t] into m equal-length intervals,

I1, I2, . . . , Im. For eachIj , (1−1/m)r < |Ij | ≤ r holds where|Ij |
is the length of the interval. LetOPT(B) be the solution which uses
the minimum number of hubs. InOPT(B) we can have at most
two hubs inside anyIj , 2 ≤ j ≤ m − 1. As claimed in the max
case, if there were three or more hubs inIj , then all but the two
extreme ones inIj could be removed without losing connectivity.
This is a contradiction with the minimality assumption of the solution.
Similarly I1 andIm can each contain at most one sensor.

It follows that for any optimal solution, we haveOPT(B) ≤ 2(m−
2)+2 = 2(m−1). Also,OPT (∞) = ⌈|st|/r⌉−1 = m−1. Hence,
we have:OPT (d)/OPT(∞) ≤ 2.


