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Abstract. We introduce a formal model of computation for networks
of tiny artifacts, the static synchronous sensor field model (SSSF) which
considers that the devices communicate through a fixed communication
graph and interact with the environment through input/output data
streams. We analyze the performance of SSSFs solving two sensing prob-
lems the Average Monitoring and the Alerting problems. For constant
memory SSSFs we show that the set of recognized languages is contained
in DSPACE(n+m) where n is the number of nodes of the communication
graph and m its number of edges. Finally we explore the capabilities of
SSSFs having sensing and additional non-sensing constant memory de-
vices.

1 Introduction

The use of networks of tiny artifacts is becoming a key ingredient in the tech-
nological development of XXI century societies. An example of those networks
are the networks with sensors, where some of the artifacts have the ability of
sensing the environment and communicate among themselves. Naturally there
is no easy way to design a universal sensor network that acts properly in all
possible situations. However, it is important to understand the computational
process and behavior of the different types of artifact’s networks, which will
help in taking the maximum profit of those networks. In the particular case of
networks with sensors several proposals (taxonomies and surveys) that elucidate
their distinguishing features and applications have been published ([1, 5, 12, 14]).
These proposals state clearly the need of formal models that capture the clue
characteristics of sensor networks.

The general sensing setting can be described by two elements: the observers
or end users and the phenomenon, the entity of interest to the observers that
is monitored and analyzed by a network with sensors. The corresponding infor-
mation is discretized in two ways: first the environment is sampled on a discrete
set of locations (sensor positions), and second the measures taken by the sensors
are digitalized to the corresponding precision. To analyze the correctness and
performance of the system we are faced with a double task; on one side there
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is a computational problem to be solved by a particular network; on the other
hand, it is necessary to assess whether a computed solution is a valid observa-
tion of the phenomenon. Both tasks will require different analysis tools and we
concentrate here on the first. The distinctive peculiarities of the computational
system define new parameters to be evaluated in order to measure the perfor-
mance of the system. Metrics are needed to allow us to estimate the suitability
of an specific or generic network topology or the possibility of emergent behavior
with pre-specified requirements.

The computational system can be modeled by combining the notion of graph
automata [3] together with distributed data streams [6], a combination inspired
in similar ideas developed in the context of concurrent programming [8]. Ex-
isting models coming from distributed systems [11], hybrid systems and ad-hoc
networks [7, 10] capture some of such networks. Models coming from the area of
population protocol models [2, 4] represent sensor networks, supposing that the
corresponding sensing devices are extremely limited mobile agents (a finite state
machine) that interact only in pairs by means of a communication graph.

We propose a general model capturing some characteristic features of sensor
networks. A sensor field is composed by devices that can communicate one to the
other and also to the environment. We concentrate our initial study in the case
in which the devices and the communication links are static: do not appear and
disappear during the computation. We also assume that those devices synchro-
nize at barriers marking rounds, in a way similar to the BSP model [13]. During
a computation round, a device access the received messages and data provided
by the environment, performs some computation, and finally sends messages to
its neighbors and to the environment. Those are the fundamental characteristics
of the Static and Synchronous Sensor Field (SSSF) model. The model allows the
definition of latency and complexity measures like round duration (called time
in this work), message number or message length among others. In this setting
we can formulate a general and natural definition of sensing problems by means
of input/output data streams.

We introduce the Average Monitoring and Alerting problems and, supposing
that the sensor field has as many devices as input streams, we analyze solutions
for several topologies. We obtain upper and lower bounds on the solutions to the
problem and for some concrete topologies we propose optimal algorithms.

Our proposed model can be seen as a non-uniform computational model in
the sense that it is easy to introduce constraints to all or some of the devices
of the sensor field and relate it to classic complexity classes. By restricting their
memory capacity to be constant, we show that the decisional version of the
functions computed by this restricted SSSF belong to the class DSPACE(n+m)
where n is the number of nodes of the communication graph and m its number
of edges. Finally, by restricting the memory capacity to be constant and by
allowing the inclusion in the network of non-sensing devices we show that there
is a SSSF of polynomial size, time and latency, solving the monitoring problem
for a property which is computable in polynomial time.



Static Synchronous Sensor Field 3

The paper is organized as follows. In Section 2 we introduce the SSSF model
as well as the sensing problems and the performance measures. In Section 3 we
study SSSFs solving the Average Monitoring problem. The SSSF with restricted
memory capacity of the devices (specifically supposing that it is logarithmic or
constant), is analyzed in Section 4. We then extend the studied networks to
include non sensing devices in Section 5. Finally, in Section 6 we post some
conclusions and possibilities of future work.

2 Static Synchronous Sensor Field: the model

A data stream w is a sequence of data items w = w1w2 . . . wi . . . that can be
infinite. For any i ≥ 1, w[i] denotes the i-th element of w, i.e. w[i] = wi. For
any i, j, 1 ≤ i ≤ j, w[i, j] denotes the subsequence of w composed by all data
items between the i-th and j-th positions, i.e. w[i, j] = wi . . . wj . For any n ≥ 1,
an n-data stream w is an n-tuple of data streams, w = (w1, . . . , wn). For any
i ≥ 1, w[i] denotes the n-tuple composed by all the i-th elements of each data
stream, w[i] = (w1[i], . . . , wn[i]). For any i, j such that 1 ≤ i ≤ j, w[i, j] denotes
the n-tuple composed by the subsequences between the i-th and j-th positions
of each data stream, w[i, j] = (w1[i, j], . . . wn[i, j]) .

We use the standard graph notation. A communication graph is a directed
graph G = (N,E) where N is the set of nodes and E is the set of edges,
E ⊆ N × N . Unless explicitly stated we assume that N has n nodes that are
enumerated from 1 to n and m edges. Each node k is associated to a device, let
us say to device k, that has access to the k-th data stream. Each edge (i, j) ∈ E
specifies that device i can send messages to device j or what is the same, device
j can receive messages from device i. Given a device k let us denote by I(k) =
{i | (i, k) ∈ E} the set of neighbors from which device k can receive data items
and by O(k) = {j | (k, j) ∈ E} the set of neighbors to which device k can send
data. Let ink = |I(k)| and outk = |O(k)| be the in and out degrees of node k. Set
inG = maxk∈N ink and outG = maxk∈N outk. We use dG to denote the diameter
of the graph G.

A Static Synchronous Sensor Field consists of a set of devices and a commu-
nication graph. The communication graph specifies how the devices communicate
one to the other. For the moment and without loose of generality, we assume that
all devices are sensing devices that can receive information from the environment
and send information to the environment. Since the model we consider is static
we assume that the edges are the same during all the computation time. More-
over, each device executes its own process, communicates with their neighbors
(devices associated to adjacent nodes) and also with the environment. All the
devices work in a synchronous way, at the begining of each round they receive
data from their neighbors and from the environment, then they apply their own
transition function changing in this way their actual configuration and finish the
round sending data to their neighbors and to the environment. Let us describe
in detail the main components of the Static Synchronous Sensor Field.
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Static Synchronous Sensor Field F (SSSF F): Formally we define a Static Syn-
chronous Sensor Field F by a tuple F = (N,E, U, V,X, (Qk, δk)k∈N ) where

- GF = (N,E) is the communication graph.
- U is the alphabet of data items used to represent the input data streams

that can be received from the environment.
- V is the alphabet of items used to represent the output data streams that

can be send to the environment.
- X is the alphabet of items used to communicate each device to the other

devices. Each m ∈ X∗ is called message or packet. U, V ⊆ X. We denote by
data items the elements of alphabets U and V and by communication items
(or items) the elements of X.

- (Qk, δk) defines for each device associated to a node k ∈ N (device k) its set
of local states and its transition function, respectively.

The local computation of each device k in F is defined by (Qk, δk) and de-
pends on the communication with its neighbors and with the environment. Qk is
a (potentially infinite) set of local states and δk is a transition function. A state
codifies the values of some local set of variables (ordinary program variables,
message buffers, program counters ...) and all what is needed to describe com-
pletely the instantaneous configuration of the local computation. The transition
function δk depends on its local state qk ∈ Qk as well as on:

- the communication items received by device k from devices i ∈ I(k),
- the data item that device k receives as input from the environment,
- the communication items sent by device k to devices j ∈ O(k),
- and the data item that device k sends to the environment.

The transition function is defined as δk : Qk×(X∗)ink×U −→ Qk×(X∗)outk×V .
The meaning of δk(qk, (xik)i∈I(k), uk) = (q′k, (ykj)j∈O(k), vk) is that if device k
of F is in its local state qk ∈ Qk, receives xik ∈ X∗ from each of its neighbors
i ∈ I(k), and receives the input data item uk ∈ U from the environment, then in
one computation step device k changes its local state to q′k ∈ Qk, sends ykj ∈ X∗

to each of its neighbors j ∈ O(k) and outputs vk ∈ V to the environment. In the
case that device k does not send any value, we denote this ’no value’ or ’does not
care’ by the special symbol ⊥. For any device k, let q0

k be the initial local state.
For any t ≥ 1, the t-th computation round of device k is described as follows: If the
local state of device k is qt−1

k , and it receives (xt
ik)i∈I(k) from its input neighbors,

ut
k from the environment and δk(qt−1

k , (xt
ik)i∈I(k), u

t
k) = (qt

k, (yt
kj)j∈O(k), v

t
k) then

device k changes its local state from qt−1
k to qt

k, sends (yt
kj)j∈O(k) to its outgoing

neighbors and vt
k to the environment.

A computation of F is a sequence c0,d1, c1,d2, . . . , ct−1,dt, ct, . . ., eventually
infinite, where c0 = (q0

k)k∈N is the n-tuple of the initial local states of the n
devices, and for each t ≥ 1, ct = (qt

k)k∈N is the n-tuple of the local states after t
computation rounds. The tuple dt = (dt

k)k∈N represents the input/output data
of the t-th computation round (i.e. the transition from round t−1 to round t). In
particular, for device k the input/output data of the t-th round is represented by
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dt
k = ((xt

ik)i∈I(k), u
t
k, (yt

kj)j∈O(k), v
t
k). Note that in one round device k receives

(xt
ik)i∈I(k) from its neighbors (xt

ik = yt−1
ki ), receives ut

k from the environment,
changes its state from qt−1

k to qt
k, sends (yt

kj)j∈O(k) to its neighbors and sends
vt

k to the environment.
The stream behavior of a computation c0,d1, c1,d2, . . . , ct−1,dt, ct, . . . of F

is defined as (u,v) where u = (uk)k∈N is the tuple composed by the input data
streams of each device k, uk = u1

ku2
k . . . ut

k . . . and v = (vk)k∈N is the tuple com-
posed by the output data stream of each device vk = v1

kv2
k . . . vt

k . . . Notice that
this information can be extracted from the computation c0,d1, . . . , ct−1,dt, ct, . . ..
Thus the sensor field F outputs the tuple of output data streams v = (vk)k∈N

given the tuple of input data streams u = (uk)k∈N or what is the same, v[1, t]
given u[1, t] for each t ≥ 1.

We define the function fF associated to the stream behavior of F as follows:
Given any pair of tuples of data streams u and v and any t ≥ 1, fF (u[1, t]) =
v[1, t] if and only if the sensor field F computes v[1, t] given u[1, t].
Function computed by F : A function f (defined on data streams) is computed by
a sensor field F with latency d if for all (appropriate) tuple of data streams u,
and for all t ≥ 1, fF (u[1, t + d])[t + d] = f(u[1, t])[t]. That is the SSSF outputs
at time t + d the t-th element of f . We say that f is computed by a sensor field
F if there exists d for which f is computed by F with latency at most d.

Note that u and v have in general infinite length. In order to express formally
the behavior of a SSSF we consider all the finite prefixes of the input stream
(u[1, t]) and those of the output stream (v[1, t]). However, take into account
that each sensor will output only one data item (v[t]) per round.

The computational resources used by a sensor to compute a function of this
kind are the following. For each device and computation round we can measure

- Time. The number of operations performed in the given round of the device.
This is a rough estimation of the “physical time” needed to input data,
receive information from other sensor, compute, send information and output
data.

- Space. The space used by the device in such computation round.
- Message Length. The maximum number of data items of a message sent by

the device in such computation round.
- Number of messages. The maximum number of messages sent by the device

in such round.

We consider the following worst case complexity measures taken over any device
and computation round of a sensor field F :

– Size: The number of nodes or devices of the communication graph G.
– Time (T ): The maximum time used by any device in any of its rounds.
– Space (S): The maximum space used by any device of in any of its rounds.
– MessageLength (L): The maximum message length of any device of in any

of its rounds.
– MessageNumber (M): The maximum number of messages sent by any device

in any of its rounds.
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In general we analyze these complexity measures with respect to the Size of
the communication graph which usually will coincide with the number n of
data streams, we denote by T (n) the Time, by S(n) the Space, by L(n) the
MessageLength and by M(n) the MessageNumber .

Computational problems that are susceptible of being solved by sensor fields
can be stated in the following way:

Sensing Problem Π: Given an n-tuple of data streams u = (uk)1≤k≤n for some
n ≥ 1, compute an m-tuple of data streams v = (vk)1≤k≤m for some m ≤ n such
that RΠ(u[1, t],v[1, t]) is satisfied for every t ≥ 1. RΠ is the relation that output
data streams have to satisfy given the input data streams, i.e. the property that
defines the problem.

Problem Solved by F : A sensor field F solves problem Π with latency d if for
every pair of data streams u and v, and every t ≥ 1, if fF (u[1, t]) = v[1, t] then
RΠ(u[1, t],v[1 + d, t + d]). A sensor field F solves the problem Π if there is a d
such that F solves problem Π with latency d.

Let us post two examples of sensing problems. First we consider a problem
in which it is needed to monitor continuously a wide area. This implies “sensing
locally” and “informing locally” about a global environmental phenomena.

Average Monitoring: Given n data streams (uk)1≤k≤n for some n ≥ 1, compute
n data streams (vk)1≤k≤n such that vk[t] = (u1[t] + · · ·+ uk[t])/n.

The second example we consider is related to “fire detection alarm”. In this
case it is desired to detect the situation in which there is a high risk of fire. One
element to be measured is the level of smoke in the air of such area and if this
level is higher than a certain value then the alert has to be activated. A specific
device (number 1 for instance) acts as a master and outputs the result.

Alerting: Given n data streams (uk)1≤k≤n for some n ≥ 1, and threshold value
A, device 1 has to compute a data stream v1 such that

v1[t] =
{

1 if ∃k : 1 ≤ k ≤ n : uk[t] ≥ A
⊥ otherwise

3 SSSFs Solving the Average Monitoring Problem

We study the requirements of a SSSF for solving the Average Monitoring problem.
It is divided into two parts. We start by giving some lower bounds on the latency,
the MessageNumber , and the MessageLength, required by some types of SSSF
for solving the Average Monitoring. Later we provide optimal algorithms for the
problem in particular topologies.

Lower Bounds. In order to be able to state lower bounds, we make an addi-
tional assumption: all the sent messages are formed only by tuples of data items
(without compression).
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Lemma 1. A SSSF F with communication graph G solving the Average Moni-
toring problem requires at least latency dG.

Proof. By definition there are at least two nodes (or devices) i, j ∈ N such that
the minimum distance between i and j is dG, therefore, if at round t node i
takes from the environment the data item ui[t] then, the node j can’t receive it
in round t′ ≤ t + dG. ut

For the following results we assume, in addition, that along the whole com-
putation the flow of packets from node i to node j, for any i, j ∈ N , fol-
lows a fixed path pi,j . Thus the algorithm uses a fixed communication pattern
P = (pi,j)i,j∈N . We say that the fixed path pi,j is a diametral path in P if device
j is at distance dG from device i.

Let βP (k) be the out-degree of node k in the subgraph G′ of G formed by all
the diametral paths in P starting at k. Set β(G, P ) = maxk∈N βP (k). Observe
that those subgraphs are critical in terms of the delivery of packets in dG rounds.
It is easy to show the following lower bound on MessageNumber .

Lemma 2. Let F be a SSSF, with communication graph G and communica-
tion pattern P , solving the Average Monitoring problem with latency dG. It holds
that for any round t > dG, there is a device sending at least β(G, P ) packets
simultaneously.

Proof. Any device k has to send simultaneously a packet through at least each
of its βP (k) out-going edges in subgraph G′. Otherwise, by Lemma 1, it is not
possible for k to send less than βP (k) messages and reach all these devices with
latency dG. Taking the maximum among all the nodes in G we get the bound
β(G, P ). ut

Taking into account that the different communication flows must be pipelined
along paths with critical length we can prove the following lower bound on
MessageLength.

Lemma 3. Let F be a SSSF, with communication graph G and communication
pattern P , solving the Average Monitoring problem with latency dG. Then, if
p = k1, . . . , kd+1 is the fixed communication path used by devices k1, . . . , kd to
send their data to device kd+1 in P and p is included in a diametral path in P ,
then there is a round t0 > d such that for any round t > t0, there is a device
receiving a message composed of at least d data items.

Proof. Let t be any round such that t > d and p = k1, . . . , kd+1 the fixed path
used by devices k1, . . . , kd to flood their data to device kd+1. Let us suppose
that device kd sends always less than d data items. Then, the number Ed of
data items that arrive to kd+1 from round 1 to round t is such that Ed ≤
(t− d)(d− 1)+1+2+ . . .+ d− 1+ d− 1 < (t− d)d+1+2+ . . .+ d− 1+2d− t.

The number Rd+1 of data items that should have been arrived to device
kd+1 from round d + 1 to round t corresponding to devices k1, . . . , kd+1 in order
to output the correct average with latency d is Rd+1 = d(t − d). Taking t0 =
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1+2+ . . .+d−1+2d it is easy to see that Ed < Rd+1, implying that device kd+1

has not receive enough data items to output the average, therefore contradicting
the hypothesis that device kd can send less than d data items by round. ut

Algorithms. We first propose a generic SSSF with optimal latency provided
that the communication graph is strongly connected. In general, this algorithm
is not optimal in Space, MessageLength and MessageNumber , we show that when
the topology of the communication graph is known in advance, it is possible to
obtain SSSFs with specific topologies that optimize such parameters. In what
follows, we assume that every device in the SSSF is aware of the total number
of devices n and the diameter dG of the communication graph (if this is not the
case, both values can be calculated incrementing the latency in dG).

Lemma 4. Let G be a strongly connected communication graph with n nodes.
There is a SSSF F with communication graph G solving the Average Monitoring
problem with latency dG, T (n) = O(n dG(inG +outG)), L(n) = O(n dG +log n),
S(n) = O(n dG + log n) and M(n) = outG.

Proof. We consider the following flooding algorithm in which each sensor keeps
a table M of size dG × n of data items. The computation at each sensor is the
folowing:

algorithm Generic Average Monitoring
. Initially
M [1 . . . d]× [1 . . . n] = (⊥)d×n

id = identifier of the node
. round
// receive
for i ∈ I(k) {receive Mi from incoming neighbors; M = update (M, Mi)}
// compute
v = (M [d][1] + . . . + M [d][n])/n
for p = d, . . . , 2 {M [p] = M [p− 1]}
M [1] = (⊥)n

M [1, id] = u
// send
for j ∈ O(k) flood M, k
output v

end algorithm

In the generic algorithm, for any device k, table entry M [τ, i] at round t
contains the value ui[t − τ ], provided that this data has arrived to the node
k. The update of table M incorporates to M all the new values received from
device i. Observe that, as d = dG, the flooding guarantees that, when the data
reaches the last row of M , all the data readings at time t− d are present in the
table. ut

Algorithms with optimal latency. When the topology of the communication
graph is known it is possible to improve the generic algorithm to obtain optimal
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algorithms provided that latency is kept at its minimum. The lower bounds
follow from Lemmas 1, 2 and 3 taking into account the considered topologies.

Theorem 1. The Average Monitoring problem can be solved with latency dG and
optimal MessageNumber and MessageLength by SSSFs whose communication
graph are bidirectional cliques or oriented rings, respectively.

Proof. The two algorithms that follows are adaptations of the generic average
monitoring algorithm and have the restriction that all the sent messages are
formed only by tuples of data items (without compression).

In the case of bidirectional cliques the problem can be solved just in one round
so the latency is 1 and the complexity measures are T (n) = Θ(n), S(n) = Θ(n),
L(n) = Θ(1) and M(n) = n− 1.

In the case of oriented rings we now consider a network with n sensing devices
connected into an oriented ring, where sensor k is connected to sensor (k + 1)
mod n. In this case the problem can be solved with an optimal latency of n− 1
rounds by means of an algorithm that works as follows. At each round, device
k take a measure, receives n − 1 data items from its predecessor corresponding
to measures taken by device at distance i (for i ∈ {1, . . . , n − 1}) at the i-th
previous round, computes and outputs the average of the (n − 1)th round and
sends to its successor the n− 1 corresponding measures (the n− 2 received from
its predecessor plus its new taken one). Hence, the complexity measures are as
follows, T (n) = Θ(n), S(n) = Θ(n log n), L(n) = n− 1 and M(n) = 1. ut

Improving the message length. By data aggregation or allowing a larger
latency, it is possible to improve the MessageLength. In this case, messages are
no longer tuples of data items but sums of data items. The synchronization
needed to compute the right sums can force an increment on the latency.

Theorem 2. The Average Monitoring problem can be solved with latency 2n−1,
T (n) = O(n), S(n) = O(n log n), L(n) = O(log n) and M(n) = O(1) by a SSSF
in which the communication network is an oriented ring.

Proof. Informally the algorithm works as follows, one device acts as a leader (say
device 1) and another device (say device n) computes, collects and distributes
the averages. It is assumed that each sensor knows the number of sensors n
and its position inside the ring. As before, all the nodes start reading from the
environment at the same time.

Device 1 takes and floods its first taken measure to device 2 at round 1. At
round 2, device 2 receives the first taken measure of device 1, adds it to its own
taken measure at round 1 and forwards the sum to device 3. Eventually, sensor n
receives the sum of measures taken by devices 1, 2, . . . , n− 1 at round 1, adds it
to its own taken measure at round 1 and computes the first meaningful average
and forwards it to other devices. ut

Theorem 3. The Average Monitoring problem can be solved with latency dG,
T (n) = O(log n), S(n) = O((log n)2), L(n) = O(log n) and M(n) = Θ(1) by a
SSSF in which the communication network is a complete binary tree.
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Proof. In this case the generic algorithm is modified by changing the table of
values of each node by two vectors each of size h, where h is the height of the
node in the tree (we consider that the leaves have height 1 and therefore the
root has height O(log n)). The first vector is used to delay input data items h
rounds in order to synchronize with communication items (partial sums) coming
from its subtrees and send the partial sum to the father. After some rounds (the
height of the tree) the root computes the average corresponding to round t and
send it back to its two sons. Children receive this value, store it in the second
vector and send it to their children respectively. Averages in the second table
have to be delayed in order to fully synchronize the output. ut

4 SSSFs of Devices with Constant Memory Capacity

Up to now we have not considered the possible memory restrictions of the tiny
devices involved in a SSSF, but in applications, devices can have limited memory.
The SSSF model can be adapted to take into account this fact, therefore we can
consider devices with constant or bounded memory capacity. To this end, we also
assume that each device has a buffer of limited size to store the data received
from its neighbors. We assume that the communication graph might have any
degree, but that a device cannot receive more packets in one round that those
that can fit in the buffer. In the case that there are more incoming packets an
arbitrary subset of them, filling the buffer, will be retrieved. In the opposite
direction we assume that sending data to all the outgoing neighbors can be
performed in constant time and space.

The Alerting problem can be solved in constant memory SSSFs by the fol-
lowing algorithm. Initially all the nodes are in a non-alert state. At any round,
if an unalerted device receives an alert message or reads a data that provokes
an alert changes it state to alert and sends an alert message. An alerted device,
different from device 1 does nothing. Device one upon achieving the alert state
outputs 1 at each succesive round. Thus we have the following.

Lemma 5. Let G be a communication graph in which there is a path from any
node to node 1. There is a SSSF F with communication graph G solving the
Alerting problem with latency bounded by dG, T (n) = S(n) = L(n) = M(n) =
Θ(1).

In general, we can say that by restricting the memory capacity of each device
to be a constant w.r.t. the total number of devices then the kind of problems
solved by these SSSFs are not more difficult than the ones in DSPACE(O(n+m))
In order to prove it formally let us define the decisional version of fF .

Language associated to F : Let F be a SSSF and let fF be the function associated
to the behavior of F . We define the language associated to the behavior of F ,
denoted by L(F) as follows:

L(F) = {〈u[1],v[1], . . . ,u[t],v[t]〉 | t ≥ 1 and fF (u[1, t]) = v[1, t]}.
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Theorem 4. Let F be a constant space SSSF. Then, the language L(F) ∈
DSPACE(O(n + m)).

Proof. We are going to present a deterministic Turing machine M that decides
the language L(F) in space O(n+m). Since each device k has constant memory
capacity, then the size of Qk is also bounded by a constant as well as it is the
number of items composing each sent or received packet. Recall that the behavior
of F is described by a sequence c0,d1, c1,d2, . . . , ci−1,di, . . ., eventually infinite,
where c0 = (q0

k)k∈N is the n-tuple of the initial local states of the n devices, and
for each i ≥ 1, ci = (qi

k)k∈N is the n-tuple of the local states after i computation
rounds. di = (di

k)k∈N represents the input/output data and the sent/received
messages of each device k in the transition from round i − 1 to round i. The
Turing machine M on any input 〈u[1],v[1], . . .u[t],v[t]〉 will compute such a
sequence in the following way:

1. Initially M computes the initial configuration c0 and suppose that devices
have neither received a message nor an input data item.

2. Simulates the i-th computation round computing (ci,di+1) from (ci−1,di).
In order to do this, for each device k, M applies δk considering that the
input data item is given by uk[i] and verifies that the output data item is
vk[i]. If it is the case then M considers the next computation round i + 1;
otherwise, M rejects.

3. Once M has consumed all its input word, it accepts.

M needs space O(n + m) to decide L(F). Note that in part 2 of the simulation
M only needs to store the messages send/received, one for each edge of the
communication graph, and it also needs the current state for each one of the
nodes of the graph. ut

In [4] it is shown that all predicates stably computed in the model of Me-
diated Population Protocols are in the class of NSPACE(O(m)). In this case
the nondeterminism is required to verify that there exists a stable configuration
reachable from the initial configuration.

5 Trading space/time for size

In this section we analyze SSSFs with an additional amount of nodes in the com-
munication graph in which the attached devices participate in the computation
but do not play any active role in sensing. In such a network we have a commu-
nication graph with S nodes and we want to solve a problem that involves only
n < S input data streams.

Constant time: In a balanced communication tree we suppose that there are
n sensing devices placed on the leaves of a balanced binary tree, edges to leaves
are replaced by paths in such a way that all the leaves are at the same distance
to the root. Thus, the tree has depth O(log n) and n leaves. In such a network
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we can consider an algorithm with two flows. In the bottom-up flow each node
receives from its children the average of the data at the subtree leaves, together
with the number of leaves, and computes its corresponding values to be sent to
its parent. The top-down computation is initiated by the root that computes the
average value which flows to the leaves. The analysis is summarized as follows.

Theorem 5. Let G be a balanced communication tree whose n leaves are sensing
devices with constant space and whose internal nodes are non-sensing devices
with O(log n) space. There is a SSSF F with communication graph G solving
the Average Monitoring problem with latency dG, S(n) = L(n) = O(log n) and
T (n) = M(n) = O(1).

In the algorithm described above the nodes in the communication tree re-
quire different levels of internal memory, ranging from constant at the leaves
to log n in the upper levels. The following result shows that by increasing the
number of auxiliary nodes we can solve sensing problems with constant memory
components in an adequate topology within constant time.

Constant space devices: Let P be a property defined on Un. We consider the
following sensing problem:
Monitoring Problem for property P: Given an n-tuple of data streams u = (uk)1≤k≤n

for some n ≥ 1, compute an n-tuple of data streams v = (vk)1≤k≤m such that
v[t] = P(u[t]) for every t ≥ 1.

Any polynomially computable property can be decide by a uniform family
of circuits with polynomial size. Furthermore those circuits can be assumed to
be layered and to have bounded fan in and fan out by adding propagator gates.
The communication network is formed by the circuit with sensors attached to the
corresponding inputs together with a communication tree that flows the result
to the inputs. As the circuit is layered we can guarantee the pipelined flow of
partial computations with constant time and memory within latency equal to
the circuit’s depth plus the tree depth. Thus, we have polynomial in n.

Theorem 6. Let P be a property defined on Un computable in polynomial time.
There is a constant space SSSF that solves the associated sensing problem in
polynomial size and latency (with respect to n) with S(n) = T (n) = L(n) =
M(n) = O(1).

6 Conclusions and Future Work

We have proposed a model for networks that abstracts some of the main charac-
teristics of the problems that are expected to be solved on a network with sensors.
In parallel we have introduced a prototypical family of sensing problems. The
model has allowed us to analyze the complexity of some problems providing op-
timal SSSFs with respect to some performance measures. The analysis shows, as
expected, that different sensing problems will require different sensor capabilities
for storing data and message size. Our algorithms for the Average Monitoring
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problem can be easily adapted to solve the monitoring problem associated to
other aggregation functions like: maximum, minimum, addition, median, etc,
the complexity of the above algorithms differ depending on the structural prop-
erties of the aggregation function (see [9] for a classification) and the size of the
aggregated data.

There is a clear trade-off between the internal memory allowed to each de-
vice and the number of additional computing units in the network as shown in
Lemma 6. It will be of interest to characterize those sensing problems that can
be solved with logarithmic or constant space with no (or a small number of)
additional nodes.

Although in the present paper the communication network has been assumed
to be fixed, the model is flexible enough to allow the incorporation of a dynamic
communication graph. Complexity measures and problem solving on such models
will require additional effort.

On the other hand the hypothesis of fixed communication graphs models the
idea of maintaining a virtual fixed topology, this topology will be maintained
until the network task changes. In this situation the communication graph will
be perceived as the same graph, although the devices taking care of one node
might change over time. Our complexity analysis on fixed topologies should be
combined with a study of the conditions that guarantee the existence, creation
an maintenance of the virtual topology.

All through the paper we have not considered the energy consumption as a
performance measure. For making an energy analysis we should have to incor-
porate a particular energy model to the sensor field. The performance measures
taken in this paper proportionate the basic ingredients for analyzing energy
consumption where sending/receiving a message has the same cost for all the
nodes, like for example the unit disk graphs. It is of interest (and topic of future
research) to consider energy models in which each link in the communication
graph has different weights (or set of weights) representing the constants in the
function that determines the cost of sending a message along the link.
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14 C. Àlvarez, A. Duch, J. Gabarro, and M. Serna

5. D. Estrin, D. Culler, K. Pister, and G. Sukatme. Connecting the Physical World
with Pervasive Networks. Pervasive Computing, 6(2):59–69, 2002.

6. P.B. Gibbons and S. Tirthapura. Estimating simple functions on the union of data
streams. In SPAA 01, 281–291, 2001

7. T.A. Henzinger. The Theory of Hybrid Automata. In LICS 96, 278–292, 1996.
8. C.A. R. Hoare. A calculus of total correctness for communicating processes. Sci.

Comput. Program., 1(1-2):49–72, 1981.
9. H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor Networks.

John Wiley & Sons Ltd, 2005.
10. N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O Automata Revisited. Hybrid

Systems: Computation and Control (HSCC’01), LNCS 2034:403–417, 2001.
11. D. Peleg. Distributed Computing. A Locality-Sensitive Approach, chapter 2. SIAM

Monographs on Discrete Mathematics and Applications, 2003.
12. S. Tilak, N.B. Abu-Ghazaleh, and W. Heinzelman. A Taxonomy of Wireless Micro-

Sensor Network Models. Mobile Computing and Communications Review, 6(2):28–
36, 2003.

13. L.G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, 1990.

14. M. Vinyals, J.A. Rodriguez-Aguilar, and J. Cerquides. A Survey on Sensor Net-
works from a Multi-Agent Perspective. In AAMAS 2008, 1071–1078, 2008.


