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Abstract. Software complexity is the main obstacle to further progress in the IT 

industry. One solution is the autonomic system with self-* properties. Formal 

methods are proven approaches to ensuring the correct operation of complex 

interacting systems. However, the current formal methods do not adequately 

address the problem of verifying two of the most important features of auto-

nomic systems, namely emergent behavior and evolving behavior. Category 

Theory (CT) has recently been proposed as a formal framework to provide a 

structure for isolating the management of evolving specifications and the 

analysis of changes. We propose a formal framework based on CT in this paper 

to specify reactive autonomic systems. Our approach is illustrated with a NASA 

case study.  
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1   Introduction 

Although software engineering methodology and programming language innovation 

have extended both the size and the complexity of computing systems, depending on 

those solutions alone will not get the industry through the present software com-

plexity crisis, which is the main obstacle to its further progress. This is because the 

difficulty of managing massive and complex computing systems goes well beyond the 

capability of IT professionals. Software complexity is derived from the following: 1) 

The need to integrate several heterogeneous software environments into one co-

operative computing system; 2) The rapid stream of changing, as well as conflicting, 

demands at runtime requiring a timely and decisive response; and 3) The difficulty in 

anticipating and designing all the interactions among the elements of unpredictable, 

diverse, and interconnected systems. One of the remaining solutions is autonomic 

systems with self-* properties that help to address software complexity through the 

use of technology to manage technologies, specifically by hiding low-level com-

plexities from end-users [1].  

Since 2001, several researchers [2, 3] have proposed definitions for an autonomic 

system following the original vision of Horn [4]. The core of an autonomic system is 

self-adaptation, including self-organization, which can be achieved by realizing self-

configuration, self-healing, self-optimization, and self-protection.  



Reactive systems are some of the most complex systems, because they: 1) involve 

concurrency; 2) have very strict timing requirements; 3) must be reliable; 4) involve 

both software and hardware components; and 5) are intelligent and increasingly hete-

rogeneous. These systems can be more self-adaptive to their environment and more 

self-organized when they are equipped with autonomic features. However, the current 

formal approaches do not have an appropriate mechanism for specifying Reactive 

Autonomic Systems (RAS) which can simplify and enhance the experience of end-

users by anticipating their needs in a complex, dynamic, and uncertain environment.  

Category Theory (CT) is a relatively young branch of mathematics, which was 

originally designed to express various structural concepts for mathematical fields in a 

uniform way, and has been successfully extended to software engineering [5]. The 

management of the analysis of changes and of evolving specifications in an RAS 

requires a specification structure that can isolate those changes within a small number 

of components and analyze the impacts of a change on interconnected components. 

CT is proposed in this paper to provide that structure because of its rich body of 

theory to help analyze specifications and their interactions, but also because it is 

abstract enough to integrate various specification languages. Moreover, automation 

can be achieved using CT; for instance, the composition of several specifications can 

be automatically derived with some properties, such as co-completeness.  

We therefore propose a categorical approach to specify RAS. The rest of this paper 

is organized as follows: section 2 describes the case study through which we illustrate 

our approach; section 3 briefly presents a perspective view of our framework; section 

4 introduces the categorical specification and describes on the case study how the CT 

can be used for specifying autonomic behavior; section 5 provides an overview of 

related work; and section 6 presents our conclusions and outlines directions for future 

work.  

2   Case Study  

We have chosen the Prospecting Asteroid Mission (PAM) as our case study, which is 

an application of NASA’s Autonomous Nano Technology Swarm (ANTS) mission 

architecture [6]. The PAM consists of 1,000 pico-spacecraft, which are organized into 

10 specialist classes with highly maneuverable and configurable solar sails, with types 

of rulers, messengers, and workers (imaging, IR spectrometer, magnetometer, alti-

meter, etc.). The basic design elements are self-similar low-power, low-weight, and 

addressable components and systems that can operate fully autonomously, along with 

adaptable units for swarm demands and environmental needs. Through the concurrent 

operation of 10 to 20 sub-swarms, hundreds of asteroids may be explored during a 

mission traverse of asteroid belts. Fig. 1 shows a sample scenario of the PAM [7].  

The PAM must fulfill the following asteroid survey requirements: 1) optimal 

science operations at every object such as search of appropriate trajectories that can 

enable efficient operation of workers’ instruments, as well as concurrent operations 

among multiple objects such as asteroid detection and tracking; 2) ongoing evolution 

of strategies as a function of object characteristics; 3) no single point failure, and 

robustness with respect to minor or critical loss; and 4) a high level of autonomy as a 



group of the specialized workers. The PAM is designed for a systematic study of an 

entire population of elements and involves not only a smart spacecraft, but also a 

totally autonomic and distributed network of sensors or spacecraft with specialized 

device capabilities, for instance, computing, imaging, and spectrometry, as well as 

adaptable and evolvable heuristic systems. Furthermore, the sub-swarms of spacecraft 

can operate autonomously to enable optimal gathering of complimentary measure-

ments for selected targets, and can also simultaneously operate in a broadly defined 

framework of goals to select targets from candidate asteroids [6].   

 

 
 

Fig. 1. A sample PAM scenario [7] 

 

The PAM spacecraft study a selected target by offering the highest quality and 

coverage of measurement by particular classes of measurers, called virtual teams. A 

virtual instrument team is made up of members of each class to optimize data collec-

tion. Another strategy involves providing comprehensive measurement to solve parti-

cular scientific problems by forming virtual experiment teams made up of multiple 

specialist classes, such as a dynamic modeler team, an asteroid detector and stereo 

mapper team, a petrologist team, a prospector team, a photogeologist team, etc. The 

social structure of the PAM swarm can be determined by a particular set of scientific 

and mission requirements, and representative system elements may include [8]: 1) a 

general, for distributed intelligence operations, resource management, mission con-

flict resolution, navigation, mission objectives, and collision avoidance; 2) rulers, for 

heuristic operation planning, local conflict resolution, local resource management, 

scientific discovery data sharing, and task assignment; 3) workers, for local heuristic 

operation planning, possible ruler replacement, and scientific data collection [8]. An 

operational scenario (see Fig. 1) is described as the following [8]:  

1) Asteroid detection and tracking: the ANTS spacecraft travel through an asteroid 

belt; the workers with IR/Visible imaging devices continuously track asteroids, 



and information can be propagated if new asteroids are detected. The rulers de-

cide which asteroids are of interest.  

2) Ruler reaction: the rulers may assign degrees of importance to the asteroids, and 

then hoverers begin to observe the most important asteroids.  

3) Arrival at asteroids: the messengers arrive before the workers to the vicinity of 

the asteroids, and have a better communication range, so they can act as com-

munication nodes for other spacecraft and transfer data from the workers to Earth. 

In addition, simple models of the asteroids can be created and sent to the workers, 

which will help individual workers to plan their trajectories on those asteroids.  

4) Worker acquisition of data: the workers arrive and search for appropriate trajec-

tories to enable efficient operation of their instruments and to prevent collisions, 

which is important when those workers drop toward the asteroids. (In order to 

reduce the possibility of a single failure point, trajectory determination should be 

distributed among individual workers, rather than handled by a central controller. 

Moreover, those workers should be able to adapt their observation plans to take 

advantage of interesting features when they are detected.)  

5) Worker completion of observations: the workers can either move away from the 

asteroids, or approach them. The spacecraft also needs time to reduce the raw 

data to make them suitable for transportation models and statistics; in addition, 

the workers may call the messengers and transfer the reduced data to those me-

ssengers that move among the workers. If the messengers reach their memory 

limits, they move to Earth and download information to communication points. 

Finally, the workers move to the next important asteroid.  

The PAM can therefore be regarded as an RAS with autonomic properties [7]. The 

resources can be configured and reconfigured to support parallel operations at hun-

dreds of asteroids over a given period (self-configuration). For example, a sub-swarm 

may be organized for scientific operations at an asteroid, and this sub-swarm can be 

reorganized at another asteroid. The rulers may maintain data on different types of 

asteroids and determine their characteristics over time. Therefore, the whole system 

can be optimized because time will not be wasted on the asteroids that are not of 

interest or are difficult to observe (self-optimization). The messengers provide com-

munication among the rulers, the workers, and Earth, and so they can adjust their 

positions to balance that communication (self-adaptation). The PAM individuals 

should be capable of coordinating their orbits and trajectories to avoid collisions with 

other individuals in a reactive way. Moreover, the plans of the rulers should in-

corporate the constraints necessary for acceptable collision risk between the space-

craft when they perform observation tasks (self-protection and reactive). The rulers 

capable of sensing solar storms should invoke the goal of protecting their missions 

when they recognize a threat of such storms. In addition, the rulers can inform the 

workers of the potential for these events to occur, so that they can orient their solar 

panels and sails to minimize the impact of solar wind. The rulers can also power 

down the workers’ subsystems to minimize the disruption from charged particles 

(self-protection and self-adaptation).  

Our goal is to establish a formal framework, the Reactive Autonomic Systems 

Framework (RASF), to model the RAS. The first step in this paper is to build a formal 

specification of the RAS meta-model described in section 3.  



3   Reactive Autonomic Systems Framework 

RAS meta-modeling focuses on and supports the process of construction of RAS 

models by providing "correct by construction" rules, constraints and properties app-

licable and useful for modeling reactive autonomic systems; its main concern is to 

make them evolve. The RAS meta-model (see Fig. 2 below) is a four-layer meta-

modeling architecture which consists of the Reactive Autonomic Objects (RAO), the 

Reactive Autonomic Components (RAC), the Reactive Autonomic Component Group 

(RACG), and the RAS. The autonomic features are implemented by the RAO Leaders 

(RAOL), the RAC Supervisors (RACS), and the RACG Managers (RACGM) at the 

RAC, RACG, and RAS layers respectively.  

 

 
 

Fig. 2. An example of the PAM model conforming to the RAS meta-model 

 

The instruments in a spacecraft, such as an IR device, a Mag device, or a Sail can 

be specified as an RAO. The RAC is modeled by a set of synchronously commu-

nicating RAO, where one of them is named team leader (RAOL). The team members 

are responsible for reactive tasks, and the RAOL works on autonomic tasks. Every 

spacecraft in the PAM, such as the messenger, ruler, or worker, may be specified as 

an RAC, and the control unit in that spacecraft as an RAOL. The RACG is a set of 

RAC that cooperate in the fulfillment of group tasks through synchronous commu-

nication, and it is the minimum reactive autonomic element that can independently 

complete a full reactive task in the RAS meta-model. The autonomic behavior at this 

layer is coordinated by a supervisor (RACS); each sub-swarm in the PAM can be 

modeled as an RACG, and the ruler in that sub-swarm is an RACS. The RAS is a set 

of RACG with their asynchronous communication, and can provide an integrated 

interface for users to delegate tasks, manage repositories, and monitor systems. A 

manager (RACGM) is mainly responsible for coordinating autonomic behavior at this 

layer. The whole swarm in the PAM may be specified as an RAS, and the general in 

that swarm is an RACGM. Fig. 2 depicts an example of the RAS meta-model in-

stantiation for the PAM case study.  

The rationale for using CT to specify the RAS meta-model and the RAS cate-

gorical specification are presented in the following section. 



4   Categorical Specification 

CT for software specification adopts the correct by construction approach, where 

components can be specified, proved, and composed so as to preserve their structures 

[9]. The term diagram [17] in CT takes its formal meaning and carries with it the 

intuition that comes from practice. Compared to other software concept formaliza-

tions, CT is not a semantic domain for formalizing the description of components or 

their connectors, but rather expresses the semantics of interconnection, configuration, 

instantiation, and composition, which are important aspects of modeling the evolving 

behavior of an RAS. Modeling can be achieved at a very abstract level, because CT 

proposes a toolbox which can be applied to any formalism for capturing component 

behavior, as long as that formalism satisfies certain properties of structure. Moreover, 

CT focuses on the relationships (morphisms) between objects, instead of on their 

representation. The morphisms may help determine the nature of the interactions 

established among the objects. Thus, a particular category may reflect a specific 

architectural style. CT can also provide the techniques for manipulating and reasoning 

on diagrams for building the hierarchies of system complexity, allow systems to be 

used as the components of more complex systems, and infer the properties of the 

systems from their configurations [10]. Let us recall some CT definitions [11] that 

will be used in this paper.  

Definition 4.1. A category C consists of following data and rules:  

 A class of objects: A, B, etc. We use |C| to denote the set of all objects, such as A, 

B |C|.  

 A class of arrows (morphisms): f, g, etc.  
 For each arrow f: A → B, A is called the domain of f, denoted dom(f), and B is 

called the codomain of f, denoted cod(f). We use C(A,B) to indicate the set of all 

arrows in C from A to B.  
 For each pair of arrows f: A → B and g: B → C, a composite morphism is g ◦ f:  

A → C.  

 For each object A, an identity morphism has both domain A and codomain A as 
IdA: A → A.   

 Identity composition: f ◦ IdA = f = IdB ◦ f for each morphism f: A → B.  

 Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f for each set of morphisms f: A → B, g: B → 

C, h: C → D.  

 Inverse of a morphism f: A → B is a morphism g: B → A such that f ◦ g = IdB and 

g ◦ f = IdA; we denote the inverse of f as f
-1

 if it exists, and a morphism can have 

at most one inverse.  
If f has an inverse, it is said to be an isomorphism; if f: A → B is an isomorphism, 

then A and B are said to be isomorphic, denoted as A B. For example, the functions 

between sets give rise to a category, where the objects are sets and the morphisms are 

all functions between them. According to the RAS meta-model we presented in 

Section 3, the RAC can be specified by the category RAC having a set of objects 

(RAO) and their interactions as the morphism f: RAC(RAOi, RAOj) where RAOi, 

RAOj |RAC|. Every spacecraft in the PAM, an IR worker, for instance, is a category 

IR-Worker consisting of objects IR-Device, Sail, Control-Unit, as well as their inter-

actions IR-Worker(IR-Device, Sail), IR-Worker(Control-Unit, IR-Device), and IR-

Worker(Control-Unit, Sail).  



Definition 4.2. Let C and D be categories. C is a subcategory of D denoted as 

C D if |C| |D|, and the morphisms of C are morphisms of D as C(Ai, Aj)D(Ai, Aj) 

where Ai, Aj |C|; C is a full subcategory of D when C(Ai, Aj) = D(Ai, Aj) for all 

objects of C.  

 
The RACG can be specified as a category RACG with a set of full subcategories 

RAC, and the RAS may be specified by the category RAS having a family of full 

subcategories RACG. Similarly, for a sub-swarm in the PAM, for example, a 

petrologist team is the category Petrologist including a set of full subcategories Mag 

Worker, X-ray Worker, and Imaging Worker.  

Definition 4.3. In any category C an object: 1) 0 is initial if, for any object C, there 
is a unique morphism → C, such as the empty set {} in the category of sets; 2) 1 is 

terminal if, for any object C, there is a unique morphism C → , such as for any 

singleton set in the category of sets; 3) initial (terminal) objects are unique up to 

isomorphism.  

 
Definition 4.4. The product of objects A and B, denoted by A × B, is an object P 

along with the arrows A 1p P 2p
B, and P is the terminal object in the cate-

gory of all such candidates X. A pair of objects may have many different products in a 

category, but those products are unique up to isomorphism, if they exist.  

 
The synchronous communication between the RAO may be represented by their 

product. For example, the interaction between the Mag Device (A) and Sail (B) in a 

Mag Worker, can be specified by their synchronous product (P) where p1, p2 are 

state projections from P to the Mag Device and Sail; x1, x2 are state projections from 

all other candidates X to the Mag Device and Sail.  

Similarly, a diagram A 1q
Q 2q

 B may be used to define coproduct (the 

dual concept), and Q, denoted by A + B, is the initial object in the category of all such 

candidates Z; coproducts are also unique up to isomorphism. An example of a co-

product is the asynchronous communication among the Control Units of the worker, 

ruler, and general in the PAM where q1, q2 are messages from the Control-Units of an 

IR-Worker and Mag-Worker (A, B) to the Control-Unit of a ruler (Q); z1, z2 are 

messages from A, B to all other candidates of Q. 

 



Definition 4.5. The pushout for two morphisms f: C → B and g: C → A, denoted 

as A +C B, is an object D along with two morphisms d1: B → D as well as d2: A → D 

such that the following diagram commutes, and D is the initial object in the category 

of all such candidates D
’
.  

 
The pushout can be used to represent the next relay of outgoing communication from 

the same source object (RAO) as RAO
’
 = RAOi +RAO RAOj. For instance, a ruler (C) 

sends some instructions (g) to the Control Unit of an X-ray Worker (A) as well as 

instructions (f) to a Alt Worker (B), and the processing outcome (d1’ and d2’) from 

those two workers will be integrated and transmitted (d’) to the general or ground 

station (D
’
) by a messenger (D).  

Dually, the pullback for two morphisms, denoted as A ×C B, can be defined as in 

the following diagram, and D is the terminal object in the category of all such can-

didates D
’
.  

 
The pullback may represent the previous relay of incoming communication toward 

the same destination RAO as RAO
’
 = RAOi ×RAO RAOj. For instance, a messenger (D) 

forwards some instructions (d1, d2) from a ruler (D
’
) to the Control Units of an Ima-

ging Worker (A) and a Gamma-ray Worker (B), and the working outcome from 

those two workers (f, g) will be sent to another ruler or messenger (C).  

Definition 4.6. For any diagram containing objects Ai along with morphisms fi, the 

limit of this diagram is an object L together with a set of morphisms l, such that, for 
each la: L → Ai, lb: L → Aj, fx: Ai → Aj, then fx ◦ la = lb, and L is the terminal object in 

the category of all such candidates L
’
, as the following diagram illustrates.  

 
Dually we have the concept of the colimit, which is an object L along with a set of 

morphisms l, such that for each la: Ai → L, lb: Aj → L, fx: Ai → Aj, then lb ◦ fx = la, and 

L is the initial object in the category of all such candidates L
’
 as depicted in the follo-

wing diagram.  



 
If we start with a diagram of the RAO, a kind of universal communicator may be 

introduced, and this is a higher-level object with arrow connections to each object in a 

base diagram. Thus, we can model that object as a limit or colimit of the base diagram. 

Graphically speaking, the limit object is a domain of all the arrows going to the RAO 

in the base diagram, and the colimit object is a codomain of all the arrows coming 

from the RAO in the base diagram. Having the limit or colimit object allows for the 

modeling of each specific interaction between the RAO by the communication path 

from the limit or colimit object to those RAO. According to the definition of the limit 

and colimit, no other object in the diagram above can improve the communication 

capability of the limit and colimit object due to the commutativity constraint in the 

universal properties of a limit and colimit.  

Because the RAC is represented as a category of the RAO, its behavior is derived 

from those RAO and can be specified by their limit or colimit. Thus, the interactions 

among the RAO (f, f’) may be interpreted as the incoming (la, lb) or outgoing (la’, lb’) 

communication between those RAO and their leader (RAOL), as shown in the follo-

wing diagram. In the PAM, the behavior of a spacecraft, such as an IR Worker, can 

be represented by the behavior of its Control Unit that is specified as the limit or 

colimit of the IR Device and Sail.  

 
As a result, the grid-like communication among the RAO can be regarded as the 

cone-like communication between those RAO and their RAOL, by converting their 

relationship of many-to-many to one-to-many or many-to-one through a categorical 

computation. Such model facilitates the specification of the emergent behavior of 

those RAO by hiding the many-to-many relationship details. 

Because the behavior of an RAC may be described as the limit or colimit (RAOL) 

of its RAO, the RACG can be specified by the category RACG having a set of 

objects (RAOL) and their interactions (g, g
’
) as the morphism f: RACG(RAOLm, 

RAOLn), where RAOLm, RAOLn |RACG|. A sub-swarm in the PAM, for example a 

prospector team, is the category Prospector including the Control Units of its X-ray 

Worker (RAOLm), Mag Worker (RAOLn), and their interactions (g, g
’
), such as Pro-

spector (Control UnitAlt, Control UnitMag).  

Because the behavior of an RACG is derived from its RAC, the limit or colimit of 

those RAOL (RACSx) may be used to specify the behavior of the RACG. Thus, the 

communication among the RAOL (g, g
’
) can be interpreted by the incoming or out-



going interactions between those RAOL (sa, sb, sa
’
, sb

’
)

 
and their supervisor (RACS), 

as depicted in the following diagram. For instance, the behavior of a sub-swarm in the 

PAM, such as a photogeologist team, may be represented by the behavior of its ruler 

that is specified as a limit or colimit of the Control Units from its Imaging Worker 

and Alt Worker.  

 
Similarly, the RAS can be specified by the category RAS with a set of objects 

(RACS) and their interaction (h, h
’
) as the morphism f: RAS(RACSx, RACSy), where 

RACSx, RACSy |RAS|. Thus, the whole swarm in the PAM is the category PAM-

SWARM, having the rulers of its asteroid detector and stereo mapper team, petro-

logist team, photogeologist team, prospector team, dynamic modeler team, and their 

interactions; for instance, PAM-SWARM(rulermodeler, rulerphoto). As the behavior of 

the RAS is derived from its RACG, the limit or colimit of those RACS may be used 

to represent the behavior of the RAS. Thus, the communication among the RACS (h, 

h
’
) can be modeled as the incoming or outgoing interactions between those RACS and 

their manager (RACGM) (ma, mb, ma
’
, mb

’
), as illustrated in the following diagram. 

For example, the behavior of the whole swarm in the PAM may be represented by the 

behavior of its general, which is specified as a limit or colimit of the rulers from its 

sub-swarms, such as rulermapper, rulerpetro, rulerprospector, etc. 

 
If we consider a category where objects are morphisms, a slice (coslice) category 

can be defined.  

Definition 4.7. A slice category C/C of a category C over its object C |C| (some-

times called a comma category) has the following data:  

 A class of objects fC such that cod(f) = C.  
 A class of arrows g from f: X → C to f

’
: X

’
 → C such that f

’
 ◦ g = f.  

 
The outgoing communication from the RAO to its RAOL in an RAC may be 

specified by a slice category as RAC/RAOLm, where each object is the outgoing com-
munication (f, f

’
) and the morphism is the arrow g from f: RAOi (X) → RAOLm (C) to 

f
’
: RAOj (X

’
) → RAOLm (C) such that f

’
 ◦ g = f. Similarly, the outgoing communication 



from the RAOL and RACS to the RACS and RACGM can be represented by their 

slice categories as RACG/RACSx and RAS/RACGM. The outgoing communication in 

a spacecraft from its instruments to their control unit is a slice category, for instance, 

Imaging Worker/Control Unit; the outgoing communication between the spacecraft 

and the messenger in a sub-swarm is a slice category, such as Petrologist/messenger. 

Dually, a coslice category C/C has objects fC such that dom(f) = C and arrows 
from f: C → X to f

’
: C → X

’
 such that g ◦ f = f

’
.  

 
The incoming communication from the RAOL to the RAO within an RAC can be 

specified by a coslice category as RAOLm/RAC, where objects are incoming com-
munication (f, f

’
) and the morphism is an arrow g from f: RAOLm (C) → RAOi (X) to 

f
’
: RAOLm (C) → RAOj (X

’
) such that g ◦ f = f

’
. Similarly, the coslice categories can be 

used to represent the incoming communication from the RACS and RACGM to the 

RAOL and RACS as RACSx/ RACG and RACGM/RAS respectively. As a result, the 

incoming communication in a sub-swarm from its ruler to the control unit of each 

spacecraft is a coslice category, such as ruler/Prospector. Also, the incoming com-

munication in the whole swarm from the general to the rulers is a coslice category 

general/PAM-SWARM. 

Considering a category where objects are categories and morphisms are mappings 

between those categories, the morphisms in that category are called functors.  
Definition 4.8. A functor (“the homomorphism of categories”) F: C → D between 

two categories C and D is a mapping of objects to objects along with arrows to arrows 

from C to D in the following way:  

 Object mapping as F: |C| → |D|. 

 Arrow mapping as F: C(Ai, Aj) → D(F(Ai), F(Aj)).  

 Composition mapping as F(g ◦ f) = F(g) ◦ F(f) where g, fC and F(g), F(f)D.  

 Identity mapping: F(IdA) = IdF(A) where IdAC and IdF(A) D.  

The evolution of an RAC, because of self-adaptation and self-organization during 

run time, can be represented by functors. For instance, the evolution from the RAC to 

RAC
’
 is a functor F, which includes a mapping of objects (RAO) in RAC to the 

objects (RAO
’
) in RAC

’
 (F: |RAC| → |RAC

’
|), as well as a mapping of the morphisms 

(interactions among the RAO) in RAC to morphisms (interactions among the RAO
’
) 

in RAC
’
 (F: RAC(RAOi, RAOj) → RAC

’
(F(RAOi), F(RAOj))). Similarly, the evo-

lution of the RACG and RAS may be represented as F: RACG → RACG
’
 and F: 

RAS → RAS
’
 respectively. The evolution of a spacecraft in the PAM, for example, 

from Alt Worker to Alt Worker
’
, because of the new configuration for its altimeter 

or sail, can be specified by a functor as F: Alt Worker → Alt Worker
’
; moreover, 

the evolution of a sub-swarm, for instance, from the Photogeologist to Photo-

geologist
’
 due to the new organization for its Imaging Worker or Alt Worker may 

be modeled as F: Photogeologist → Photogeologist
’
.  

Definition 4.9. The product of categories C and D: C × D has objects of the form 
(C, D), where C |C|, D |D|, along with arrows of the form (f, g): (C, D) → (C

’
, D

’
), 

where f: C → C
’C and g: D → D

’D. Both the unit and composition are defined 



as: 1(C, D) = (1C, 1D), (f
’
, g

’
) ◦ (f, g) = (f

’
 ◦ f, g

’
 ◦ g), and there are two projection functors: 

C 1 C×D 2D defined by π 1(C, D) = C, π1(f, g) = f, and similarly for π 2.  

For example, the interaction between the RAC can be specified as a product of two 

categories RACmRACn, which has objects of the form (RAOm, RAOn) for RAOm  
|RACm|, RAOn  |RACn|, along with arrows of the form (f, g): (RAOm, RAOn) → 

(RAOm
’
, RAOn

’
) for f: RAOm → RAOm

’RACm and g: RAOn → RAOn
’RACn. 

Similarly, the interaction between the RACG may be specified by a product of two 

categories as RACGxRACGy. The interaction between two spacecraft, such as IR 

Worker and Alt Worker, can be represented by IR WorkerAlt Worker having 

objects of the form (IR Control-Unitstate0, Alt-Control-Unitstate0) and morphisms of the 
form (IR-Control-Unitstate0, Alt-Control-Unitstate0)→(IR-Control-Unitstate1, Alt-Control-

Unitstate1).  

In a category where objects are functors, mappings between the functors are called 

natural transformations.  

Definition 4.10. For categories C, D, along with functors F, G: C → D, a natural 

transformation (v: F → G) is a family of arrows in D as vc: F(C) → G(C), such that, 

for any f: C → C
’
 in C, 'C

v ◦ F(f) = G(f) ◦ vC, as in the following diagram. Given such 

a natural transformation v, the D-arrow vC is called a component of v at C, and, if v is 

invertible, it is known as a natural isomorphism.  

 
For example, every group is naturally isomorphic to its opposite group. Because 

the evolutions of the RAC, RACG, and RAS are specified as functors from category 

RAC to RAC
’
, RACG to RACG

’
, and RAS to RAS

’
, the natural transformation may 

represent the mapping of those alternative evolutions. The relationship between two 

solutions in terms of fixing a problem for a sub-swarm, Solution1: Prospector → 

Prospector
’
 and Solution2: Prospector → Prospector

’’
, can be modeled by a natural 

transformation convert: Solution1 → Solution2.  

Definition 4.11. A functor category Fun(C, D) has:  
 Objects: functors F: C → D.  

 Arrows: natural transformations v: F → G.  

 For each object F, 1F has components (1F)C = 1FC: FC → FC, and composite of 

F
G

H has components (β ◦ α)C = βC ◦ αC.  

All possible evolutions, along with their relationships for the RAC, RACG, and 

RAS, can be specified as functor categories Fun(RAC, RAC
’
), Fun(RACG, RACG

’
), 

and Fun(RAS, RAS
’
) respectively. For example, all the plans to solve a problem for a 

spacecraft and their relations, such as Petrologist, may be represented by the functor 

category Petro-Fun(Petrologist, Petrologist
’
).  

In an abstract sense, we are dealing with arrow diagrams, where the objects are 

RAO, RAOL, RACS, and RACGM, and arrows are communication channels among 

those objects or groups of objects (RAC, RACG, and RAS). Moreover, commutativity 

can be interpreted in a natural way, that communication paths yield the same result, 



and we may also obtain some categorical properties of the RAS meta-model from its 

categorical specification above.  

Property 4.1. Isomorphic objects interact in the same way. Accordingly, the RAO 

can be replaced by an isomorphic one (RAO
’
) through the isomorphism and its inverse 

to re-establish the interaction as the following: any incoming arrow from RAOi to 

RAO (RAO
g RAOi) is replaced by RAO

’ g f RAOi; and any outgoing arrow 

from RAO to RAOi (RAO
hRAOi) is replaced by RAO

’
1f h

RAOi. This 

property may be employed in a fault-tolerance mechanism to formally model self-

healing behavior and verify the consistency of the replaced RAO with that of the 

faulty RAO. For instance, in order to take over a crashed spacecraft in the PAM, the 

substitute should be isomorphic to the original.  

Property 4.2. A category is called finitely complete (cocomplete) if all the finite 

diagrams in that category have limits (colimits). Therefore, at least one RAOL, RACS, 

and RACGM (limit or colimit) is required in the category RAC, RACG, and RAS 

respectively to ensure the completeness (cocompleteness) of the RAC, RACG, and 

RAS. This property means that, no matter how those RAC, RACG, and RAS evolve 

due to their self-adaptation and self-organization during run time, the fulfillment of 

designated tasks, behavior, and communication must be preserved and verified. This 

property may be employed in self-configuration to ensure the completeness and co-

completeness of a new configuration while the RAS is evolving; for example, at least 

one control unit for every spacecraft, one ruler for each sub-swarm, and one general 

for the whole swarm in the PAM. 

Fig. 3 illustrates the categorical specification on the PAM configuration depicted 

in Fig. 2.  

 

 
 

Fig. 3. Categorical specification of PAM Model 



5   Related Work 

The only published work on modeling autonomous systems using CT [12] served as 

the structure for the research presented in this paper. Its author stated that an auto-

nomous system is a set of cooperating subsystems, and defined a specification lan-

guage for such systems based on CT. A constructor for communication by using 

monoids was introduced, and the feasibility of the categorical approach was proven, 

but no systematic methodology was proposed. There is also some related work re-

garding our case study. The paper [13] states a formal task-scheduling approach and 

model the self-scheduling behavior of the ANTS by an autonomic system specifica-

tion language. The authors in [14] summarize necessary properties for the effective 

specification and emergent behavior predication of the PAM. They also compared 

current formal methods and integrated formal methods for the specification of intelli-

gent swarm systems with the emergent behavior.  

However, there is no single formal method satisfying all the required properties for 

specifying the PAM, and the PAM specification cannot be easily converted to pro-

gram code or used as the input for model checkers when using integrated formal 

methods. Our research considerably differs from the related work above, since our 

goal is to propose a systematic and formal methodology based on CT to model the 

RAS, which could be implemented by multi-agent systems (MAS), service-oriented 

systems, or object-oriented systems. Our categorical approach is abstract enough to 

accommodate various specification languages, and it also proposes a toolbox for the 

formalisms to capture component behavior in the PAM, as long as those formalisms 

satisfy certain structural properties. If we consider a category in which objects are 

specifications, the morphisms in that category will translate the vocabulary of one 

specification into another while preserving the theorems.  

6   Conclusions and Future Work 

This paper introduced an important direction with respect to the formal aspects of 

modeling the RAS using CT. The work is motivated by the importance of a com-

pliance with the self-management requirements for increasingly complex RAS. Our 

formal approach employs CT as a unified formal language allowing the use of the 

same constructors to model heterogeneous objects and the various types of relations 

between them. We have shown that CT is expressive enough to capture the know-

ledge about the RAS constructs, along with their interrelations, in a single formal 

representation in which structure and reasoning are bound together.  

We are currently working on a formal specification of the Categorical Modeling 

Language (CML), which can be used to present the categorical specification and self-

* properties for specifying autonomic behavior, and a graphical tool to capture RAS 

modeling. Once the RAS meta-model has been developed, we will transfer it to the 

MAS model, since an agent-based approach is considered a natural way to model the 

RAS [15]. The RAOL, RACS, and RACGM can be modeled as the hybrid agents [16]. 

Finally, a source code template can be generated according to the MAS model, and 

this will be discussed in our future work.  
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