
ar
X

iv
:0

91
1.

13
70

v1
 [

cs
.F

L
]

 6
 N

ov
 2

00
9

On the maximal number of cubic

subwords in a string⋆

Marcin Kubica1, Jakub Radoszewski1, Wojciech Rytter1,2, and

Tomasz Waleń1

1 Department of Mathematics, Computer Science and Mechanics,
University of Warsaw, Warsaw, Poland

{kubica,jrad,rytter,walen}@mimuw.edu.pl
2 Faculty of Mathematics and Informatics,

Copernicus University, Toruń, Poland

Abstract. We investigate the problem of the maximum number of cubic
subwords (of the form www) in a given word. We also consider square
subwords (of the form ww). The problem of the maximum number of
squares in a word is not well understood. Several new results related to
this problem are produced in the paper. We consider two simple problems
related to the maximum number of subwords which are squares or which
are highly repetitive; then we provide a nontrivial estimation for the
number of cubes. We show that the maximum number of squares xx
such that x is not a primitive word (nonprimitive squares) in a word of
length n is exactly

¨
n

2

˝
−1, and the maximum number of subwords of the

form xk, for k ≥ 3, is exactly n− 2. In particular, the maximum number
of cubes in a word is not greater than n− 2 either. Using very technical
properties of occurrences of cubes, we improve this bound significantly.
We show that the maximum number of cubes in a word of length n is
between 1

2
n and 4

5
n 3.

1 Introduction

A repetition is a word composed (as a concatenation) of several copies of an-
other word. The exponent is the number of copies. We are interested in natural
exponents higher than 2. In [4] the authors considered also exponents which are
not integer.

In this paper we investigate the bounds for the maximum number of highly
repetitive subwords in a word of length n. A word is highly repetitive iff it is
of the form xk for some integer k greater than 2. In particular, cubes w3 and
squares x2 with nonprimitive x are highly repetitive.

The subject of computing maximum number of squares and repetitions in
words is one of the fundamental topics in combinatorics on words [16, 20] initiated

⋆ Supported by grant N206 004 32/0806 of the Polish Ministry of Science and Higher
Education.

3 In particular, we improve the lower bound from the conference version of the paper
[19].

http://arxiv.org/abs/0911.1370v1

by A. Thue [27], as well as it is important in other areas: lossless compression,
word representation, computational biology etc.

The behaviour of the function squares(n) of maximum number of squares in
a word of length n is not well understood, though the subject of squares was
studied by many authors, see [7, 8, 15, 23]. The best known results related to the
value of squares(n) are, see [11, 13, 14]:

n− o(n) ≤ squares(n) ≤ 2n−O(log n) .

In this paper we concentrate on larger powers of words and show that in this
case we can have much better estimations. Let cubes(n) denote the maximum
number of cubes in a word of length n. We show that:

1

2
n ≤ cubes(n) ≤

4

5
n .

There are known efficient algorithms for the computation of integer powers
in words, see [1, 3, 9, 21, 22].

The powers in words are related to maximal repetitions, also called runs. It
is surprising that the bounds for the number of runs are much tighter than for
squares, this is due to the work of many people [2, 5, 6, 12, 17, 18, 24–26].

Our main result is a new estimation of the number of cubic subwords. We
use a new interesting technique in the analysis: the proof of the upper bound is
reduced to the proof of an invariant of some abstract algorithm (in our invariant
lemma). There is still some gap between upper and lower bound but it is much
smaller than the corresponding gap for the number of squares.

0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1

Fig. 1. Example of a word with 11 distinct cubes. This is a word of length 30 with
maximal number of cubes among binary words of the same length.

2 Periodicities in strings

We consider words over a finite alphabet A, u ∈ A∗; by ε we denote an empty
word. The positions in a word u are numbered from 1 to |u|. For u = u1 . . . uk, by
u[i. . j] we denote a subword of u equal to ui . . . uj ; in particular, u[i] = u[i. . i].

We say that a positive integer p is a period of a word u = u1 . . . uk if ui = ui+p

holds for 1 ≤ i ≤ k − p. If wk = u (k is a nonnegative integer) then we say that
u is the kth power of the word w.

The primitive root of a word u, denoted root(u), is the shortest word w, such
that wk = u for some positive k. We call a word u primitive if root(u) = u,
otherwise it is called nonprimitive. It can be proved that the primitive root of a
word u is the only primitive word w, such that wk = u for some positive k.

A square is the 2nd power of some word, and an np-square (a nonprimitive
square) is a square of a word that is not primitive. A cube is a 3rd power of some
word.

In this paper we focus on the last occurrences of subwords. Hence, whenever
we say that word u occurs at position i of the word v we mean its last occurrence,
that is v[i. . i + |u| − 1] = u and v[j. . j + |u| − 1] 6= u for j > i. The following
lemma is used extensively throughout the article.

Lemma 1 (Periodicity lemma [10, 20]). If a word of length n has two periods
p and q, such that p + q ≤ n + gcd(p, q), then gcd(p, q) is also a period of the
word.

In this paper we often use, so called, weak version of this lemma, where we only
assume that p+ q ≤ n.

3 Basic properties of highly repetitive subwords

A word is said to be highly repetitive (hr-word) if it is a kth power of a nonempty
word, for k ≥ 3.

root(y)

root(x)

Fig. 2. The situation when one hr-word is a (long) prefix of another hr-word implies
that root(x) = root(y), consequently x is a suffix of y.

Lemma 2. If a hr-word x is a prefix of a hr-word y and |x| ≥ |y| − |root(y)|,
then x is also a suffix of y.

Proof. Due to the periodicity lemma, both words have the same smallest period
and it is a common divisor of the lengths of their primitive roots, see Figure 2.
Consequently, we have root(x) = root(y) and x is a suffix of y. ⊓⊔

Lemma 3. Assume that x and y are two hr-words, where y = z3 and x is a
subword of y starting at position i and ending at position j such that

i ≤

⌈
|root(z)|

2

⌉

+ 1 and j > |z2| .

Then, |root(x)| = |root(y)|.

beginning of y x

z z z

i
j

Fig. 3. The situation from Lemma 3.

Proof. Let x = wk, for some k ≥ 3. Using the inequalities on i and j from the
lemma, we obtain:

|x| = j − i+ 1 ≥ |z2|+ 1−

⌈
|root(z)|

2

⌉

− 1 + 1 ≥

≥ 2 · |z| −

⌈
|z|

2

⌉

+ 1 ≥ 2 · |z| −
|z|

2
=

3

2
· |z| .

Let us also observe that |root(x)| and |root(y)| are both periods of x. Moreover:

|x| = |wk| = |w|+
k − 1

k
· |x| ≥ |w|+

2

3
· |x| ≥

≥ |w|+ |z| ≥ |root(x)| + |root(y)| .

From this, by the periodicity lemma, we obtain that gcd(|root(x)|, |root(y)|) is
also a period of x. However, root(x) and root(y) are subwords of x, so |root(x)| =
|root(y)|, since in the opposite case one of the words root(x), root(y) would not
be primitive. ⊓⊔

4 Simple bounds for highly repetitive subwords

In this section we give some simple estimations of the number of square subwords
with nonprimitive roots and cubic subwords.

Lemma 4. Let u be a word. Let us consider highly repetitive subwords of u of
the form vk, for k ≥ 3 and v primitive. For each such subword we consider its
(last) occurrence in u. For each position i in u, at most one such subword can
have its (last) occurrence at position i.

Proof. Let us assume that we have two different hr-words x and y with their last
occurrences starting at position i, and let us assume that x is shorter. Then, we
have |x| ≥ |y| − |root(y)|, otherwise the considered occurrence of x would not be
the last one.

Now we can apply Lemma 2 — x is not only a prefix of y, but also its suffix.
Hence, x appears later in the text and the last occurrence of x in u does not
start at position i. This contradiction proves that the assumption that the last
occurrences of x and y start at position i is false. ⊓⊔

The following fact is a consequence of Lemma 4.

Theorem 1. The maximum number of highly repetitive subwords of a word of
length n ≥ 2 is exactly n− 2.

Proof. From Lemma 4 we know that at each position there can be at most one
last occurrence of a nonempty hr-word. Moreover, the minimum possible length
of such a word is 3. Therefore, there can be no such occurrences at positions n
and n− 1. On the other hand, this upper bound is reached by the word an. ⊓⊔

As a corollary, we obtain a simple upper bound for the number of cubes,
since cubes are hr-words.

Corollary 1. Let us consider a word u of length n. The number of nonempty
cubes appearing in u is not greater than n− 2.

We improve this upper bound substantially in the next sections. However, it
requires a lot of technicalities. Another implication of Theorem 1 is a tight
bound for the number of np-squares.

Theorem 2. Let u be a word of length n. The maximum number of nonempty
np-squares appearing in u is exactly

⌊
n
2

⌋
− 1.

Proof. Each nonempty np-square can be viewed as v2i for some nonempty prim-
itive v and i ≥ 2. However, each such np-square contains a subword v2i−1, which
is not an np-square (due to the periodicity lemma), but still a hr-word. Hence,
the number of nonempty subwords of the form v2i−1 (for primitive v and i ≥ 2),
appearing in the given word, is not smaller than the number of nonempty np-
squares.

Observe that Theorem 1 limits the total number of both subwords of the
form v2i and v2i−1 by n− 2.

Hence, the total number of nonempty np-squares appearing in the given word
is not greater than n

2
− 1, and since it is integer, it is not greater than

⌊
n
2

⌋
− 1.

On the other hand, this upper bound is reached by the word an. ⊓⊔

5 The structure of occurrences of cubic subwords

In this section we introduce some combinatorial facts about words that are nec-
essary in the proof of the 4

5
n upper bound on the number of cubes in a word of

length n.

Lemma 5. Let v3 and w3 be two nonempty cubes occurring in a word u at
positions i and j respectively, such that:

i < j ≤ i+

⌈
|root(v)|

2

⌉

.

Then:

|root(w)| = |root(v)| or |root(w)| ≥ 2 · |root(v)| − (j − i− 1) .

Proof. Let us denote p = |root(v)|, q = |root(w)|, and let k be the position of
the last letter of w3.

Case 1.

Let us first consider the case, when the (last) occurrence of w3 is totally inside
v3. Observe that k must then be within the last of the three v’s, since otherwise
w3 would occur in u at position j + p or further (see also Fig. 3). Hence, due to
Lemma 3, we obtain q = p.

Case 2.

In the opposite case, let x be the maximal prefix of w3 that lays inside v3. If
p 6= q then p+q must be greater than |x|. Indeed, if p+q ≤ |x| then both root(v)
and root(w) would be subwords of x, so if p 6= q, then one of them would not be
primitive due to the periodicity lemma. Therefore:

p+ q > |x| > |v3| − (j − i) ≥ 3p− (j − i) .

Consequently q ≥ 2p− (j − i) + 1. ⊓⊔

Let us introduce a useful notion of p-occurrence.

Definition 1. A p-occurrence is the (last) occurrence of a cube with primitive
root of length p.

It turns out that the primitive roots of cubes appearing close to each other
cannot be arbitrary. It is formally expressed by the following lemma.

Lemma 6. Let a1, a2, . . . , ap+1 be an increasing sequence of positions in a word
u, such that aj+1 ≤ aj + p for j = 1, 2, . . . , p. It is not possible for all these
positions to contain p-occurrences.

Proof. Let us assume, to the contrary, that at each of the positions a1, a2, . . . , ap+1

there is a p-occurrence. Observe that the inequalities from the hypothesis of the
lemma imply that the primitive roots of cubes occurring at these positions are
all cyclic rotations of each other. There are only p different rotations of such
primitive roots; therefore, due to the pigeonhole principle, some two of them
must be equal.

It suffices to show that all these cubes have the same length, because then
some two of them are equal, and consequently one of them is not the last occur-
rence of the cube.

Assume to the contrary that some of the considered cubes have different
lengths. Let aj and aj+1 be two considered positions, such that cubes (v3 and
w3 respectively) occurring at these positions have different lengths (3kp and 3lp
respectively, for k 6= l). Let us consider two cases.

Case 1. If l < k, then 3kp− 3lp ≥ 3p, and w3 occurs in u at position aj+1 + p
or further (see Fig. 4).

w ww w

v v v

Fig. 4. The positions of cubes v3 and w3 in the case l < k: aj+1 is not the last
occurrence of w3.

v v v v

ww w

Fig. 5. The positions of cubes v3 and w3 in the case k < l: aj is not the last occurrence
of v3.

Case 2. If k < l, then 3lp− 3kp ≥ 3p and v3 appears in u at position aj + p or
further (see Fig. 5).

In both cases we obtain a contradiction. Hence, it is not possible that the
lengths of the cubes differ. ⊓⊔

Let us introduce a notion of independent prefixes.

Definition 2. We say that v is the independent prefix of u if it is the shortest
prefix of u that is:

1. a single letter word, if there is no occurrence of a cube at the first position
of u, or otherwise

2. a prefix that ends with a q-occurrence (for some q ≥ 1) followed by exactly
⌈
q

2

⌉
positions without any occurrences (here all occurrences are considered

within u).

It is not obvious that the above definition is valid. Therefore, we prove the
following lemma:

Lemma 7. For every word u, there exists an independent prefix v of u.

Proof. If there is no occurrence of a cube at the first position of u, then obviously
v = u[1].

In the opposite case, let us assume — to the contrary — that the indepen-
dent prefix does not exist. Let q be the maximum such value, that there exists
a q-occurrence in u, and let i be the rightmost position in u that contains a
q-occurrence. From Lemma 5,

⌈
q

2

⌉
positions following i do not contain any oc-

currences of cubes. Thus, the prefix u[1. . i +
⌈
q

2

⌉
] satisfies the definition of an

independent prefix — a contradiction. ⊓⊔

6 Algorithm Abstract-Simulation

Let v be the independent prefix of a word u and let |v| > 1. Let (ci)
|v|
i=1 be a

sequence describing the occurrences starting within v: ci = 0 iff there are no
occurrences in position u[i], and ci = q iff there is a q-occurrence in position u[i].
We start with the following observations.

a) If ci and cj is a pair of consecutive nonzero elements of c (i.e. i < j, ci, cj > 0
and ci+1 = . . . = cj−1 = 0) then j − i ≤

⌈
ci
2

⌉
. Indeed, if j − i >

⌈
ci
2

⌉
, then

the prefix of u of length i +
⌈
ci
2

⌉
or shorter would be an independent prefix

of u.

b) For ci and cj as in a), cj ≥ 2ci − (j − i − 1). This observation is due to
Lemma 5.

c) From Lemma 6 and due to a) we have that no q + 1 consecutive positive
elements of c are equal to q.

From now on, we abstract from the actual word u, and focus only on the
properties of sequence c. We will analyze the ratio R of nonzero elements of c to
the length of c.

Let us observe that if c contains such a pair of equal elements ci = cj > 0,
that all the elements between them are equal zero, then all the elements between
ci and cj can be removed from c without decreasing R. Also, if c contains a
subsequence of consecutive elements equal to q (q > 0) of length less than q
then this subsequence can be extended to length q without decreasing R. Let c′

be the sequence obtained from c by performing the described modification steps
(as many times as possible). Observe that none of these steps violates properties
a)–c).

Every possible sequence c′ can be generated by the (nondeterministic) pseu-
docode shown below. The following variables are used in the pseudocode:

– p — the value of the last positive element of c′

– len — the length of the sequence c′ without ⌈p/2⌉ trailing zeros
– occ — the number of positive elements in c′

– l — the gap between consecutive different positive elements of c′

– α — the difference between the actual value of a positive element of c′ and
the lower bound from Lemma 5.

Each step of the repeat loop corresponds to extending sequence c′, i.e. adding
l zeros and p elements of value p.

3 3 3 0 5 . . . 5
| {z }

5 times

0 0 20 . . . 20
| {z }

20 times

0 . . . 0
| {z }

6 times

34 . . . 34
| {z }

34 times

0 . . . 0
| {z }

17 times

Fig. 6. An example of sequence c′. The length of the sequence is 88 and it contains 62
positive elements. The ratio is 62/88 ≈ 0.70 < 4/5.

Note that the algorithm specified by the pseudocode is nondeterministic in
several different aspects — the initial value of p, the number of steps of the
repeat loop and values of l and α.

Algorithm Abstract-Simulation

p := some positive integer;
occ := p; len := p;
output: p . . . p

︸ ︷︷ ︸

p times

repeat an arbitrary number of times

Invariant I(p, occ, len) : occ
len+

p

2

≤ 4

5
.

l := some integer from interval [0,
⌈
p
2

⌉
);

α := some nonnegative integer;
p := 2p− l + α;
occ := occ+ p;
len := len+ l + p;
output: 0 . . . 0

︸ ︷︷ ︸

l times

p . . . p
︸ ︷︷ ︸

p times

7 Upper bound on the number of cubic subwords

Lemma 8 (Invariant lemma). The following condition I(p, occ, len):

occ

len+ p

2

≤
4

5

is an invariant of the Abstract-Simulation Algorithm.

Proof. Before the first execution of the repeat loop, occ = len = p, and conse-
quently I(p, occ, len) holds:

p

p+ p

2

=
1
3

2

=
2

3
≤

4

5
.

Therefore, we only need to prove that if I(p, occ, len) holds then I(p′, occ′, len′)
also holds, where p′, occ′ and len′ are the values obtained as a result of a single
step of the repeat loop, i.e.:

p′ = 2p− l + α,
occ′ = occ+ 2p− l + α,
len′ = len+ 2p+ α.

Let us restate I(p′, occ′, len′) equivalently in the following way:

5 · occ+ 10p− 5l+ 5α ≤ 4 · len+ 8p+ 4α+ 4 ·
2p− l + α

2
. (1)

On the other hand, I(p, occ, len) can be expressed as

5 · occ ≤ 4 · len+ 4 ·
p

2
.

Hence, in order to show (1), it is sufficient to prove that:

10p− 5l+ 5α ≤ 8p+ 4α+ 2 · (2p− l+ α) − 2p . (2)

As a result of some rearrangement, (2) can be expressed as

0 ≤ 3l+ α

and this inequality trivially holds. ⊓⊔

We can now show the upper bound for the number of cubes in independent
prefixes.

Lemma 9. Let v be the independent prefix of u. The number of different nonempty
cubes that occur in u and start within v is not greater than 4

5
· |v|.

Proof. Observe that if v satisfies the first condition of Definition 2, then the
conclusion trivially holds. Therefore, from now on we assume that |v| > 1.

As described in the previous section, instead of computing the ratio of cubes
that occur in u and start within v, we can deal with the ratio R of nonzero
elements of the corresponding sequence c to the length of c and show that R ≤ 4

5
.

For this it suffices to prove that for any valid sequence c′ the ratio of nonzero
elements does not exceed 4

5
.

The Abstract-Simulation Algorithm generates every possible sequence c′.
Hence, in order to prove the 4

5
bound, we need to show that inequality

occ

len+
⌈
p
2

⌉ ≤
4

5

holds for every possible execution of the Algorithm. But this inequality is a con-
sequence of the fact that I(p, occ, len) is an invariant of the Algorithm (Lemma
8). ⊓⊔

Theorem 3. The number of different nonempty cubes that occur in a word of
length n is not greater than 4

5
n.

Proof. We prove the theorem by induction on n. The basis (n = 0) is trivial.
Now assume that the conclusion holds for all words of length not exceeding n and
consider a word u of length n+1. Due to Lemma 7, there exists the independent
prefix v of u, v 6= ε, u = vw. The cubes occurring within u can be divided into
two groups: the ones that start within v and the ones that occur totally inside
w. By Lemma 9, the number of cubes in the first group does not exceed 4

5
|v|,

and by the inductive hypothesis, cubes(w) ≤ 4

5
· |w|. In total, there are at most

4

5
· |v|+

4

5
· |w| ≤

4

5
· |u|

cubes within u — this ends the inductive proof. ⊓⊔

8 Lower bound on the number of cubic subwords

A trivial lower bound on the number of different cubic subwords is the word an

with
⌊
n
3

⌋
cubic occurrences. The table presented in Figure 7 contains examples

of some words with higher number of cubic subwords. These words have been
computed using extensive computer experiments.

n word #cubes ratio

20 01110101011011011000 7 0.35

30 000000110110110101101011010101 11 0.36

40 1101101101110111011100010001000100100100 16 0.40

50 11111111110010010010100101001010100101010010101000 20 0.40

60 10100101001010010101001010010101001010010101001010

1001010100

25 0.41

70 00000011011011010110101101010110101101010110101101

01011010101101010111

30 0.42

80 11011011010110110101101101011010110101011010110101

011010110101011010101101010111

34 0.42

90 11101101101110110110111011011011101101110110110111

0110111011011011101101110110111011101110

40 0.44

100 10001010100101010010101001010010101001010010101001

01001010010101001010010100101010010100101001010111

44 0.44

Fig. 7. Examples of words with high number of distinct cubic subwords.

Let us proceed to the construction of the 1

2
n lower bound. For i ≥ 1, let pi be

the word 0i10i+11. Let qn be the concatenation p1p2 . . . pn. Thus, for instance,
q4 = 01001001000100010000100001000001.

Lemma 10. The length of qn is n2 + 4n.

Proof. Clearly pi contains 2i+ 3 bits, so

|qn| =

n∑

i=1

2i+ 3 = n2 + 4n .

⊓⊔

Lemma 11. The word qn contains exactly

n2

2
+

n

2
− 1 +

⌊
n+ 1

3

⌋

distinct cubes.

Proof. Note that the concatenation pipi+1 = 0i10i+110i+110i+21 contains the
following i+ 1 cubes:

(
0i10

)3
,
(
0i−1102

)3
, . . . ,

(
010i

)3
,
(
10i+1

)3
.

Apart from that, in qn there are
⌊
n+1

3

⌋
cubes of the form 03, 06, 09, . . . Thus far

we obtained

n−1∑

i=1

(i + 1) +

⌊
n+ 1

3

⌋

=
n2

2
+

n

2
− 1 +

⌊
n+ 1

3

⌋

cubes.

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

Fig. 8. For i = 3 the word pipi+1 contains 4 cubes of length 3i+ 6 = 15.

It remains to show that there are no more cubes in qn. Notice that we have
considered all cubes u3 for which the number of 1’s in u equals 0 or 1. On the
other hand, if this number exceeds 1 then u would contain the factor 10i1 for
some i ≥ 1 and this is impossible, since for a given i such a factor appears within
qn at most twice. ⊓⊔

Theorem 4. For infinitely many positive integers m there exists a word of
length m for which the number of cubes is m

2
− o(m).

Proof. Due to Lemmas 10 and 11, for any word qn we have:

|qn|

2
− cubes(qn) =

n2

2
+ 2n−

n2

2
−

n

2
+ 1−

⌊
n+ 1

3

⌋

=

3

2
n−

⌊
n+ 1

3

⌋

+ 1 = O(n) = o(|qn|) .

Thus, cubes(qn) =
|qn|
2

− o(|qn|). ⊓⊔

Interestingly, the example from the paper [11] of a family of words that
contain m − o(m) squares is quite similar to our example, but instead of pi it
utilizes words of the form p′i = 0i+110i10i+11.

9 Conclusions

In this paper we prove a tight bound for the number of nonprimitive squares
in a word of length n. Unfortunately, this does not improve the overall bound
of the number of squares — the main open problem is improving the bound for
primitive squares.

We also give some estimations of the number of cubes in a string of length
n. These bounds are much better than the best known estimations for squares
in general. We believe that at least the upper bound established in our paper is
not tight.

References

1. Alberto Apostolico and Franco P. Preparata. Optimal off-line detection of repeti-
tions in a string. Theor. Comput. Sci., 22:297–315, 1983.

2. Pawel Baturo, Marcin Piatkowski, and Wojciech Rytter. The number of runs in
sturmian words. In CIAA 2008, pages 252–261, 2008.

3. Maxime Crochemore. An optimal algorithm for computing the repetitions in a
word. Inf. Process. Lett., 12(5):244–250, 1981.

4. Maxime Crochemore, Szilard Zsolt Fazekas, Costas S. Iliopoulos, and Inuka
Jayasekera. Bounds on powers in strings. In DLT, pages 206–215, 2008.

5. Maxime Crochemore and Lucian Ilie. Maximal repetitions in strings. J. Comput.
Syst. Sci., 74(5):796–807, 2008.

6. Maxime Crochemore, Lucian Ilie, and Liviu Tinta. Towards a solution to the
”runs” conjecture. In Paolo Ferragina and Gad M. Landau, editors, CPM, volume
5029 of Lecture Notes in Computer Science, pages 290–302. Springer, 2008.

7. Maxime Crochemore and Wojciech Rytter. Squares, cubes, and time-space efficient
string searching. Algorithmica, 13(5):405–425, 1995.

8. Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World Scientific,
2003.

9. David Damanik and Daniel Lenz. Powers in sturmian sequences. Eur. J. Comb.,
24(4):377–390, 2003.

10. N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16:109–114, 1965.

11. A. S. Fraenkel and J. Simpson. How many squares can a string contain? J. of
Combinatorial Theory Series A, 82:112–120, 1998.

12. Mathieu Giraud. Not so many runs in strings. In Carlos Mart́ın-Vide, Friedrich
Otto, and Henning Fernau, editors, LATA, volume 5196 of Lecture Notes in Com-
puter Science, pages 232–239. Springer, 2008.

13. L. Ilie. A simple proof that a word of length n has at most 2n distinct squares. J.
of Combinatorial Theory Series A, 112:163–164, 2005.

14. L. Ilie. A note on the number of squares in a word. Theoretical Computer Science,
380:373–376, 2007.

15. Costas S. Iliopoulos, Dennis Moore, and William F. Smyth. A characterization of
the squares in a fibonacci string. Theor. Comput. Sci., 172(1-2):281–291, 1997.

16. Juhani Karhumaki. Combinatorics on words. Notes in pdf.
17. Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a

word in linear time. In FOCS, pages 596–604, 1999.
18. Roman M. Kolpakov and Gregory Kucherov. On maximal repetitions in words. In

Gabriel Ciobanu and Gheorghe Paun, editors, FCT, volume 1684 of Lecture Notes
in Computer Science, pages 374–385. Springer, 1999.

19. Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. On
the maximal number of cubic subwords in a string. In Proceedings of the 20th
International Workshop on Combinatorial Algorithms (to appear), 2009.

20. M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, Cam-
bridge, UK, 2005.

21. Michael G. Main. Detecting leftmost maximal periodicities. Discrete Applied
Mathematics, 25(1–2):145–153, 1989.

22. Michael G. Main and Richard J. Lorentz. An o(n log n) algorithm for finding all
repetitions in a string. J. Algorithms, 5(3):422–432, 1984.

23. Marcin Piatkowski and Wojciech Rytter. Asymptotic behaviour of the maximal
number of squares in standard sturmian words. In Prague Stringology Conference,
pages 237–248, 2009.

24. Simon J. Puglisi, Jamie Simpson, and William F. Smyth. How many runs can a
string contain? Theor. Comput. Sci., 401(1-3):165–171, 2008.

25. Wojciech Rytter. The number of runs in a string: Improved analysis of the linear
upper bound. In Bruno Durand and Wolfgang Thomas, editors, STACS, volume
3884 of Lecture Notes in Computer Science, pages 184–195. Springer, 2006.

26. Wojciech Rytter. The number of runs in a string. Inf. Comput., 205(9):1459–1469,
2007.

27. A. Thue. Uber unendliche zeichenreihen. Norske Vid. Selsk. Skr. I Math-Nat.,
7:1–22, 1906.

