Skip to main content

Generalization of Single-Center Projections Using Projection Tile Screens

  • Conference paper
Computer Vision and Computer Graphics. Theory and Applications (VISIGRAPP 2008)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 24))

Included in the following conference series:

Abstract

This work presents an image-based approach to efficiently generate multiple non-planar projections of arbitrary 3D scenes in real-time. The creation of projections such as panorama or fisheye views has manifold applications, e.g., in geovirtual environments and in augmented reality. Our rendering technique is based on dynamically created cube map textures in combination with shader programs that calculate the specific projections. Based on this principle, we present an approach to customize and combine different planar as well as non-planar projections. Our technique can be applied within a single rendering pass, is easy to implement, and exploits the capability of modern programmable graphics hardware completely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, H., Chen, L., Ying, J., Peng, Q.: Non-Linear View Interpolation. The Journal of Visualization and Computer Animation 10, 233–241 (1999)

    Article  Google Scholar 

  2. Bayarri, S.: Computing Non-Planar Perspectives in Real Time. Computers & Graphics 19(3), 431–440 (1995)

    Article  Google Scholar 

  3. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and Magic Lenses: The See-Through Interface. In: SIGGRAPH, pp. 73–80. ACM Press, New York (1993)

    Google Scholar 

  4. Blinn, J.: Hyperbolic Interpolation. IEEE Computer Graphics and Applications Staff 12(4), 89–94 (1992)

    Google Scholar 

  5. Blythe, D.: The Direct3D 10 System. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 724–734. ACM Press, New York (2006)

    Chapter  Google Scholar 

  6. Bourke, P.: Nonlinear Lens Distortion (August 2000)

    Google Scholar 

  7. Bourke, P.: Offaxis Fisheye Projection (October 2004)

    Google Scholar 

  8. Brosz, J., Samavati, F.F., Carpendale, S., Sousa, M.C.: Single Camera Flexible Projection. In: NPAR 2007: Proceedings of the 5th international symposium on Non-photorealistic animation and rendering, pp. 33–42. ACM Press, New York (2007)

    Google Scholar 

  9. Carpendale, S., Montagnese, C.: A Framework for Unifying Presentation Space. In: UIST 2001: Proceedings of the 14th annual ACM symposium on User interface software and technology, pp. 61–70. ACM Press, New York (2001)

    Chapter  Google Scholar 

  10. Coleman, P., Singh, K.: RYAN: Rendering Your Animation Nonlinearly projected. In: NPAR (2004)

    Google Scholar 

  11. Fleck, M.M.: Perspective Projection: the Wrong Imaging Model (1995)

    Google Scholar 

  12. Glaeser, G., Gröller, E.: Fast Generation of Curved Perspectives for Ultra-Wide-Angle Lenses in VR Applications. The Visual Computer 15(7/8), 365–376 (1999)

    Article  Google Scholar 

  13. Glaeserm, G.: Extreme and Subjective Perspectives. In: Topics in Algebra, Analysis and Geometry, pp. 39–51. BPR Médiatanácsadó BT, Budapest (1999)

    Google Scholar 

  14. Glasbey, C.A., Mardia, K.V.: A Review of Image Warping Methods. Journal of Applied Statistics 25, 155–171 (1989)

    Article  Google Scholar 

  15. Göddeke, D.: Playing Ping Pong with Render-To-Texture. Technical report, University of Dortmund, Germany (2005)

    Google Scholar 

  16. Greene, N.: Environment Mapping and other Applications of World Pojections. IEEE Comput. Graph. Appl. 6(11), 21–29 (1986)

    Article  Google Scholar 

  17. Gröller, M.E., Acquisto, P.: A Distortion Camera for Ray Tracing. In: Conner, Hernandez, Murthy, Power (eds.) Visualization and Intelligent Design in Engineering and Architecture. Elsevier Science Publishers, Amsterdam (1993)

    Google Scholar 

  18. Gustafsson, A.: Interactive Image Warping. Master’s thesis, Faculty of Information Technology (1993)

    Google Scholar 

  19. Harris, M.: Dynamic Texturing. NVIDIA Corporation (May 2004)

    Google Scholar 

  20. Heidrich, W., Seidel, H.-P.: View-independent Environment Maps. In: HWWS 1998: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, p. 39. ACM Press, New York (1998)

    Chapter  Google Scholar 

  21. Kessenich, J.: The OpenGL Shading Language Version 1.20, 59th edn. (April 2004)

    Google Scholar 

  22. Kilgard, M.J.: NVIDIA OpenGL Extension Specifications. Technical report, NVIDIA Corporation, May 19 (2004)

    Google Scholar 

  23. Leung, Y.K., Apperley, M.D.: A Review and Taxonomy of Distortion-Oriented Presentation Techniques. ACM Transactions on Computer-Human Interaction 1, 126–160 (1994)

    Article  Google Scholar 

  24. Microsoft: Direct3D 10 Programming Guide Excerpts. In: SIGGRAPH 2007: ACM SIGGRAPH 2007 courses, pp. 369–446. ACM Press, New York (2007)

    Google Scholar 

  25. Nelson, M.L.: Computer Graphics Distortion for IMAX and OMNIMAX Projection. In: Nicograph 1983MaxNicograph1983, pp. 137–159, December Nicograph (1983)

    Google Scholar 

  26. Neumann, P., Carpendale, S.: Taxonomy for Discrete Lenses. Technical Report 2003-734-37, Department of Computer Science, University of Calgary (December 2003)

    Google Scholar 

  27. NVIDIA. OpenGL Cube Map Texturing (May 2004)

    Google Scholar 

  28. NVIDIA. NVIDIA GPU Programming Guide. NVIDIA Corporation, 2.4.0 edn. (August 2005)

    Google Scholar 

  29. Polack-Wahl, J.A., Piegl, L.A., Carter, M.L.: Perception of Images Using Cylindrical Mapping. The Visual Computer 13(4), 155–167 (1997)

    Article  Google Scholar 

  30. Rase, W.-D.: Fischauge-Projektionen als kartographische Lupen. In: Dollinger, F., Strobl, J. (eds.) Angewandte Geographische Informationsverarbeitung. Salzburger Geographische Materialien, vol. IX. Selbstverlag des Instituts für Geographie der Universität Salzburg (1997)

    Google Scholar 

  31. Segal, M., Akeley, K.: The OpenGL Graphics System: A Specification, Version 2.0 (October 2004)

    Google Scholar 

  32. Spindler, M., Bubke, M., Germer, T., Strothotte, T.: Camera Textures. In: GRAPHITE 2006: Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia, pp. 295–302. ACM Press, New York (2006)

    Chapter  Google Scholar 

  33. Swaminathan, R., Grossberg, M.D., Nayar, S.K.: A Perspective on Distortions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2003, vol. II, pp. 594–601 (2003)

    Google Scholar 

  34. Szeliski, R., Shum, H.-Y.: Creating Full View Panoramic Image Mosaics and Environment Maps. In: SIGGRAPH 1997: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 251–258. ACM Press/Addison-Wesley Publishing Co, New York (1997)

    Chapter  Google Scholar 

  35. Turkowski, K.: Making Environment Maps from Fisheye Photographs (1999)

    Google Scholar 

  36. van Oortmerssen, W.: FisheyeQuake/PanQuake (January 2002)

    Google Scholar 

  37. Woo, M., Neider, J., Davis, T., Shreiner, D.: OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

    Google Scholar 

  38. Wynn, C.: OpenGL Render-to-Texture. In: GDC. NVIDIA Corporation (October 2002)

    Google Scholar 

  39. Yang, Y., Chen, J.X., Beheshti, M.: Nonlinear Perspective Projections and Magic Lenses: 3D View Deformation. IEEE Computer Graphics and Applications, 76–84 (2005)

    Google Scholar 

  40. Yang, Y., Chen, J.X., Kim, W., Kee, C.: Nonlinear Pojection: Using Deformations in 3D Viewing. In: Chen, J.X. (ed.) Visualization Corner, March/April, pp. 54–59. IEEE, Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trapp, M., Döllner, J. (2009). Generalization of Single-Center Projections Using Projection Tile Screens. In: Ranchordas, A., Araújo, H.J., Pereira, J.M., Braz, J. (eds) Computer Vision and Computer Graphics. Theory and Applications. VISIGRAPP 2008. Communications in Computer and Information Science, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10226-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10226-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10225-7

  • Online ISBN: 978-3-642-10226-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics