Skip to main content

A Vision-Based Trajectory Controller for Autonomous Cleaning Robots

  • Conference paper
Autonome Mobile Systeme 2009

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

Autonomous cleaning robots should completely cover the accessible area with minimal repeated coverage. We present a mostly visionbased navigation strategy for systematical exploration of an area with meandering lanes. The results of the robot experiments show that our approach can guide the robot along parallel lanes while achieving a good coverage with only a small proportion of repeated coverage. The proposed method can be used as a building block for more elaborated navigation strategies which allow the robot to systematically clean rooms with a complex workspace shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prassler, E., Ritter, A., Schaeffer, C., Fiorini, P.: A short history of cleaning robots. Autonomous Robots 9 (2000) 211–226

    Article  Google Scholar 

  2. Prassler, E., Kosuge, K.: Domestic Robotics. In: Springer Handbook of Robotics. Springer (2008) 1253–1281

    Google Scholar 

  3. Choset, H.: Coverage for robotics — a survey of recent results. Annals of Mathematics and Artificial Intelligence 31 (2001) 113–126

    Article  Google Scholar 

  4. Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. Annals of Mathematics and Artificial Intelligence 31 (2001) 77–98

    Article  Google Scholar 

  5. Hazon, N., Mieli, F., Kaminka, G.: Towards robust on-line multi-robot coverage. In: Proceedings of the ICRA 2006. (2006) 1710–1715

    Google Scholar 

  6. Trullier, O., Wiener, S., Berthoz, A., Meyer, J.: Biologically-based artificial navigation systems: Review and prospects. Progress in Neurobiology 51 (1997) 483–544

    Article  Google Scholar 

  7. Franz, M., Mallot, H.: Biomimetic robot navigation. Robotics and Autonomous Systems 30 (2000) 133–153

    Article  Google Scholar 

  8. Cartwright, B., Collett, T.: Landmark learning in bees. Journal of Comparative Physiology A 151 (1983) 521–543

    Article  Google Scholar 

  9. Cartwright, B., Collett, T.: Landmark maps in honeybees. Biological Cybernetics 57 (1987) 85–93

    Article  Google Scholar 

  10. Möller, R., Vardy, A.: Local visual homing by matched-filter descent in image distances. Biological Cybernetics 95 (2006) 413–430

    Article  MathSciNet  Google Scholar 

  11. Vardy, A., Möller, R.: Biologically plausible visual homing methods based on optical flow techniques. Connection Science 17 (2005) 47–89

    Article  Google Scholar 

  12. Franz, M., Schölkopf, B., Mallot, H., Bülthoff, H.: Where did I take that snapshot? Scene-based homing by image matching. Biological Cybernetics 79 (1998) 191–202

    Article  MATH  Google Scholar 

  13. Möller, R.: Local visual homing by warping of two-dimensional images. Robotics and Autonomous Systems 57 (2009) 87–101

    Article  Google Scholar 

  14. Möller, R.: Three 2D-warping schemes for visual robot navigation. Autonomous Robots (2009) submitted.

    Google Scholar 

  15. Filliat, D., Meyer, J.: Map-based navigation in mobile robots: part I. Cognitive Systems Research 4 (2003) 243–282

    Article  Google Scholar 

  16. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)

    Google Scholar 

  17. Chen, Z., Samarabandu, J., Rodrigo, R.: Recent advances in simultaneous localization and map-building using computer vision. Advanced Robotics 21 (2007) 113–126

    Article  Google Scholar 

  18. Kreft, S.: Reinigungstrajektorien mobiler Roboter unter visueller Steuerung. Diploma thesis, Bielefeld University, Faculty of Technology, Computer Engineering Group (2007)

    Google Scholar 

  19. Möller, R., Vardy, A., Gerstmayr, L., Röben, F., Kreft, S.: Neuroethological concepts at work: Insect-inspired methods for visual robot navigation. In: Biological Approaches for Engineering. (2008) 91–94

    Google Scholar 

  20. Greguss, P.: Panoramic imaging block for three-dimensional space. US Patent No. 4,566,763 (1986)

    Google Scholar 

  21. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)

    Google Scholar 

  22. de Jong, J.: Kaimanfilter zur Positionsbestimmung auf mäandrierenden Bahnen. Diploma thesis, Bielefeld University, Faculty of Technology, Computer Engineering Group (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gerstmayr, L., Röben, F., Krzykawski, M., Kreft, S., Venjakob, D., Möller, R. (2009). A Vision-Based Trajectory Controller for Autonomous Cleaning Robots. In: Dillmann, R., Beyerer, J., Stiller, C., Zöllner, J.M., Gindele, T. (eds) Autonome Mobile Systeme 2009. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10284-4_9

Download citation

Publish with us

Policies and ethics