Skip to main content

Revisiting the PnP Problem with a GPS

  • Conference paper
Book cover Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5875))

Included in the following conference series:

Abstract

This paper revisits the pose estimation from point correspondences problem to properly exploit data provided by a GPS. In practice, the location given by the GPS is only a noisy estimate, and some point correspondences may be erroneous. Our method therefore starts from the GPS location estimate to progressively refine the full pose estimate by hypothesizing correct correspondences. We show how the GPS location estimate and the choice of a first random correspondence dramatically reduce the possibility for a second correspondence, which in turn constrains even more the remaining possible correspondences. This results in an efficient sampling of the solution space. Experimental results on a large 3D scene show that our method outperforms standard approaches and a recent related method [1] in terms of accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moreno-Noguer, F., Lepetit, V., Fua, P.: Pose priors for simultaneously solving alignment and correspondence. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 405–418. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong, Y., Chen, W.C., Bismpigiannis, T., Grzeszczuk, R., Pulli, K., Girod, B.: Outdoors augmented reality on mobile phone using loxel-based visual feature organization. In: ACM international conference on Multimedia information retrieval, pp. 427–434. ACM, New York (2008)

    Chapter  Google Scholar 

  3. Klein, G., Drummond, T.: Tightly integrated sensor fusion for robust visual tracking. Image and Vision Computing 22 (2004)

    Google Scholar 

  4. Carceroni, R., Kumar, A., Daniilidis, K.: Structure from motion with known camera positions. In: CVPR, pp. 477–484 (2006)

    Google Scholar 

  5. You, S., Neumann, U.: Fusion of vision and gyro tracking for robust augmented reality registration. In: IEEE Conference on Virtual Reality, pp. 71–78 (2001)

    Google Scholar 

  6. Ng, T.K., Kanade, T.: PALM: portable sensor-augmented vision system for large-scene modeling. In: 3-D Digital Imaging and Modeling, pp. 473–482 (1999)

    Google Scholar 

  7. Pollefeys, M., Nistèr, D., Frahm, J.M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.J., Merrell, P., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewènius, H., Yang, R., Weclh, G., Towles, H.: Detailed real-time urban 3d reconstruction from video. International Journal of Computer Vision (2007)

    Google Scholar 

  8. Nister, D.: Preemptive RANSAC for live structure and motion estimation. In: ICCV, vol. 1, pp. 199–206 (2003)

    Google Scholar 

  9. Chum, O., Matas, J.: Randomized RANSAC with Td,d test. In: BMVC, pp. 448–457 (2002)

    Google Scholar 

  10. Tordoff, B., Murray, D.W.: Guided sampling and consensus for motion estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 82–96. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Guo, F., Aggarwal, G., Shafique, K., Cao, X., Rasheed, Z., Haering, N.: An efficient data driven algorithm for multi-sensor alignment. In: Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, ECCV (2008)

    Google Scholar 

  12. Chum, O., Matas, J.: Matching with PROSAC - progressive sample consensus. In: CVPR, pp. 220–226 (2005)

    Google Scholar 

  13. Pylvänäinen, T., Fan, L.: Hill climbing method for random sample consensus methods. In: International Symposium on Visual Computing (2007)

    Google Scholar 

  14. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Porceedings of the 25th DAGM Symposium Pattern Recognition, pp. 236–243 (2003)

    Google Scholar 

  15. Myatt, D., Bishop, J., Craddock, R., Nasuto, S., Torr, P.H.: NAPSAC: High noise, high dimensional robust estimation — it’s in the bag. In: BMVC, pp. 458–467 (2002)

    Google Scholar 

  16. Tordoff, B.J., Murray, D.W.: Guided-MLESAC: Faster image transform estimation by using matching priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1523–1535 (2005)

    Article  Google Scholar 

  17. Raguram, R., Frahm, J.M., Pollefeys, M.: A comparative analysis of ransac techniques leading to adaptive real-time random sample consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Torr, P.H., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)

    Article  Google Scholar 

  19. Torr, P.H., Davidson, C.: IMPSAC: Synthesis of importance sampling and random sample consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 354–364 (2003)

    Article  Google Scholar 

  20. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Computer Vision and Image Understanding (2008)

    Google Scholar 

  21. Louarkis, M., Argyros, A.: The design and implementation of a generic sparse bundle adjustment software package based on the Levenberg-Marquardt algorithm. Technical Report 340, Computer Science-FORTH, Heraklion, Crete, Greece (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pylvänäinen, T., Fan, L., Lepetit, V. (2009). Revisiting the PnP Problem with a GPS. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10331-5_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10330-8

  • Online ISBN: 978-3-642-10331-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics