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Abstract. We present an active surface model designed for the segmen-
tation of Drosophila Schneider cell nuclei and nucleoli from wide-field
microscopic data. The imaging technique as well as the biological appli-
cation impose some major challenges to the segmentation. On the one
hand, we have to deal with strong blurring of the 3D data, especially
in z-direction. On the other hand, concerning the biological application,
we have to deal with non-closed object boundaries and touching objects.
To cope with these problems, we have designed a fully 3D active surface
model. Our model prefers roundish object shapes and especially imposes
roughly spherical surfaces where there is little gradient information. We
have adapted an external force field for this model, which is based on
gradient vector flow (GVF) and has a much larger capture range than
standard GVF force fields.

1 Introduction

For the analysis of living cells, wide-field fluorescence microscopy still plays an
important role, because it is prevalently available and, compared to confocal
microscopy, has some advantages concerning temporal resolution and phototox-
icity. The major disadvantage is the recorded defocused light - volume datasets
recorded in wide-field microscopy suffer from strong blurring.
For the analysis of cellular mechanisms, exact knowledge about the subcellular
anatomy is necessary. We are looking for a method to accurately detect and seg-
ment Drosophila cell nuclei and a subcellular structure, the nucleolus, from three
dimensional recordings of cell cultures from a Schneider cell line. Nucleus and
nucleolus have been recorded in two separate channels. Channel 1 shows the cell
nuclei stained with the fluorescent stain 4’,6-diamidino-2-phenylindole (DAPI),
channel 2 shows the green fluorescent protein (GFP) stained fibrillarin inside the
nucleolus. The voxel size in xy-direction is 0.064µm in z-direction 0.2µm. For the
segmentation of this data, we are dealing with a variety of problems inherent in
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the biological setting as well as with problems originating from the microscopy
technique. In figure 1, an example slice from each channel is displayed, as well
as orthogonal slices of one of the nuclei in channel 1. In channel 1, the brighter
spots of dense chromatin and the low intensity regions, where there is no chro-
matin, lead to non-closed boundaries. This and the fact, that there are typically
touching cells in the dataset make the segmentation of the nuclei challenging.
Additionally, due to artifacts caused by the point spread function, the nucleolus
in channel 2 often seems to range outside the nucleus, which, in a biological
sense, cannot be the case.
For the detection and segmentation of the nucleoli, the use of all available in-
formation in both recorded channels is therefore necessary. We thus designed a
preprocessing step, in which we combine the two channels to a Channel Differ-
ential Structure. This procedure is inspired by the color differential structure
described in [4]. The description of this preprocessing step constitutes the first
section of this paper. After this preprocessing step, the segmentation of nuclei
and nucleoli are both addressed with a two-step procedure. First, the nuclei are
detected by the generalized Hough-Transform [1] for the detection of spherical
objects, as it has been used e.g. in [3] for the 3D detection of Arabidopsis thaliana

root nuclei in confocal microscopic data and in [2] for the 2D detection of pollen
grains in brightfield data. The detection method will be presented in section 3.
The second step, which constitutes the main part of this paper, consists in spec-
ifying the objects boundary using a three dimensional active surface model. In
the field of biomedical image analysis, active contour methods are widely used
for the segmentation and modeling of anatomical structures. The mathematical
foundamentals can be found e.g. in [5], a review of deformable models is given
e.g. in [6] and [7]. Here, we design a 3D active surface model especially adapted
for the segmentation and representation of smooth, 2-sphere like shapes. The
grid representation as well as the external forces have been adapted, providing a
robust and accurate segmentation with a large capture range even under strong
blurring. The detection of the nucleoli is done as for the nuclei with the gen-
eralized Hough transform, the segmentation is achieved by the presented active
surface model as well - thus proving its generalization ability. Finally, we present
the results of our segmentation. These results will be compared to the results
that can be achieved with an active surface implementation using a classical
gradient vector flow force field and to a standard state of the art method: the
user-guided level set implementation ITK-SNAP [8]. For the detection as well
as for the segmentation, we decided to use undeconvolved data. Deconvolution
makes the images appear clearer in xy-direction but the deconvolution artifacts
in z-direction made a good segmentation nearly impossible.

2 Channel Differential Structure

For the detection of the nuclei, only channel 1 is used, since here, the boundaries
can be seen best (see figure 2(a)). For the nucleoli, the situation is different.
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(a) (b) (c) (d)

Fig. 1. Example slices from the two channels of the Drosophila cell raw data and
orthogonal slice views of one of the nuclei. (a) and (b): channel 1 shows the cell nuclei
stained in DAPI. Brighter regions are caused by denser chromatin. In the location of
the nucleoli, no signal is recorded in this channel, thus causing a hole. (c) and (d): in
channel 2, the GFP-stained fibrillarin inside the nucleoli has been recorded.

In channel 2 (see figure 2(b)), only the fibrillarin inside the nucleoli has been
stained,which results in a bright region inside the nucleolus - but also the whole
nucleus can be seen in this channel at a much lower intensity. In channel 1, one
can see a hole at the nucleolus’ position, which is larger than the stained region
in channel 2 - the correct nucleolus boundaries are between the borders of this
hole and the fibrillarin in channel 2. Therefore, it makes sense to use the infor-
mation of both channels for the detection and segmentation of the nucleoli. To
do so, the arctangent of the ratio of the intensities in channel 2 Ich2 and channel
1 Ich1 is computed in each position, yielding some kind of channel diffenrential
structure CDS. This was inspired by the color differential structure defined in
[4]. In [4], this color differential structure is computed as the convolution of the
spectral color information with a gaussian derivative to detect gradients between
complementary colors.
For our task, not the perceptual color difference is important, which heavily
depends on human color perception, but the relation of the channels. The arc-
tangent of the ratio can thus be considered a good distance measure. The two-
channel volume data is considered as function I : R

3 → R
2
>0. The CDS(I) can

then be computed as

CDS(I) = ∇

(
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is the the grad operator and arctan
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)

is scalar

valued between 0 and π
2 . Positions, where the ratio of the channels has large

values are likely to correspond to the nucleolus. The ratio of the intensities
inside the nucleus are small, such that the boundaries of nucleus and nucleolus
cannot be confounded. Compare figure 2(c). The CDS(I) is used instead of ∇Ich2

for the further segmentation of the nucleoli.
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Fig. 2. xy-slices from the raw data channels, their ratio and the magnitude of CDS(I).

3 Detection

The detection of nucleus and nucleolus is done with the generalized Hough trans-
form for spherical objects [1] as presented in [3]. The main idea is to let each
voxel vote for possible positions c of sphere centers at specific radii r.
For this, the dataset has to be smoothed first. We use a Gaussian smoothing
with σ1 = 2µm in all directions. Given the recorded resolution, the resulting
estimation for the radii r can therefore not be very precise, but as these radii are
used only for the initialization of the active surfaces, these rough estimations are
sufficient. Then, one has to select the voting voxels. We choose to use all voxels
for the voting and weight the votes with the respective gradient magnitude val-
ues. A threshold would not make sense, because the intensity variations of the
nuclei within one dataset are too strong. The gradient magnitude and direction
of the voxels is used to determine the position of the votes. Finally, the votes
are combined by integration. Formally, the four dimensional voting field P of a
function I : R

3 → R is computed as follows.

P (c, r) =

∫

R3

Gσ2

(

c − r
(∇(Gσ1

∗ I))(x)

||(∇(Gσ1
∗ I))(x)||

)

||(∇(Gσ1
∗ I))(x)||dx, (2)

where Gσ is the 3D Gaussian distribution with standard deviation σ in all di-
rections. Gσ2

is used as an indicator function giving contribution only if the
argument is nearby zero.
The detection is then done by determining the local maxima of the voting field
P .

4 Active Surfaces

After the detection step, we have an estimated center c and radius r for each
nucleus and nucleolus, but in reality, both structures are not spherical. Thus,
the best radius can only give a very rough estimation of the object’s size. An
exact segmentation has been done based on this estimation by employing active
surface models.
The three dimensional active surface can be described as a function X : [0, 1] ×
[0, 1] → R

3 which is placed on a dataset I : R
3 → R. These active surfaces
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have internal energies, depending only on the shape of the model itself, and are
subjected to external energies coming from the underlying dataset to which the
model shall be adapted. The total energy of an active surface is thus

E = Eint(X) + Eext(X). (3)

The adaption takes place in minimizing this energy.

4.1 Implementation

Mesh Design For the realization of the active surface model in three dimen-
sional space, a good choice of the grid structure is crucial. As we suppose a
roughly spherical shape of the objects to detect, it is intuitive to initialize the
active surface with a spherical grid. To provide an equidistant sampling of the
sphere, an icosahedron can be used as initial structure. We have used subdivi-
sions of the icosahedron, which still provide a nearly equidistant sampling, with
a higher resolution, leading to a more accurate segmentation.
As initialization, we used the parameters found in the detection step, i.e. we
initialized the grid as a subdivided icosahedron with 162 vertices vi ∈ V located
at positions xvi

around the center c of the nucleus or nucleolus. All vertices vi

have distance r from the center.

Fig. 3. The sampling of the spherical surface can be done equidistantly by using an
icosahedron. Icosahedron subdivisions yield a nearly equidistant sampling.

Mesh Operations To ensure that, during the evolution of the active surface,
the resolution of the grid is always high enough, we implement splitting and
merging operations. After each iteration, the length l of every edge is checked.
Edges longer than a threshold tu are split and a new vertex is inserted. This new
vertex has to be connected to all its neighboring vertices. If edges are shorter
than threshold tl, they are deleted and the corresponding vertices are merged.
See figure 4 for an example.

4.2 Internal Forces

As internal energy, the weighted first and second derivative of the surface are
used, corresponding to the classical continuity and curvature energies:

Eint =
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Fig. 4. (left) If the length l > tu, the edge is split. (right) Edges for which l < tl are
merged.

where s ∈ [0, 1] × [0, 1] and α and β are the weighting coefficients. The mini-
mization of E thus leads to the Euler-Lagrange equation

∂

∂s

(

α
∂X

∂s

)

−
∂2

∂s2

(

β
∂2X

∂s2

)

−∇Eext = 0, (5)

where the internal forces Fela := ∂
∂s

(

α∂X

∂s

)

and Frig := ∂2

∂s2

(

β ∂2
X

∂s2

)

prevent the

surface from stretching and bending too much. These energies are minimal for
planar surfaces. Therefore, on spherical structures, they act as shrinking forces.
The internal forces of the active surface have to be adapted for the three dimen-
sional grid implementation. Since we want to preserve the equidistant sampling,
the elasticity force can be approximated with

Fela(vi) =
1

c2





∑

j,vj∈N(vi)

xvj
− xvi

|N(vi)|



 , (6)

where N(vi) is the set of all neighbors of vertex vi and c is the average distance
between two neighboring vertices

c = |V|
∑

i

∑

j,vj∈N(vi)

|N(vi)|

||xvj
− xvi

||
(7)

|V| is the cardinality of the set of vertices. The rigidity force corresponding to
the forth derivative can by analogy be approximated as

Frig(vi) =
1

c4

1

|N(vi)|(|N(vj)| − 1)

∑

j,vj∈N(vi)

∑

k,vk∈N(vj)
k 6=i

(4xvj
− xvk

− 3xvi
). (8)

4.3 External Forces

Since the external forces are responsible for the attraction of the active surface to
the underlying data, these forces have to be adapted very carefully to the specific
task. A classical choice would be Fext = −∇Eext with Eext = −||∇I||2, but for
the segmentation of the nuclei, some application specific challenges are given. As
the chromatin displayed in channel 1 is not homogeneous, some blob structures
and holes can be seen in the nucleus. Thus, neither the intensity values nor the
pure gradient information can be used as an external energy for the segmentation
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of the nuclei. Especially nucleoli lying near the nucleus boundary cause the image
gradients to pull the contour inwards into the nucleus. To address this problem,
we use external forces based on the gradient information of the data coupled
with prior knowledge from the detection step. We assume the nuclei to have a
star-shaped surface, i.e. every surface point can be reached from the detected
center c. As proposed in [2] for the 2D case in pollen segmentation, we then
used a projection of the dataset gradients onto radial vectors pointing away

from the detected center (∇Iradial)(x) =
〈

(∇I)(x) , x−c

||x−c||

〉

, thus reducing the

influence of vectors pointing in other directions. Additionally, as done in [2], those
vectors originating from darker inner structures and thus pointing outwards were
set to zero length. The resulting gradient image contains by far less gradients
corresponding to structures other than the nucleus, but the vectors set to zero
length still cause problems in the next step.
Instead of applying the Canny edge detector as it was done in [2], we directly use
the resulting gradient magnitude as edge information. We compute the gradients
of this edge image and, to get rid of the gradients now caused by the zero-
magnitude regions, we use the radial projection of these gradients. This results
in a vector valued function A : R

3 → R
3 with

A(x) =

〈

(∇(s(∇Iradial)))(x) ,
x − c

||x − c||

〉

·
x − c

||x − c||
, (9)

where 〈. , .〉 is the scalar product and s(x) is defined as

s(x) =

{

x, if x > 0

0, otherwise.
(10)

The external force was finally found as the weighted sum of the gradient vector
flow GVF(A) (e.g. in [5]) and the radially projected gradients, pulling the surface
outside the object. ∇Iradial counteracts the shrinking effect of the internal forces.

Fext = γGVF(A) − δ∇Iradial (11)

γ and δ are the weighting coefficients. The in this way defined external force field
has some major advantages compared to standard gradient based force fields.
On the one hand, the projection onto the radial vectors promotes 2-spherical
shapes, on the other hand, these projections and the deletion of gradient vectors
pointing in the wrong direction has the effect that the capture range of the
resulting force field is much larger. This is important, because of the touching
cells in the dataset.

5 Experiments and Results

The method was tested on 45 datasets containing 440 cells. For the detection
of the nuclei, we searched for spheres with diameters between 3.6 and 6.4 µm.
Although more or less strong deformations of the nuclei can be observed, a quite



8 M. Keuper et al.

(a) (b) (c) (d)

Fig. 5. (a) xy-slice from the original dataset (b) xy-slice from the gradient magnitude
of the data with the estimated center and radius (c) xy-slice from the magnitude of
the projected gradients ||∇Iradial|| , (d) xy-slice from the magnitudes of the gradient
vector flow ||GVF(A)||.

reliable detection of the nuclei was possible. Nuclei clearly lying on the border of
the captured dataset were not detected and left out of the evaluation. Out of 440
nuclei, we have correctly detected 437 nuclei, 3 nuclei have not been detected.
There were 16 false positives: 8 nuclei were detected where there was no data
and 8 defect cells have been detected as nuclei. For some of the nuclei, the esti-
mated radii were too small (compare figure 6), which results from the relatively
strong smoothing. For the detection of the nucleoli, we searched for spheres with
diameters between 0.6 and 1.6 µm. The result of the nuclei segmentation was
used as a mask for the detection of the nucleoli, i.e. every nucleolus has to lie
inside a nucleus. To ensure this, only the Hough-votes within the nucleus were
evaluated and exactly one nucleolus was searched inside each nucleus, since for
healthy cells, there should only be one nucleolus. Despite this fact, there are cells
in the datasets containing more than one clearly defined nucleolus. Detection re-
sults for an example dataset can be seen in figure 6. Correct nucleoli positions
were found in all of the analyzed datasets - only where there was more than one
nucleolus inside the same nucleus, one of the nucleoli was missed.
For the accurate segmentation, we manually tested some parameter sets for

Fig. 6. (left) Detection results of nuclei displayed in the maximum intensity projection
(MIP) of channel 1. (right) Detection results of nucleoli in the MIP of channel 2.

three example nuclei and then used the best parameters for the segmentation
of all the nuclei. Finally, we used α = β = 0.2, γ = 0.9, and δ = 0.7, but the
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method turned out to be very robust against smaller parameter variations. For
the nucleoli, we picked α = β = 0.1, γ = 0.9, and δ = 0.5. With those parame-
ters, satisfying results could be achieved for the segmentation of all nuclei and
nucleoli of the dataset. Some randomly chosen example results can be seen in
figure 7.
To evaluate the results of the segmentation, we compared the segmentation car-
ried out with the presented method with the results that could be achieved with
an active surface implementation using a standard GVF force field as well as
with results from the ITK segmentation tool ITK-SNAP [8], which is based on a
level set implementation. The standard GVF force field was computed directly
from the image gradients as GVF(∇||∇I||). The ITK-SNAP segmentation im-
plements two algorithms: 3D geodesic active contours, where the internal forces
are based on the gradient magnitude in the dataset, and a region competition
method, based on voxel probability maps, which are estimated by manually ad-
justed intensity thresholds. In all cases, it was not possible to find parameters
that worked for the whole dataset. For our four example cells, we manually
adapted the parameters for each nucleus as good as possible, but even though
we could not get good results for all of the cells. The 3D geodesic active con-
tours even did not work at all, because of the blurring in z-direction. It was not
possible to find parameters, that prevented the contour from running out of the
object in upper and lower dataset regions before filling the nucleus’ volume in
the center, where there are in fact stronger gradients. For a comparison of the
other two methods to our presented method, see figure 7. Although the region
competition method from ITK-SNAP in most cases yields acceptable results if
the manual threshold is carefully adjusted, our method worked best for all of
the nuclei.

6 Conclusion

We have presented an active surface model on an icosahedron subdivision grid
structure, which is specially adapted to the segmentation of 2-sphere like objects.
We have designed an external force field that is able to address the problems
caused by wide-field microscopy imaging as well as the specific challenges of the
segmentation of Drosophila Schneider cell nuclei. The segmentation results with
our method were not only better and more reliable than the results found with
standard methods, it was also possible to segment all correctly detected nuclei
with the same parameter set, such that no further tedious manual adjustments
were necessary. The model has shown its generalization ability in yielding very
good results for the segmentation of the nucleoli inside these nuclei.
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Fig. 7. (above) Orthogonal views of the segmentation results of four nuclei and nucleoli
displayed in channel 1. The overall result is satisfying for nuclei as for nucleoli. (below)
Segmentation results for the same nuclei segmented with our method (green), active
surfaces with standard force field (red) and the region competition method from ITK-
SNAP (blue). The red contours are attracted by inner structures as well as neighboring
cells and thus yield bad segmentation results, the blue contours are quite good, but
elongated in z-direction, which is caused by the blurring in the dataset.
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