Skip to main content

Exploiting Motion Capture to Enhance Avoidance Behaviour in Games

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5884))

Abstract

Realistic simulation of interacting virtual characters is essential in computer games, training and simulation applications. The problem is very challenging since people are accustomed to real-world situations and thus, they can easily detect inconsistencies and artifacts in the simulations. Over the past twenty years several models have been proposed for simulating individuals, groups and crowds of characters. However, little effort has been made to actually understand how humans solve interactions and avoid inter-collisions in real-life. In this paper, we exploit motion capture data to gain more insights into human-human interactions. We propose four measures to describe the collision-avoidance behavior. Based on these measures, we extract simple rules that can be applied on top of existing agent and force based approaches, increasing the realism of the resulting simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goffman, E.: Relations in public: microstudies of the public order. Basic books, New York (1971)

    Google Scholar 

  2. Wolff, M.: Notes on the behaviour of pedestrians. People in places: The sociology of the familiar, 35–48 (1973)

    Google Scholar 

  3. Sommer, R.: Personal Space. The Behavioral Basis of Design. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  4. Hall, E.T.: The Hidden Dimension, 1st edn. Doubleday, Garden City (1966)

    Google Scholar 

  5. Hartnett, J., Bailey, K., Hartley, C.: Body height, position, and sex as determinants of personal space. Journal of psychology 87, 129–136 (1974)

    Google Scholar 

  6. Sobel, R., Lillith, N.: Determinant of nonstationary personal space invasion. Journal of social psychology 97, 39–45 (1975)

    Google Scholar 

  7. Dabbs Jr., J., Stokes III, N.: Beauty is power: the use of space on the sidewalk. Sociometry 38, 551–557 (1975)

    Article  Google Scholar 

  8. Caplan, M., Goldman, M.: Personal space violations as a function of height. Journal of Social Psychology 114, 167–171 (1981)

    Google Scholar 

  9. Gérin-Lajoie, M., Richards, C., McFadyen, B.: The circumvention of obstacles during walking in different environmental contexts: A comparison between older and younger adults. Gait and Posture 24(3), 364–369 (2006)

    Article  Google Scholar 

  10. Helbing, D., Molnár, P., Farkas, I., Bolay, K.: Self-organizing pedestrian movement. Environment and Planning B 28, 361–384 (2001)

    Article  Google Scholar 

  11. Hoogendoorn, S., Daamen, W.: Self-organization in pedestrian flow. In: Hoogendoorn, S.P., Luding, S., Bovy, P.H.L., Schreckenberg, M., Wolf, D.E. (eds.) Traffic and Granular Flow 2003, pp. 373–382 (2005)

    Google Scholar 

  12. Teknomo, K.: Application of microscopic pedestrian simulation model. Transportation Research PartF: Traffic Psychology and Behaviour 9(1), 15–27 (2006)

    Article  Google Scholar 

  13. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical Review E 51, 4282–4286 (1995)

    Article  Google Scholar 

  14. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  15. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Transactions on Graphics 25(3), 1160–1168 (2006)

    Article  Google Scholar 

  16. Lamarche, F., Donikian, S.: Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. Computer Graphics Forum 23, 509–518 (2004)

    Article  Google Scholar 

  17. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: SCA 2005: ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 19–28 (2005)

    Google Scholar 

  18. Geraerts, R., Overmars, M.: The corridor map method: A general framework for real-time high-quality path planning. Computer Animation and Virtual Worlds 18, 107–119 (2007)

    Article  Google Scholar 

  19. Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M., Manocha, D.: Real-time navigation of independent agents using adaptive roadmaps. In: ACM symposium on Virtual reality software and technology, pp. 99–106 (2007)

    Google Scholar 

  20. Karamouzas, I., Geraerts, R., Overmars, M.: Indicative routes for path planning and crowd simulation. In: FDG 2009: Proceedings of the 4th International Conference on Foundations of Digital Games, pp. 113–120 (2009)

    Google Scholar 

  21. Reynolds, C.W.: Steering behaviors for autonomous characters. In: The proceedings of Game Developers Conference, pp. 763–782 (1999)

    Google Scholar 

  22. Loscos, C., Marchal, D., Meyer, A.: Intuitive crowd behaviour in dense urban environments using local laws. Theory and Practice of Computer Graphics (2003)

    Google Scholar 

  23. Musse, S.R., Thalmann, D.: A model of human crowd behavior: Group inter-relationship and collision detection analysis. In: Workshop of Computer Animation and Simulation of Eurographics, pp. 39–51 (1997)

    Google Scholar 

  24. van den Berg, J.P., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: ICRA, pp. 1928–1935. IEEE, Los Alamitos (2008)

    Google Scholar 

  25. Paris, S., Pettré, J., Donikian, S.: Pedestrian reactive navigation for crowd simulation: a predictive approach. Computer Graphics Forum 26(3), 665–674 (2007)

    Article  Google Scholar 

  26. Pettré, J., Ondrej, J., Olivier, A.H., Crétual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: ACM SIGGRAPH/Eurographics symposium on Computer animation (2009)

    Google Scholar 

  27. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Computer Graphics Forum 26, 655–664 (2007)

    Article  Google Scholar 

  28. Lee, K., Choi, M., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation. In: SCA 2007: ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 109–118 (2007)

    Google Scholar 

  29. Kyriakou, M., Chrysanthou, Y.: Texture synthesis based simulation of secondary agents. In: Egges, A., Kamphuis, A., Overmars, M. (eds.) MIG 2008. LNCS, vol. 5277, pp. 1–10. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Vicon: Motion capture systems from vicon, http://www.vicon.com

  31. Arechavaleta, G., Laumond, J.P., Hicheur, H., Berthoz, A.: The nonholonomic nature of human locomotion: a modeling study. In: International Conference on Biomedical Robotics and Biomechatronics, pp. 158–163 (2006)

    Google Scholar 

  32. Kruskal, W., Wallis, W.: Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 583–621 (1952)

    Google Scholar 

  33. Field, A.: Discovering statistics using SPSS. Sage Publications Ltd. (2009)

    Google Scholar 

  34. van Basten, B.J.H., Egges, A.: Evaluating distance metrics for animation blending. In: FDG 2009: Proceedings of the 4th International Conference on Foundations of Digital Games, pp. 199–206 (2009)

    Google Scholar 

  35. Jansen, S., van Welbergen, H.: Methodologies for the user evaluation of the motion of virtual humans. In: Proceedings of the 9th International Conference on Intelligent Virtual Agents, vol. 5773, pp. 125–131. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Basten, B.J.H., Jansen, S.E.M., Karamouzas, I. (2009). Exploiting Motion Capture to Enhance Avoidance Behaviour in Games. In: Egges, A., Geraerts, R., Overmars, M. (eds) Motion in Games. MIG 2009. Lecture Notes in Computer Science, vol 5884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10347-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10347-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10346-9

  • Online ISBN: 978-3-642-10347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics