
Factoring pq2 with Quadratic Forms:

Nice Cryptanalyses

Guilhem Castagnos1,� Antoine Joux2,3, Fabien Laguillaumie4,
and Phong Q. Nguyen5

1 Institut de Mathématiques de Bordeaux – Université Bordeaux 1
guilhem.castagnos@math.u-bordeaux1.fr

2 PRISM – Université de Versailles St-Quentin-en-Yvelines
3 DGA

antoine.joux@m4x.org
4 GREYC – Université de Caen Basse-Normandie

fabien.laguillaumie@info.unicaen.fr
5 INRIA and ENS, France

http://www.di.ens.fr/~pnguyen/

Abstract. We present a new algorithm based on binary quadratic forms
to factor integers of the form N = pq2. Its heuristic running time is expo-
nential in the general case, but becomes polynomial when special (arith-
metic) hints are available, which is exactly the case for the so-called NICE
family of public-key cryptosystems based on quadratic fields introduced
in the late 90s. Such cryptosystems come in two flavours, depending
on whether the quadratic field is imaginary or real. Our factoring al-
gorithm yields a general key-recovery polynomial-time attack on NICE,
which works for both versions: Castagnos and Laguillaumie recently ob-
tained a total break of imaginary-NICE, but their attack could not apply
to real-NICE. Our algorithm is rather different from classical factoring
algorithms: it combines Lagrange’s reduction of quadratic forms with a
provable variant of Coppersmith’s lattice-based root finding algorithm for
homogeneous polynomials. It is very efficient given either of the following
arithmetic hints: the public key of imaginary-NICE, which provides an
alternative to the CL attack; or the knowledge that the regulator of the
quadratic field Q(

√
p) is unusually small, just like in real-NICE.

Keywords: Public-key Cryptanalysis, Factorisation, Binary Quadratic
Forms, Homogeneous Coppersmith’s Root Finding, Lattices.

1 Introduction

Many public-key cryptosystems require the hardness of factoring large integers
of the special form N = pq2, such as Okamoto’s Esign [Oka90], Okamoto and
Uchiyama’s encryption [OU98], Takagi’s fast RSA variants [Tak98], and the large
family (surveyed in [BTV04]) of cryptosystems based on quadratic fields, which

� This work was done while this author was with the PRISM – Université de Versailles.

M. Matsui (Ed.): ASIACRYPT 2009, LNCS 5912, pp. 469–486, 2009.
c© International Association for Cryptologic Research 2009

470 G. Castagnos et al.

was initiated by Buchmann and Williams’ key exchange [BW88], and which
includes NICE1 cryptosystems [HPT99,PT99,PT00,JSW08] (whose main feature
is a quadratic decryption). These moduli are popular because they can lead
to special functionalities (like homomorphic encryption) or improved efficiency
(compared to RSA). And no significant weakness has been found compared to
standard RSA moduli of the form N = pq: to the best of our knowledge, the only
results on pq2 factorisation are [PO96, Per01, BDH99]. More precisely, [PO96,
Per01] obtained a linear speed-up of Lenstra’s ECM, and [BDH99, Sect. 6] can
factor in time Õ(N1/9) when p and q are balanced. Furthermore, computing
the “squarefree part” of an integer (that is, given N ∈ N as input, compute
(r, s) ∈ N2 such that N = r2s with s squarefree) is a classical problem in
algorithmic number theory (cf. [AM94]), because it is polynomial-time equivalent
to determining the ring of integers of a number field [Chi89].

However, some of these cryptosystems actually provide additional informa-
tion (other than N) in the public key, which may render factorisation easy.
For instance, Howgrave-Graham [How01] showed that the public key of [Oka86]
disclosed the secret factorisation in polynomial time, using the gcd extension
of Coppersmith’s root finding method [Cop97]. Very recently, Castagnos and
Laguillaumie [CL09] showed that the public key in the imaginary version [HPT99,
PT99,PT00] of NICE allowed to retrieve the secret factorisation in polynomial
time. And this additional information in the public key was crucial to make
the complexity of decryption quadratic in imaginary-NICE, which was the main
claimed benefit of NICE. But surprisingly, the attack of [CL09] does not work
against REAL-NICE [JSW08], which is the version of NICE with real (rather than
imaginary) quadratic fields, and which also offers quadratic decryption. In par-
ticular, the public key of REAL-NICE only consists of N = pq2, but the prime p
has special arithmetic properties.
Our Results. We present a new algorithm to factor integers of the form
N = pq2, based on binary quadratic forms (or equivalently, ideals of orders of
quadratic number fields). In the worst case, its heuristic running time is exponen-
tial, namely Õ(p1/2). But in the presence of special hints, it becomes heuristically
polynomial. These hints are different from the usual ones of lattice-based factor-
ing methods [Cop97,BDH99,How01] where they are a fraction of the bits of the
secret prime factors. Instead, our hints are arithmetic, and correspond exactly
to the situation of NICE, including both the imaginary [HPT99, PT99, PT00]
and real versions [JSW08]. This gives rise to the first general key-recovery
polynomial-time attack on NICE, using only the public key.

More precisely, our arithmetic hints can be either of the following two:

i. The hint is an ideal equivalent to a secret ideal of norm q2 in an imaginary
quadratic field of discriminant −pq2: in NICE, such an ideal is disclosed by the
public key. This gives an alternative attack of NICE, different from [CL09].

ii. The hint is the knowledge that the regulator of the quadratic field Q(
√

p) is
unusually small, just like in REAL-NICE. Roughly speaking, the regulator is a
real number which determines how “dense” the units of the ring of integers

1 For New Ideal Coset Encryption.

Factoring pq2 with Quadratic Forms: Nice Cryptanalyses 471

of the number field Q(
√

p) are. This number is known to lie in the large

interval
[
log

(
1
2 (
√

p − 4 +
√

p)
)
,
√

1
2p

(
1
2 log p + 1

)]
. But for infinitely many

p (including square-free numbers of the form p = k2 + r, where p > 5, r|4k
and −k < r ≤ k, see [Deg58]), the regulator is at most polynomial in log p.
For these unusually small regulators, our algorithm heuristically runs in time
polynomial in the bit-length of N = pq2, which gives the first total break of
REAL-NICE [JSW08]. We stress that although such p’s are easy to construct,
their density is believed to be arbitrary small.

Interestingly, our algorithm is rather different from classical factoring algo-
rithms. It is a combination of Lagrange’s reduction of quadratic forms with a
provable variant of Coppersmith’s lattice-based root finding algorithm [Cop97]
for homogeneous polynomials. In a nutshell, our factoring method first looks for
a reduced binary quadratic form f(x, y) = ax2 + bxy + cy2 representing prop-
erly q2 with small coefficients, i.e. there exist small coprime integers x0 and y0

such that q2 = f(x0, y0). In case i., such a quadratic form is already given. In
case ii., such a quadratic form is found by a walk along the principal cycle of
the class group of discriminant pq2, using Lagrange’s reduction of (indefinite)
quadratic forms. Finally, the algorithm finds such small coprime integers x0 and
y0 such that q2 = f(x0, y0), by using the fact that gcd(f(x0, y0), pq2) is large.
This discloses q2 and therefore the factorisation of N . In both cases, the search
for x0 and y0 is done with a new rigorous homogeneous bivariate variant of Cop-
persmith’s method, which might be of independent interest: by the way, it was
pointed out to us that Bernstein [Ber08] independently used a similar method
in the different context of Goppa codes decoding.

Our algorithm requires “natural” bounds on the roots of reduced quadratic
forms of a special shape. We are unable to prove rigorously all these bounds,
which makes our algorithm heuristic (like many factoring algorithms). But we
have performed many experiments supporting such bounds, and the algorithm
works very well in practice.

Factorisation and Quadratic Forms. Our algorithm is based on quadratic
forms, which share a long history with factoring (see [CP01]). Fermat’s factoring
method represents N in two intrinsically different ways by the quadratic form
x2 + y2. It has been improved by Shanks with SQUFOF, whose complexity is
Õ(N1/4) (see [GW08] for a detailed analysis). Like ours, this method works
with the infrastructure of a class group of positive discriminant, but is different
in spirit since it searches for an ambiguous form (after having found a square
form), and does not focus on discriminants of a special shape. Schoof’s factoring
algorithms [Sch82] are also essentially looking for ambiguous forms. One is based
on computation in class groups of complex quadratic orders and the other is
close to SQUFOF since it works with real quadratic orders by computing a
good approximation of the regulator to find an ambiguous form. Like SQUFOF,
this algorithm does not takes advantage of working in a non-maximal order
and is rather different from our algorithm. Both algorithms of [Sch82] runs in
Õ(N1/5) under the generalised Riemann hypothesis. McKee’s method [McK99]

472 G. Castagnos et al.

is a speedup of Fermat’s algorithm (and was presented as an alternative to
SQUFOF) with a heuristic complexity of Õ(N1/4) instead of Õ(N1/2).

SQUFOF and other exponential methods are often used to factor small num-
bers (say 50 to 100 bits), for instance in the post-sieving phase of the Number
Field Sieve algorithm. Some interesting experimental comparisons can be found
in [Mil07]. Note that the currently fastest rigorous deterministic algorithm actu-
ally has exponential complexity: it is based on a polynomial evaluation method
(for a polynomial of the form x(x− 1) · · · (x−B + 1) for some bound B) and its
best variant is described in [BGS07]. Finally, all sieve factoring algorithms are
somewhat related to quadratic forms, since their goal is to find random pairs
(x, y) of integers such that x2 ≡ y2 mod N . However, these algorithms factor
generic numbers and have a subexponential complexity.

Road Map. The rest of the paper is organised as follows. The first section
recalls facts on quadratic fields and quadratic forms, and present our heuristic
supported by experiments. The next section describes the homogeneous Copper-
smith method and the following exhibits our main result: the factoring algorithm.
The last section consists of the two cryptanalyses of cryptosystems based on real
quadratic fields (REAL-NICE) and on imaginary quadratic fields (NICE).

2 Background on Quadratic Fields and Quadratic Forms

2.1 Quadratic Fields

Let D �= 0, 1 be a squarefree integer and consider the quadratic number field
K = Q(

√
D). If D < 0 (resp. D > 0), K is called an imaginary (resp. a real)

quadratic field. The fundamental discriminant ΔK of K is defined as ΔK = D
if D ≡ 1 (mod 4) and ΔK = 4D otherwise. An order O in K is a subset of K
such that O is a subring of K containing 1 and O is a free Z-module of rank
2. The ring OΔK of algebraic integers in K is the maximal order of K. It can
be written as Z + ωKZ, where ωK = 1

2 (ΔK +
√

ΔK). If we set f = [OΔK : O]
the finite index of any order O in OΔK , then O = Z + fωKZ. The integer f
is called the conductor of O. The discriminant of O is then Δf = f2ΔK . Now,
let OΔ be an order of discriminant Δ and � be a nonzero ideal of OΔ, its norm
is N(�) = |OΔ/�|. A fractional ideal is a subset � ⊂ K such that d� is an ideal
of OΔ for d ∈ N. A fractional ideal � is said to be invertible if there exists
an another fractional ideal � such that �� = OΔ. The ideal class group of OΔ is
C(OΔ) = I(OΔ)/P (OΔ), where I(OΔ) is the group of invertible fractional ideals
of OΔ and P (OΔ) the subgroup consisting of principal ideals. Its cardinality is
the class number of OΔ denoted by h(OΔ). A nonzero ideal � of OΔ, � is said
to be prime to f if � + fOΔ = OΔ. We denote by I(OΔ, f) the subgroup of
I(OΔ) of ideals prime to f . The group O�

Δ of units in OΔ is equal to {±1} for
all Δ < 0, except when Δ is equal to −3 and −4 (O�

−3 and O�
−4 are respectively

the group of sixth and fourth roots of unity). When Δ > 0, then O�
Δ = 〈−1, εΔ〉

where εΔ > 0 is called the fundamental unit. The real number RΔ = log(εΔ) is

Factoring pq2 with Quadratic Forms: Nice Cryptanalyses 473

the regulator of OΔ. The following important bounds on the regulator of a real
quadratic field can be found in [JLW95]:

log
(

1
2
(
√

Δ − 4 +
√

Δ)
)

≤ RΔ <

√
1
2
Δ

(
1
2

log Δ + 1
)

. (1)

The lower bound is reached infinitely often, for instance with Δ = x2 + 4 with
2 � x. Finally, this last proposition is the heart of both NICE and REAL-NICE.

Proposition 1 ([Cox99, Proposition 7.20] [Wei04, Theorem 2.16]). Let
OΔf

be an order of conductor f in a quadratic field K.

i. If � is an OΔK -ideal prime to f , then � ∩ OΔf
is an OΔf

-ideal prime to f
of the same norm.

ii. If � is an OΔf
-ideal prime to f , then �OΔK is an OΔK -ideal prime to f of

the same norm.
iii. The map ϕf : I(OΔf

, f) → I(OΔK , f), � �→ �OΔK is an isomorphism.

The map ϕf from Proposition 1 induces a surjection ϕ̄f : C(OΔf
) � C(OΔK)

which can be efficiently computed (see [PT00]). In our settings, we will use a
prime conductor f = q and consider Δq = q2ΔK , for a fundamental discriminant
ΔK . In that case, the order of the kernel of ϕ̄q is given by the classical analytic
class number formula (see for instance [BV07])

h(OΔq)
h(OΔK)

=
{

q − (ΔK/q) if Δk < −4,
(q − (ΔK/q))RΔK /RΔq if Δk > 0.

(2)

Note that in the case of real quadratic fields, εΔq = εt
ΔK

for a positive integer
t, hence RΔq /RΔK = t and t | (q − (ΔK/q)).

2.2 Representation of the Classes

Working with ideals modulo the equivalence relation of the class group is essen-
tially equivalent to work with binary quadratic forms modulo SL2(Z) (cf. Section
5.2 of [Coh00]). Moreover, quadratic forms are more suited to an algorithmic
point of view. Every ideal � of OΔ can be written as � = m

(
aZ + −b+

√
Δ

2 Z

)

with m ∈ Z, a ∈ N and b ∈ Z such that b2 ≡ Δ (mod 4a). In the remainder,
we will only consider primitive integral ideals, which are those with m = 1.
This notation also represents the binary quadratic form ax2 + bxy + cy2 with
b2 − 4ac = Δ. This representation of the ideal is unique if the form is normal
(see below). We recall here some facts about binary quadratic forms.

Definition 1. A binary quadratic form f is a degree 2 homogeneous polynomial
f(x, y) = ax2+bxy+cy2 where a, b and c are integers, and is denoted by [a, b, c].
The discriminant of the form is Δ = b2 − 4ac. If a > 0 and Δ < 0, the form is
called definite positive and indefinite if Δ > 0.

Let M ∈ SL2(Z) with M =
(

α β
γ δ

)
, and f = [a, b, c], a binary quadratic form,

then f.M is the equivalent binary quadratic form f(αx + βy, γx + δy).

474 G. Castagnos et al.

Definite Positive Forms. Let us first define the crucial notion of reduction.

Definition 2. The form f = [a, b, c] is called normal if −a < b ≤ a. It is called
reduced if it is normal, a ≤ c, and if b ≥ 0 for a = c.

The procedure which transforms a form f = [a, b, c] into a normal one consists
in setting s such that b + 2sa belongs to the right interval (see [BV07, (5.4)])
and producing the form [a, b + 2sa, as2 + bs + c]. Once a form f = [a, b, c] is
normalised, a reduction step consists in normalising the form [c,−b, a]. We de-
note this form by ρ(f) and by Rho a corresponding algorithm. The reduction
then consists in normalising f , and then iteratively replacing f by ρ(f) until f
is reduced. The time complexity of this (Lagrange-Gauß) algorithm is quadratic
(see [BV07]). It returns a reduced form g which is equivalent to f modulo SL2(Z).
We will call matrix of the reduction, the matrix M such that g = f.M . The re-
duction procedure yields a uniquely determined reduced form in the class modulo
SL2(Z).

Indefinite Forms. Our main result will deal with forms of positive discrimi-
nant. Here is the definition of a reduced indefinite form.

Definition 3. The form f = [a, b, c] of positive discriminant Δ is reduced if∣∣∣
√

Δ − 2|a|
∣∣∣ < b <

√
Δ and normal if −|a| < b ≤ |a| for |a| ≥ √

Δ, and√
Δ − 2|a| < b <

√
Δ for |a| <

√
Δ.

The reduction process is similar to the definite positive case. The time complexity
of the algorithm is still quadratic (see [BV07, Theorem 6.6.4]). It returns a
reduced form g which is equivalent to f modulo SL2(Z). The main difference
with forms of negative discriminant is that there will in general not exist a
unique reduced form per class, but several organised in a cycle structure i. e.,
when f has been reduced then subsequent applications of ρ give other reduced
forms.

Definition 4. Let f be an indefinite binary quadratic form, the cycle of f is
the sequence (ρi(g))i∈Z where g is a reduced form which is equivalent to f .

From Theorem 6.10.3 from [BV07], the cycle of f consists of all reduced forms
in the equivalence class of f . Actually, the complete cycle is obtained by a finite
number of application of ρ as the process is periodic. It has been shown in
[BTW95] that the period length � of the sequence of reduced forms in each class
of a class group of discriminant Δ satisfies RΔ

log Δ ≤ � ≤ 2RΔ

log 2 + 1.
Our factoring algorithm will actually take place in the principal equivalence

class. The following definition exhibits the principal form of discriminant Δ.

Definition 5. The reduced form [1, �√Δ�, (�√Δ�2 − Δ)/4] of discriminant Δ
is called the principal form of discriminant Δ, and will be denoted 1Δ.

Factoring pq2 with Quadratic Forms: Nice Cryptanalyses 475

2.3 Reduction of the Forms [q2, kq, (k2 ± p)/4] and Heuristics

In this subsection, p and q are two distinct primes of the same bit-size λ and
p ≡ 1 mod 4 (resp. p ≡ 3 mod 4) when we deal with positive (resp. negative)
discriminant. Our goal is to factor the numbers pq2 with the special normalised
quadratic forms [q2, kq, (k2 + p)/4] or [q2, kq, (k2 − p)/4], depending whether we
work with a negative discriminant Δq = −pq2 or with a positive one Δq = pq2.
If p and q have the same size, these forms are clearly not reduced neither in the
imaginary setting nor in real one. But as we shall see, we can find the reduced
forms which correspond to the output of the reduction algorithm applied on
these forms.

Suppose that we know a form f̂k, either definite positive or indefinite, which
is the reduction of a form fk = [q2, kq, (k2 ± p)/4] where k is an integer. Then

f̂k represents the number q2. More precisely, if Mk =
(

α β
γ δ

)
∈ SL2(Z) is the

matrix such that f̂k = fk.Mk, then f̂k.M−1
k = fk and q2 = fk(1, 0) = f̂k(δ,−γ).

In Section 3, we will see that provided they are relatively small compared to
Δq, the values δ and −γ can be found in polynomial time with a new variant
of Coppersmith method. Our factoring algorithm can be sketched as follows:
find such a form f̂k and if the coefficients of Mk are sufficiently small, retrieve
δ and −γ and the non-trivial factor q2 of Δq. In this paragraph, we give some
heuristics on the size of such a matrix Mk and discuss their relevance. If M is a
matrix we denote by |M | the max norm, i. e., the maximal coefficient of M in
absolute value.

In the imaginary case, it is showed in the proof of [CL09, Theorem 2] that
the forms fk belong to different classes of the kernel of the map ϕ̄q, depending
on k, so the reduced equivalent forms f̂k are the unique reduced elements of the
classes of the kernel. To prove the correctness of our attack on NICE, we need
the following heuristic (indeed, the root finding algorithm of Section 3 recovers
roots up to |Δq|1/9):

Heuristic 1 (Imaginary case). Given a reduced element f̂k of a nontrivial
class of ker ϕ̄q, the matrix of reduction Mk is such that |Mk| < |Δq|1/9 with
probability asymptotically close to 1.

In the full version, we prove a probabilistic version of Heuristic 1. From
Lemma 5.6.1 of [BV07], |Mk| < 2 max{q2, (k2 + p)/4}/

√
pq2. As fk is nor-

malised, |k| ≤ q and |Mk| < 2q/
√

p ≈ |Δq|1/6. Note that we cannot reach such a
bound with our root finding algorithm. Experimentally, for random k, |Mk| can
be much smaller. For example, if the bit-size λ of p and q equals 100, the mean
value of |Mk| is around |Δq|1/11.7. Our heuristic can be explained as follows.
A well-known heuristic in the reduction of positive definite quadratic forms (or
equivalently, two-dimensional lattices) is that if [a, b, c] is a reduced quadratic
form of discriminant Δ, then a and c should be close to

√
Δ. This cannot hold for

all reduced forms, but it can be proved to hold for an overwhelming majority of
reduced forms. Applied to f̂k = [a, b, c], this means that we expect a and c to be

476 G. Castagnos et al.

close to |Δq|1/2. Now, recall that q2 = f̂k(δ,−γ) = aδ2 − bδγ + cγ2, which leads
to δ and γ close to

√
q2/a = q/

√
a ≈ q/|Δq|1/4 ≈ |Δq|1/12. Thus, we expect that

|Mk| ≤ |Δq|1/12. And this explains why we obtained experimentally the bound
|Δq|1/11.7. Figure 1(a) shows a curve obtained by experimentation, which gives
the probability that |Mk| < |Δq|1/9 for random k, in function of λ. This curve
also supports our heuristic.

In the real case, we prove in the following theorem that RΔq /RΔK forms fk

are principal and we exhibit the generators of the corresponding primitive ideals.

Theorem 1. Let ΔK be a fundamental positive discriminant, Δq = ΔKq2 where
q is an odd prime conductor. Let εΔK (resp. εΔq) be the fundamental unit of
OΔK (resp. OΔq) and t such that εt

ΔK
= εΔq . Then the principal ideals of OΔq

generated by qεi
ΔK

correspond to quadratic forms fk(i) = [q2, k(i)q, (k(i)2−p)/4]
with i ∈ {1, . . . , t− 1} and k(i) is an integer defined modulo 2q computable from
εi

ΔK
mod q.

Proof. Let αi = qεi
ΔK

with i ∈ {1, . . . , t − 1}. Following the proof of [BTW95,
Proposition 2.9], we detail here the computation of �i = αiOΔq . Let xi and yi

be two integers such that εi
ΔK

= xi + yiωK . Then αi = qxi + yiqΔK(1 − q)/2 +
yi

1
2 (Δq +

√
Δq), and αi is an element of OΔq . Let mi, ai and bi be three integers

such that �i = mi

(
aiZ +

−bi+
√

Δq

2

)
. As mentioned in the proof of [BTW95,

Proposition 2.9], mi is the smallest positive coefficient of
√

Δq/2 in �i. As OΔq

is equal to Z+(Δq +
√

Δq)/2Z, αiOΔq is generated by αi and αi(Δq +
√

Δq)/2
as a Z-module. So a simple calculation gives that mi = gcd(yi, q(xi + yiΔK/2)).
As εi

ΔK
is not an element of OΔq , we have gcd(yi, q) = 1 so mi = gcd(yi, xi +

yiΔK/2). The same calculation to find m′
i for the ideal εi

ΔK
OΔK reveals that

mi = m′
i. As εi

ΔK
OΔK = OΔK we must have m′

i = 1. Now, N(�i) = |N(αi)| = q2

and N(�i) = m2
i ai = ai and therefore ai = q2. Let us now find bi. Note that

bi is defined modulo 2ai. Since αi ∈ αiOΔq , there exist μi and νi such that
αi = aiμi + (−bi +

√
Δq)/2νi. By identification in the basis (1,

√
Δq), νk = 1

and by a multiplication by 2, we obtain 2qxi + qyiΔK ≡ −biyi (mod 2ai). As
bi ≡ Δq (mod 2), we only have to determine bi modulo q2. As yi is prime to
q, we have bi ≡ k(i)q (mod q2) with k(i) ≡ −2xi/yi − ΔK (mod q). Finally, as
we must have −ai < b ≤ ai if ai >

√
Δq and else

√
Δq − 2ai < b <

√
Δq,

k(i) is the unique integer with k(i) ≡ Δq (mod 2) and k(i) ≡ −2xi/yi − ΔK

(mod q), such that b = k(i)q satisfies that inequalities. Eventually, the principal
ideal of OΔq generated by qεi

ΔK
corresponds to the form [q2, k(i)q, ci] with ci =

(b2
i − Δq)/(4ai) = (k(i)2 − ΔK)/4. ��

From this theorem, we see that if we go across the cycle of principal forms,
then we will find reduced forms f̂k. To analyse the complexity of our factor-
ing algorithm, we have to know the distribution of these forms on the cycle.
An appropriate tool is the Shanks distance d (see [BV07, Definition 10.1.4])
which is close to the number of iterations of Rho between two forms. One has
d(1Δq , fk(i)) = iRΔK . From Lemma 10.1.8 of [BV07], |d(f̂k(i), fk(i))| < log q, for

Factoring pq2 with Quadratic Forms: Nice Cryptanalyses 477

(a) Imaginary case (b) Real case

Fig. 1. Probability that |Mk| < |Δq |1/9 in function of the bit-size λ of p and q

all i = 1, 2, . . . , t − 1. Let j be the smallest integer such that 0 < jRΔK −
2 log q, then as jRΔK = d(fk(i), fk(i+j)) = d(fk(i), f̂k(i)) + d(f̂k(i), f̂k(i+j)) +
d(f̂k(i+j), fk(i+j)), from the triangle inequality, one has jRΔK < 2 log(q) +
|d(f̂k(i), f̂k(i+j))|. So, |d(f̂k(i), f̂k(i+j))| > jRΔK − 2 log q > 0. This inequality
proves that fk(i) and fk(i+j) do not reduce to the same form. Experiments actu-
ally show that asymptotically, |d(f̂k(i), fk(i))| is very small on average (smaller
than 1). As a consequence, as pictured in figure 2, d(1Δq , f̂k(i)) ≈ iRΔK .

RΔK

fk(1)

f̂k(1)

fk(2)f̂k(2)

fk(3)
f̂k(3)

1Δq

Fig. 2. Repartition of the forms f̂k(i) along the principal cycle

Moreover, as in the imaginary case, experiments show that asymptotically the
probability that the norm of the matrices of reduction, |Mk| is smaller than Δ

1/9
q

is close to 1 (see figure 1(b)). This leads to the following heuristic.

Heuristic 2 (Real case). From the principal form 1Δq , a reduced form f̂k

such that the matrix of the reduction, Mk, satisfy |Mk| < Δ
1/9
q , can be found in

O(RΔK) successive applications of Rho.

We did also some experiments to investigate the case where the bit-sizes of p
and q are unbalanced. In particular when the size of q grows, the norm of the
matrix of reduction becomes larger. For example, for a 100-bit p and a 200-bit q
(resp. a 300-bit q), more than 95% (resp. 90%) of the f̂k have a matrix Mk with
|Mk| < Δ

1/6.25
q (resp. |Mk| < Δ

1/5.44
q).

478 G. Castagnos et al.

3 A Rigorous Homogeneous Variant of Coppersmith’s
Root Finding Method

Our factoring algorithm searches many times for small modular roots of de-
gree two homogeneous polynomials and the most popular technique to find
them is based on Coppersmith’s method (see [Cop97] or May’s survey [May07]).
Our problem is the following: Given f(x, y) = x2 + bxy + cy2 a (monic) bi-
nary quadratic form and N = pq2 an integer of unknown factorisation, find
(x0, y0) ∈ Z2 such that f(x0, y0) ≡ 0 (mod q2), while |x0|, |y0| ≤ M , where
M ∈ N. The usual technique for this kind of problems is only heuristic, since it
is the gcd extension of bivariate congruences. Moreover, precise bounds cannot
be found in the litterature. Fortunately, because our polynomial is homogeneous,
we will actually be able to prove the method. This homogenous variant is quite
similar to the one-variable standard Coppersmith method, but is indeed even
simpler to describe and more efficient since there is no need to balance coeffi-
cients. We denote as ‖ · ‖ the usual Euclidean norm for polynomials. The main
tool to solve this problem is given by the following variant of the widespread
elementary Howgrave-Graham’s lemma [How97].

Lemma 1. Let B ∈ N and g(x, y) ∈ Z[x, y] be a homogeneous polynomial of
total degree δ. Let M > 0 be a real number and suppose that ||g(x, y)|| < B√

δ+1Mδ

then for all x0, y0 ∈ Z such that g(x0, y0) ≡ 0 (mod B) and |x0|, |y0| ≤ M ,
g(x0, y0) = 0.

Proof. Let g(x, y) =
∑δ

i=0 gix
iyδ−i where some gis might be zero. We have

|g(x0, y0)| ≤
∑δ

i=0 |gi||xi
0y

δ−i
0 | ≤ M δ

∑δ
i=0 |gi|

≤ M δ
√

δ + 1‖g(x, y)‖ < B

and therefore g(x0, y0) = 0. ��
The trick is then to find only one small enough bivariate homogeneous
polynomial satisfying the conditions of this lemma and to extract the ratio-
nal root of the corresponding univariate polynomial with standard techniques.
On the contrary, the original Howgrave-Graham’s lemma suggests to look for
two polynomials of small norm having (x0, y0) as integral root, and to recover
it via elimination theory. The usual way to obtain these polynomials is to form
a lattice spanned by a special family of polynomials, and to use the LLL algo-
rithm (cf. [LLL82]) to obtain the two “small” polynomials. Unfortunately, this
reduction does not guarantee that these polynomials will be algebraically inde-
pendent, and the elimination can then lead to a trivial relation. Consequently,
this bivariate approach is heuristic. Fortunately, for homogeneous polynomials,
we can take another approach by using Lemma 1 and then considering a uni-
variate polynomial with a rational root. This makes the method rigorous and
slightly simpler since we need a bound on ‖g(x, y)‖ and not on ‖g(xX, yY)‖ if
X and Y are bounds on the roots and therefore the resulting lattice has smaller
determinant than in the classical bivariate approach.

Factoring pq2 with Quadratic Forms: Nice Cryptanalyses 479

To evaluate the maximum of the bound we can obtain, we need the size of
the first vector provided by LLL which is given by:

Lemma 2 (LLL). Let L be a full-rank lattice in Zd spanned by an integer ba-
sis B = {b1, . . . , bd}. The LLL algorithm, given B as input, will output in time
O(d6 log3(max ‖bi‖)) a non-zero vector u ∈ L satisfying ‖u‖ ≤ 2(d−1)/4 det(L)1/d.

We will now prove the following general result regarding the modular roots of
bivariate homogeneous polynomials which can be of independent interest.

Theorem 2. Let f(x, y) ∈ Z[x, y] be a homogeneous polynomial of degree δ with
f(x, 0) = xδ, N be a non-zero integer and α be a rational number in [0, 1], then
one can retrieve in polynomial time in log N , δ and the bit-size of α, all the
rationals x0/y0, where x0 and y0 are integers such that gcd(f(x0, y0), N) ≥ Nα

and |x0|, |y0| ≤ Nα2/(2δ).

Proof. Let b be a divisor of N for which their exists (x0, y0) ∈ Z2 such that
b = gcd(f(x0, y0), N) ≥ Nα. We define some integral parameters (to be specified
later) m, t and t′ with t = m + t′ and construct a family of δt + 1 homogeneous
polynomials g and h of degree δt such that (x0, y0) is a common root modulo
bm. More precisely, we consider the following polynomials

{
gi,j(x, y) = xjyδ(t−i)−jf iNm−i for i = 0, . . . , m − 1, j = 0, . . . , δ − 1
hi(x, y) = xiyδt′−ifm for i = 0, . . . , δt′.

We build the triangular matrix L of dimension δt + 1, containing the coeffi-
cients of the polynomials gi,j and hi. We will apply LLL to the lattice spanned
by the rows of L. The columns correspond to the coefficients of the monomials
yδt, xyδt−1, . . . , xδt−1y, xδt. Let β ∈ [0, 1] such that M = Nβ . The product of the
diagonal elements gives det(L) = N δm(m+1)/2. If we omit the quantities that do
not depend on N , to satisfy the inequality of Lemma 1 with the root bound M ,
the LLL bound from Lemma 2 implies that we must have

δm(m + 1)/2 ≤ (δt + 1)(αm − δtβ) (3)

and if we set λ such that t = λm, this gives asymptotically β ≤ α
δλ − 1

2δλ2 , which
is maximal when λ = 1

α , and in this case, βmax = α2/(2δ). The vector output
by LLL gives a homogeneous polynomial f̃(x, y) such that f̃(x0, y0) = 0 thanks
to Lemma 1. Let r = x/y, any rational root of the form x0/y0 can be found by
extracting the rational roots of f̃ ′(r) = 1/yδtf̃(x, y) with classical methods. ��
For the case we are most interested in, δ = 2, N = pq2 with p and q of the
same size, i. e., α = 2/3 then λ = 3/2 and we can asymptotically get roots up
to Nβ with β = 1

9 . If we take m = 4 and t = 6, i. e., we work with a lattice of
dimension 13, we get from (3) that β ≈ 1

10.63 and with a 31-dimensional lattice
(m = 10 and t = 15), β ≈ 1

9.62 . If the size of q grows compared to p, i. e., α
increases towards 1, then β increases towards 1/4. For example, if q is two times
larger than p, i. e., α = 4/5 then β = 1/6.25. For α = 6/7, we get β ≈ 1/5.44.

480 G. Castagnos et al.

We will call HomogeneousCoppersmith the algorithm which implements this
method. It takes as input an integer N = pq2 and a binary quadratic form [a, b, c],
from which we deduce the unitary polynomial x2+b′xy+c′y2, by dividing both b
and c by a modulo N , and the parameters m and t. In fact, this method will only
disclose proper representations of q2, those for which x and y are coprime, but
we note that fk properly represents q2, and therefore so does our form [a, b, c].

The case α = 1 of Theorem 2 can already be found in Joux’s book [Jou09] and
we mention that a similar technique has already been independently investigated
by Bernstein in [Ber08].

4 A Õ(p1/2)-Deterministic Factoring Algorithm for pq2

We detail our new quadratic form-based factoring algorithm for numbers of the
form pq2. In this section, p and q will be of same bit-size, and p ≡ 1 (mod 4).

4.1 The Algorithm

Roughly speaking, if Δq = N = pq2, our factoring algorithm, depicted in Fig. 3,
exploits the fact that the non-reduced forms fk = [q2, kq,−] reduce to forms
f̂k for which there exists a small pair (x0, y0) such that q2 | f̂k(x0, y0) while
q2 | N . From Theorem 1, we know that these reduced forms appear on the
principal cycle of the class group of discriminant Δq. To detect them, we start a
walk in the principal cycle from the principal form 1N , and apply Rho until the
Coppersmith-like method finds these small solutions.

Input: N = pq2, m, t
Output: p, q

1. h← 1N

2. while (x0, y0) not found do
2.1. h← Rho(h)
2.2. x0/y0 ← HomogeneousCoppersmith(h, N, m, t)

3. q ← Sqrt(Gcd(h(x0, y0), N))
4. return (N/q2, q)

Fig. 3. Factoring N = pq2

4.2 Heuristic Correctness and Analysis of Our Algorithm

Assuming Heuristic 2, starting from 1N , after O(Rp) iterations, the algorithm
will stop on a reduced form whose roots will be found with our Coppersmith-
like method (for suitable values of m and t) since they will satisfy the ex-
pected N1/9 bound. The computation of gcd(h(x0, y0), N) will therefore expose
q2 and factor N . The time complexity of our algorithm is then heuristically
O(RpPoly(log N)), whereas the space complexity is O(log N). The worst-case

Factoring pq2 with Quadratic Forms: Nice Cryptanalyses 481

complexity is O(p1/2 log p Poly(log N)). For small regulators, such as in REAL-
NICE cryptosystem (see. Subsection 5.1), the time complexity is polynomial.

This algorithm can be generalised with a few modifications to primes p such
that p ≡ 3 (mod 4), by considering Δq = 4pq2. Moreover if the bit-sizes of p and
q are unbalanced, our experiments suggest that the size of the roots will be small
enough (see end of Subsection 2.3 and Section 3), so the factoring algorithm will
also work in this case, with the same complexity.

Comparison with other Deterministic Factorisation Methods. Boneh,
Durfee and Howgrave-Graham presented in [BDH99] an algorithm for factoring
integers N = prq. Their main result is the following:

Lemma 3 ([BDH99]). Let N = prq be given, and assume q < pc for some c.
Furthermore, assume that P is an integer satisfying |P − p| < p1− c

r+c−2 r
d . Then

the factor p may be computed from N , r, c and P by an algorithm whose running
time is dominated by the time it takes to run LLL on a lattice of dimension d.

For r = 2 and c = 1, this leads to a deterministic factoring algorithm which
consists in exhaustively search for an approximation P of p and to solve the
polynomial equation (P + X)2 ≡ 0 (mod p2) with a method à la Coppersmith.
The approximation will be found after O(p1/3) = O(N1/9) iterations.

The fastest deterministic generic integer factorisation algorithm is actually a
version of Strassen’s algorithm [Str76] from Bostan, Gaudry and Schost [BGS07],
who ameliorates a work of Chudnovsky and Chudnovsky [CC87] and proves a
complexity of O(Mint(

4
√

N log N)) where Mint is a function such that integers of
bit-size d can me multiplied in Mint(d) bit operations. More precisely, for numbers
of our interest, Lemma 13 from [BGS07] gives the precise complexity:

Lemma 4 ([BGS07]). Let b, N be two integers with 2 ≤ b < N . One can
compute a prime divisor of N bounded by b, or prove that no such divisor ex-
ists in O

(
Mint(

√
b log N) + log bMint(log N) log log N

)
bit operations and space

O(
√

b log N) bits.

In particular, for b = N1/3, the complexity is Õ(N1/6), with a very large space
complexity compared to our algorithm. Moreover, none of these two last of al-
gorithms can actually factor an integer of cryptographic size. The fact that a
prime divisor has a small regulator does not help in these algorithms, whereas
it makes the factorisation polynomial in our method.

5 Cryptanalysis of the NICE Cryptosystems

Hartmann, Paulus and Takagi proposed the elegant NICE encryption scheme
(see [HPT99,PT99,PT00]), based on imaginary quadratic fields and whose main
feature was a quadratic decryption time. Later on, several other schemes, includ-
ing (special) signature schemes relying on this framework have been proposed.
The public key of these NICE cryptosystems contains a discriminant Δq = −pq2

482 G. Castagnos et al.

together with a reduced ideal � whose class belongs to the kernel of ϕ̄q. The
idea underlying the NICE cryptosystem is to hide the message behind a random
element [�]r of the kernel. Applying ϕ̄q will make this random element disappear,
and the message will then be recovered.

In [JSW08], Jacobson, Scheidler and Weimer embedded the original NICE
cryptosystem in real quadratic fields. Whereas the idea remains essentially the
same as the original, the implementation is very different. The discriminant is
now Δq = pq2, but because of the differences between imaginary and real setting,
these discriminant will have to be chosen carefully. Among these differences, the
class numbers are expected to be small with very high probability (see the Cohen-
Lenstra heuristics [CL84]). Moreover, an equivalence class does not contain a
unique reduced element anymore, but a multitude of them, whose number is
governed by the size of the fundamental unit. The rough ideas to understand
these systems and our new attacks are given in the following. The full description
of the systems is omitted for lack of space but can be found in [HPT99,JSW08].

5.1 Polynomial-Time Key Recovery in the Real Setting

The core of the design of the REAL-NICE encryption scheme is the very particular
choice of the secret prime numbers p and q such that ΔK = p and Δq = pq2.
They are chosen such that the ratio RΔq /RΔK is of order of magnitude of q
and that RΔK is bounded by a polynomial in log(ΔK). To ensure the first
property, it is sufficient to choose q such that q −

(
ΔK

q

)
is a small multiple of

a large prime. If the second property is very unlikely to naturally happen since
the regulator of p is generally of the order of magnitude of

√
p, it is indeed

quite easy to construct fundamental primes with small regulator. The authors
of [JSW08] suggest to produce a prime p as a so-called Schinzel sleeper, which
is a positive squarefree integer of the form p = a2x2 + 2bx + c with a, b, c, x
in Z, a �= 0 and b2 − 4ac dividing 4 gcd(a2, b)2. Schinzel sleepers are known to
have a regulator of the order log(p) (see [CW05]). Some care must be taken
when setting the (secret) a, b, c, x values, otherwise the resulting Δq = pq2 is
subject to factorisation attacks described in [Wei04]. We do not provide here
more details on these choices since the crucial property for our attack is the fact
that the regulator is actually of the order log(p). The public key consists of the
sole discriminant Δq. The message is carefully embedded (and padded) into a
primitive OΔq -ideal so that it will be recognised during decryption. Instead of
moving the message ideal � to a different equivalence class (like in the imaginary
case), the encryption actually hides the message in the cycle of reduced ideal
of its own equivalent class by multiplication of a random principal OΔq -ideal �
(computed during encryption). The decryption process consists then in applying
the (secret) map ϕ̄q and perform an exhaustive search for the padded message in
the small cycle of ϕ̄q([��]). This exhaustive search is actually possible thanks to
the choice of p which has a very small regulator. Like in the imaginary case, the
decryption procedure has a quadratic complexity and significantly outperforms
an RSA decryption for any given security level (see Table 3 from [JSW08]).

Factoring pq2 with Quadratic Forms: Nice Cryptanalyses 483

Unfortunately, due to the particular but necessary choice of the secret prime p,
the following result states the total insecurity of the REAL-NICE system.

Result 1. Algorithm 3 recovers the secret key of REAL-NICE in polynomial time
in the security parameter under Heuristic 2 since the secret fundamental discrim-
inant p is chosen to have a regulator bounded by a polynomial in log p.

We apply the cryptanalysis on the following example. The Schinzel polynomial
S(X) = 27252X2 + 2 · 3815X + 2 produces a suitable 256-bit prime p for the
value X0 = 103042745825387139695432123167592199. This prime has a regula-
tor RΔK � 90.83. The second 256-bit prime q is chosen following the recommen-
dations from [Wei04]. This leads to a the discriminant

Δq = 28736938823310044873380716142282073396186843906757463274792638734144060602830510
80738669163489273592599054529442271053869832485363682341892124500678400322719842
63278692833860326257638544601057379571931906787755152745236263303465093

Our algorithm recovers the prime

q = 60372105471499634417192859173853663456123015267207769653235558092781188395563

from Δq after 45 iterations in 42.42 seconds on a standard laptop. The rational
root is x0

y0
equal to − 2155511611710996445623

3544874277134778658948 , where x0 and y0 satisfy log(Δq)
log(|x0|) � 10.8

and log(Δq)
log(|y0|) � 10.7.

5.2 Polynomial-Time Key Recovery of the Original NICE

As mentioned above, the public key of the original NICE cryptosystem contains
the representation of a reduced ideal � whose class belongs to the kernel of the
surjection ϕ̄q. The total-break of the NICE cryptosystem is equivalent to solving
the following kernel problem.

Definition 6 (Kernel Problem [BPT04]). Let λ be an integer, p and q be
two λ-bit primes with p ≡ 3 (mod 4). Fix a non-fundamental discriminant Δq =
−pq2. Given an element [�] of ker ϕ̄q, factor the discriminant Δq.

Castagnos and Laguillaumie proposed in [CL09] a polynomial-time algorithm to
solve this problem. We propose here a completely different solution within the
spirit of our factorisation method and whose complexity is also polynomial-time.
As discuss in Subsection 2.3, the idea is to benefit from the fact that the public
ideal � corresponds to a reduced quadratic form, f̂k, which represents q2. We thus
find these x0 and y0 such that gcd(f̂k(x0, y0), Δq) = q2 with the Coppersmith
method of Section 3.

Result 2. The Homogeneous Coppersmith method from Section 3 solves the
Kernel Problem in polynomial time in the security parameter under Heuristic 1.

484 G. Castagnos et al.

We apply our key recovery on the example of NICE proposed in [JJ00,CL09]:

Δq = −1001133619402846750073919037082619174565372425946674915149340539464219927955168
18216760083640752198709726199732701843864411853249644535365728802022498185665592
98370854645328210791277591425676291349013221520022224671621236001656120923

a = 5702268770894258318168588438117558871300783180769995195092715895755173700399
141486895731384747

b = 3361236040582754784958586298017949110648731745605930164666819569606755029773
074415823039847007

The public key consists in Δq and � = (a, b). Our Coppersmith method finds
in less that half a second the root u0 = −103023911

349555951 = x0
y0

and

h(x0, y0) = 5363123171977038839829609999282338450991746328236957351089
4245774887056120365979002534633233830227721465513935614971
593907712680952249981870640736401120729 = q2.

All our experiments have been run on a standard laptop under Linux with
software Sage. The lattice reduction have been performed with Stehlé’s fplll [Ste].

Acknowledgements. We warmly thank Denis Simon and Brigitte Vallée for
helpful discussions and the reviewers for their useful comments. Part of this work
was supported by the Commission of the European Communities through the
ICT program under contract ICT-2007-216676 ECRYPT II.

References

[AM94] Adleman, L.M., McCurley, K.S.: Open problems in number theoretic com-
plexity, II. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS,
vol. 877, pp. 291–322. Springer, Heidelberg (1994)

[BDH99] Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring N = prq for large r.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 326–337. Springer,
Heidelberg (1999)

[Ber08] Bernstein, D.J.: List decoding for binary Goppa codes, (2008) Preprint
http://cr.yp.to/papers.html#goppalist

[BGS07] Bostan, A., Gaudry, P., Schost, É.: Linear Recurrences with Polynomial Co-
efficients and Application to Integer Factorization and Cartier-Manin Oper-
ator. SIAM J. Comput. 36(6), 1777–1806 (2007)

[BPT04] Biehl, I., Paulus, S., Takagi, T.: Efficient Undeniable Signature Schemes
based on Ideal Arithmetic in Quadratic Orders. Des. Codes Cryptogra-
phy 31(2), 99–123 (2004)

[BTV04] Buchmann, J., Takagi, T., Vollmer, U.: Number Field Cryptography. In: van
der Poorten, Stein (eds.) High Primes & Misdemeanours: Lectures in Honour
of the 60th Birthday of Hugh Cowie Williams. Fields Institute Communica-
tions, vol. 41, pp. 111–125. AMS (2004)

[BTW95] Buchmann, J., Thiel, C., Williams, H.C.: Short Representation of Quadratic
Integers. In: Proc. of CANT 1992, Math. Appl., vol. 325, pp. 159–185. Kluwer
Academic Press, Dordrecht (1995)

[BV07] Buchmann, J., Vollmer, U.: Binary Quadratic Forms. An Algorithmic Ap-
proach. Springer, Heidelberg (2007)

http://cr.yp.to/papers.html#goppalist

Factoring pq2 with Quadratic Forms: Nice Cryptanalyses 485

[BW88] Buchmann, J., Williams, H.C.: A Key-Exchange System based on Imaginary
Quadratic Fields. J. Cryptology 1, 107–118 (1988)

[CC87] Chudnovsky, D.V., Chudnovsky, G.V.: Approximations and Complex Multi-
plication According to Ramanujan. In: Ramanujan Revisited: Proceedings,
pp. 375–472. Academic Press, Boston (1987)

[Chi89] Chistov, A.L.: The complexity of constructing the ring of integers of a global
field. Dolk. Akad. Nauk. SSSR, 306, 1063–1067 (1989); English translation:
Soviet. Math. Dolk. 39, 597–600 (1989)

[CL84] Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups. Springer LNM,
vol. 1052, pp. 26–36 (1984)

[CL09] Castagnos, G., Laguillaumie, F.: On the Security of Cryptosystems with
Quadratic Decryption: The Nicest Cryptanalysis. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 260–277. Springer, Heidelberg (2009)

[Coh00] Cohen, H.: A Course in Computational Algebraic Number Theory. Springer,
Heidelberg (2000)

[Cop97] Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Expo-
nent RSA Vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

[Cox99] Cox, D.A.: Primes of the form x2 + ny2. John Wiley & Sons, Chichester
(1999)

[CP01] Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective.
Springer, Heidelberg (2001)

[CW05] Cheng, K.H.F., Williams, H.C.: Some Results Concerning Certain Periodic
Continued Fractions. Acta Arith. 117, 247–264 (2005)

[Deg58] Degert, G.: Uber die Bestimmung der Grundeinheit gewisser reell- quadratis-
cher Zhalkörper. Abh. Math. Sem. Univ. Hanburg 22, 92–97 (1958)

[GW08] Gower, J.E., Wagstaff Jr., S.S.: Square form factorization. Math. Com-
put. 77(261), 551–588 (2008)

[How97] Howgrave-Graham, N.: Finding small roots of univariate modular equations
revisited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS,
vol. 1355, pp. 131–142. Springer, Heidelberg (1997)

[How01] Howgrave-Graham, N.: Approximate Integer Common Divisors. In: Silver-
man, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg
(2001)

[HPT99] Hartmann, M., Paulus, S., Takagi, T.: NICE - New Ideal Coset Encryption.
In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 328–339.
Springer, Heidelberg (1999)

[JJ00] Jaulmes, É., Joux, A.: A NICE Cryptanalysis. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 382–391. Springer, Heidelberg (2000)

[JLW95] Jacobson Jr., M.J., Lukes, R.F., Williams, H.C.: An investigation of bounds
for the regulator of quadratic fields. Experimental Mathematics 4(3), 211–
225 (1995)

[Jou09] Joux, A.: Algorithmic Cryptanalysis. CRC Press, Boca Raton (2009)
[JSW08] Jacobson Jr., M.J., Scheidler, R., Weimer, D.: An Adaptation of the

NICE Cryptosystem to Real Quadratic Orders. In: Vaudenay, S. (ed.)
AFRICACRYPT 2008. LNCS, vol. 5023, pp. 191–208. Springer, Heidelberg
(2008)

[LLL82] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring Polynomials with
Rational Coefficients. Math. Ann. 261, 515–534 (1982)

[May07] May, A.: Using LLL-Reduction for Solving RSA and Factorization Problems:
A Survey. In: LLL+25 Conference in honour of the 25th birthday of the LLL
algorithm (2007)

486 G. Castagnos et al.

[McK99] McKee, J.: Speeding Fermat’s factoring method. Math. Comput. 68(228),
1729–1737 (1999)

[Mil07] Milan, J.: Factoring Small Integers: An Experimental Comparison. INRIA
report (2007), http://hal.inria.fr/inria-00188645/en/

[Oka86] Okamoto, T.: Fast public-key cryptosystem using congruent polynomial
equations. Electronic Letters 22(11), 581–582 (1986)

[Oka90] Okamoto, T.: A fast signature scheme based on congruential polynomial
operations. IEEE Transactions on Information Theory 36(1), 47–53 (1990)

[OU98] Okamoto, T., Uchiyama, S.: A New Public-Key Cryptosystem as Secure as
Factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
308–318. Springer, Heidelberg (1998)

[Per01] Peralta, R.: Elliptic curve factorization using a partially oblivious function.
In: Cryptography and computational number theory, Progr. Comput. Sci.
Appl. Logic., vol. 20, pp. 123–128 (2001)

[PO96] Peralta, R., Okamoto, E.: Faster Factoring of Integers of a Special Form.
IEICE Trans. Fundamentals E79-A, 4, 489–493 (1996)

[PT99] Paulus, S., Takagi, T.: A generalization of the Diffie-Hellman problem and
related cryptosystems allowing fast decryption. In: Proc. of ICISC 1998, pp.
211–220 (1999)

[PT00] Paulus, S., Takagi, T.: A New Public-Key Cryptosystem over a Quadratic
Order with Quadratic Decryption Time. J. Cryptology 13(2), 263–272 (2000)

[Sch82] Schoof, R.: Quadratic fields and factorization. Computational Methods in
Number Theory, MC-Tracts 154/155, 235–286 (1982)

[Ste] Stehlé, D.: fplll-3.0, http://perso.ens-lyon.fr/damien.stehle/#software
[Str76] Strassen, V.: Einige Resultate über Berechnungskomplexität. Jber. Deutsch.

Math.-Verein., 78, 1–8 (1976/1977)
[Tak98] Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)

CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)
[Wei04] Weimer, D.: An Adaptation of the NICE Cryptosystem to Real Quadratic

Orders. Master’s thesis, Technische Universität Darmstadt (2004)

http://hal.inria.fr/inria-00188645/en/
http://perso.ens-lyon.fr/damien.stehle/#software

	Factoring pq2 with Quadratic Forms: Nice Cryptanalyses
	Introduction
	Background on Quadratic Fields and Quadratic Forms
	Quadratic Fields
	Representation of the Classes
	Reduction of the Forms [q2,kq,(k2 p)/4] and Heuristics

	A Rigorous Homogeneous Variant of Coppersmith's Root Finding Method
	A \~{O}(p1/2)-Deterministic Factoring Algorithm for pq2
	The Algorithm
	Heuristic Correctness and Analysis of Our Algorithm

	Cryptanalysis of the NICE Cryptosystems
	Polynomial-Time Key Recovery in the Real Setting
	Polynomial-Time Key Recovery of the Original NICE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

