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Abstract. In the present work we deal with the concept of alpha-fair
resource allocation in the situation where the decision maker (in our
case, the base station) does not have complete information about envi-
ronment. Namely, we develop a concept of α-fairness under uncertainty
to allocate power resource in the presence of a jammer under two types
of uncertainty: (a) the decision maker does not have complete knowl-
edge about the parameters of the environment, but knows only their
distribution, (b) the jammer can come into the environment with some
probability bringing extra background noise. The goal of the decision
maker is to maximize the α-fairness utility function with respect to the
SNIR (signal to noise-plus-interference ratio). Here we consider a concept
of the expected α-fairness utility function (short-term fairness) as well
as fairness of expectation (long-term fairness). In the scenario with the
unknown parameters of the environment the most adequate approach is
a zero-sum game since it can also be viewed as a minimax problem for
the decision maker playing against the nature where the decision maker
has to apply the best allocation under the worst circumstances. In the
scenario with the uncertainty about jamming being in the system the
Nash equilibrium concept is employed since the agents have non-zero
sum payoffs: the decision maker would like to maximize either the ex-
pected fairness or the fairness of expectation while the jammer would
like to minimize the fairness if he comes in on the scene. For all the plots
the equilibrium strategies in closed form are found. We have shown that
for all the scenarios the equilibrium has to be constructed into two steps.
In the first step the equilibrium jamming strategy has to be constructed
based on a solution of the corresponding modification of the water-filling
equation. In the second step the decision maker equilibrium strategy has
to be constructed equalizing the induced by jammer background noise.
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1 Introduction

Fairness concepts have been playing a central role in networking. In the ATM
standards [9], the maxmin fairness and its weighted versions appear as the way
to allocate throughput to connections using the ABR (Available Bit Rate) best
effort service. The proportional fairness has been introduced in [5, 6]. Later it was
implemented in wireless communications (e.g. in the Qualcomm High Data Rate
(HDR) scheduler) as a way to allocate throughputs (through time slots); it has
also been shown to correspond to the way that some versions of the TCP Internet
Protocol share bottleneck capacities [8]. A unifying mathematical formulation to
fair throughput assignment (which we call the “α-fairness”) has been proposed
in [7].

In the present work we deal with the concept of alpha-fair resource allocation
in the situation where the decision maker (in our case, a base station) does not
have complete information about environment. Namely, we develop a concept
of α-fairness under uncertainty to allocate power resource in the presence of a
jammer under two types of uncertainty: (a) the decision maker does not have
complete knowledge about the parameters of the environment but knows only
their distribution, (b) the jammer can come into the environment with some
probability bringing extra background noise. These scenarios have not been con-
sidered previously in the literature (see e.g., [1–4] and references therein). The
goal of the decision maker is to maximize the α-fairness utility function with
respect to the SNIR (signal to noise-plus-interference ratio). Here we consider a
concept of the expected fairness as well as fairness of expectation. The expected
fairness concept is appropriate for the case of slow fading when the decision
maker dynamics is faster than the evolution of the environment. Whereas the
fairness of expectation concept is more appropriate for the case of fast fading
when the state of the environment changes quicker than the dynamics of the
control system. We can also say that the expected fairness can be used as a
short-term fairness concept while the fairness of expectation can be applicable
for long-term fairness.

In the scenario with the unknown parameters of the environment the most
adequate approach is a zero-sum game since it can also be viewed as a minimax
problem for the decision maker playing against the nature where the decision
maker has to apply the best allocation under the worst circumstances. In the
scenario with the uncertainty about jamming being in the system the Nash
equilibrium concept is employed since the agents have non-opposite goals: the
decision maker would like to maximize either the expected fairness or the fairness
of expectation while the jammer would like to minimize the fairness if he comes
in on the scene. For all the plots the equilibrium solutions are found in closed
form.

2 Dependent fading channel gains: expected fairness

In this section we consider the following power resource allocation problem.
There is a single decision maker (say, the base station) that decides how to al-
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locate the power between n different users. The base station transmits to the
mobiles simultaneously using independent channels, e.g. different directional an-
tennas or frequency bands (e.g. as in OFDM, where one should assign different
power levels for different sub-carriers [10]).
The strategy of the decision maker is P = (P1, . . . , Pn) such that Pi ≥ 0 for i ∈
[1, n] and

∑n
i=1 Pi = P̄ , where P̄ is the total power which the decision maker has

to distribute among all the users and Pi corresponds to a power level assigned
to the i-th user.

In the environment a jammer could be present bringing extra background
noise of the total power J̄ to the natural one distributing it among users. So,
the pure strategy of the jammer is J = (J1, . . . , Jn) where Ji ≥ 0 for i ∈
[1, n] and

∑n
i=1 Ji = J̄ .

The decision maker does not know the fading channels gains of users with
certainty. Namely, the fading channel gains can be random, i.e. with probability
pk, k ∈ [1, K] they are gk

i (for the user) and hk
i (for the jammer), respectively,

i ∈ [1, n]. The uncontrolled noise for user i is N0k
i also with probability pk,

k ∈ [1,K]. Thus, in this section we assume that the fading channel gains are
dependent. The users know with certainty that a jammer is present in the system.
As a payoff we consider α-fairness (α > 0) utility function of the expected SNIRs:

v(P, J) =
1

1− α

K∑

k=1

pk
n∑

i=1

(
gk

i Pi

N0k
i + hk

i Ji

)1−α

for α 6= 1 (1)

and

v(P, J) =
K∑

k=1

pk
n∑

i=1

ln
(

gk
i Pi

N0k
i + hk

i Ji

)
for α = 1, (2)

We assume that all the fading channel gains gk
i , hk

i and the power level of the
uncontrolled noise N0k

i for i ∈ [1, n], the probabilities pk which the system is in
as well as the total power resource P̄ of the decision maker and the total noise
J̄ induced by the jammer are fixed and known to both agents.

In this setting the jammer more naturally has to be interpreted as a natural
background noise which is present in the system. The total power of the jam-
mer is known to the decision maker but the decision maker does not know its
distribution among the users. The decision maker wants to distribute resources
among the users in the worst situation, so it faces a maxmin problem. Thus,
here we deal with a zero-sum game, and the payoff to the jammer is −v(P, J).
We will look for the saddle point and the value of the game, that is, we want to
find the strategies (P ∗, J∗) ∈ A×B such that

v(P, J∗) ≤ v(P ∗, J∗) ≤ v(P ∗, J) for any (P, J) ∈ A×B,

where A and B are the sets of all the strategies of the decision maker and
jammer, respectively and v = v(P ∗, J∗) is the value of the game and (P ∗, J∗) is
the saddle point.
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Before starting studying our problem introduce the following notation. Denote
by P the decision maker strategy assigning to allocate resources uniformly among
all the users, namely, P=(P̄ /n, . . . , P̄ /n).
The next Lemma based on the Kuhn-Tucker Theorem describes the structure of
the saddle point.

Lemma 1 Let α ∈ (0, 1] then (P, J) is a saddle point if and only if there are ω
and ν (Lagrange multipliers) such that
(a) for 0 < α < 1

1
Pα

i

K∑

k=1

pk

(
gk

i

N0k
i + hk

i Ji

)1−α
{

= ω, Pi > 0,

≤ ω, Pi = 0,
(3)

P 1−α
i

K∑

k=1

pk hk
i

N0k
i + hk

i Ji

(
gk

i

N0k
i + hk

i Ji

)1−α
{

= ν, Ji > 0,

≤ ν, Ji = 0,
(4)

(b) for α = 1

1
Pi

{
= ω, Pi > 0,

≤ ω, Pi = 0,
(5)

K∑

k=1

pk hk
i

N0k
i + hk

i Ji

{
= ν, Ji > 0,

≤ ν, Ji = 0.
(6)

First we will study the case with 0 < α < 1. From (3) it follows that necessarily
Pi > 0 for all i. Then

Pi =
1

ω1/α

(
K∑

k=1

pk

(
gk

i

N0k
i + hk

i Ji

)1−α
)1/α

for i ∈ [1, n].

Thus, by (4),

(
K∑

k=1

pk

(
gk

i

N0k
i + hk

i Ji

)1−α
)(1−α)/α K∑

k=1

pkhk
i

N0k
i + hk

i Ji

(
gk

i

N0k
i + hk

i Ji

)1−α

{
= νω(1−α)/α, Ji > 0,

≤ νω(1−α)/α, Ji = 0.

(7)

Let

Ri(x) :=

 
KX

k=1

pk

�
gk

i

N0k
i + hk

i x

�1−α
!(1−α)/α KX

k=1

pk hk
i

N0k
i + hk

i x

 
gk

i

N0k
i + hk

i x

!1−α

.
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It is clear that Ri(x) is a continuous and decreasing function on x ∈ [0,∞) such
that Ri(x) → 0 for x →∞. Then we can define Ji(τ) as follows

Ji(τ) =

{
the unique root of Ri(x) = τ, if Ri(0) > τ,

0, if Ri(0) ≤ τ.
(8)

It is clear that Ji(x) is continuous for x ∈ [0,∞) and decreasing while it is
positive. Also, Ji(τ) →∞ for τ → 0, and Ji(x) = 0 for τ ≥ Ji(0). Thus, there is
the unique x = τ∗ such that

n∑

i=1

Ji(x) = J̄ . (9)

Thus, we have proved the following result supplying the saddle point strategies:

Theorem 1 Let 0 < α < 1 then the saddle point of jammer is given by (8)
where τ = τ∗ is the unique root of (9). The saddle point strategy of the decision
maker is given as follows

Pi =

(
K∑

k=1

pk

(
gk

i

N0k
i + hk

i Ji(τ∗)

)1−α
)1/α

n∑
r=1

(
K∑

k=1

pk

(
gk

r

N0k
r + hk

rJr(τ∗)

)1−α
)1/α

P̄ for i ∈ [1, n].

It is interesting about these strategies that in the optimal behavior the jammer
can harm only the best sub-carriers while the decision maker uses all of them.
Similarly we can study the case where α = 1, namely, we show in the following
theorem that the saddle point jammer strategy has a water-filling structure while
the saddle point decision maker strategy has to be the uniform one.

Theorem 2 Let α = 1 then the saddle point jammer strategy is given as follows

Ji(ν) =

{
the unique root of Fi(x) = ν, if Fi(0) > ν,

0, if Fi(0) ≤ ν,

where

Fi(x) :=
K∑

k=1

pk gk
i

N0k
i + hk

i x

and ν = ν∗ is the unique root of
∑n

i=1 Ji(ν) = J̄ . The saddle point decision
maker strategy is the uniform one P.
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3 Independent fading channel gains: expected fairness

In this section we assume that the fading channel gains are independent. Namely,
with probability pk, k ∈ [1, K] the fading channel gain of the jammer on the chan-
nel of user i is hk

i and the uncontrolled noise for user i is N0k
i . With probability

ql, l ∈ [1, L] the fading channel gain of user i is gl
i. As a payoff we consider the

expected α-fairness (α ≥ 0) utility function of the SNIRs

v(P, J) =
1

1− α

K∑

k=1

L∑

l=1

pkql
n∑

i=1

(
gl

iPi

N0k
i + hk

i Ji

)1−α

for α 6= 1 (10)

and

v(P, J) =
K∑

k=1

L∑

l=1

pkql
n∑

i=1

ln
(

gl
iPi

N0k
i + hk

i Ji

)
for α = 1. (11)

It is clear that (10) is equivalent to

v(P, J) =
1

1− α

K∑

k=1

pk
n∑

i=1

ḡi

(
Pi

N0k
i + hk

i Ji

)1−α

for α 6= 1, (12)

where

ḡi =
L∑

l=1

ql(gl
i)

1−α.

Then from Theorem 3 the following result supplying the optimal strategies fol-
lows:

Theorem 3 (a) Let 0 < α < 1 then the saddle point jammer strategy is given
as follows

Ji = Ji(τ∗) for i ∈ [1, n],

where τ∗ is the unique root of
∑n

i=1 Ji(τ) = J̄ and

Ji(τ) =

{
the unique root of Ri(x) = τ, if Ri(0) > τ,

0, if Ri(0) ≤ τ,

where

Ri(x) := ḡ
1/α−1
i

(
K∑

k=1

pk

(N0k
i + hk

i x)1−α

)(1−α)/α K∑

k=1

pk hk
i

(N0k
i + hk

i x)2−α
.

The saddle point decision maker strategy is given as follows

Pi =

(
K∑

k=1

pk ḡi

(N0k
i + hk

i Ji)1−α

)1/α

n∑
r=1

(
K∑

k=1

pk ḡr

(N0k
r + hk

rJr)1−α

)1/α
P̄ for i ∈ [1, n].
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(b) Let α = 1 then the saddle point jammer strategy is given as follows

Ji(ν) =

{
the unique root of Fi(x) = ν, if Fi(0) > ν,

0, if Fi(0) ≤ ν,

where

Fi(x) :=
K∑

k=1

pk ḡi

N0k
i + hk

i x

and ν = ν∗ is the unique root of
∑n

i=1 Ji(ν) = J̄ . The saddle point decision
maker strategy is the uniform one in [1, n], namely, it is given as follows Pi =
P̄ /n for i ∈ [1, n].

4 Dependent fading channel gains: fairness of expectation

In this section as a payoff to the decision maker we consider α-fairness (α > 0)
utility function of the expected SNIRs:

v(P, J) =
1

1− α

n∑

i=1

(
K∑

k=1

pk gk
i Pi

N0k
i + hk

i Ji

)1−α

for α 6= 1 (13)

and

v(P, J) =
n∑

i=1

ln

(
K∑

k=1

pk gk
i Pi

N0k
i + hk

i Ji

)
for α = 1, (14)

where α ≥ 0. The next Lemma based on the Kuhn-Tucker Theorem describes
the structure of the saddle point.

Lemma 2 Let α ∈ (0, 1] then (P, J) is a saddle point if and only if there are ω
and ν (Lagrange multipliers) such that
(a) for 0 < α < 1

1
Pα

i

(
K∑

k=1

pkgk
i

N0k
i + hk

i Ji

)1−α {
= ω, Pi > 0,

≤ ω, Pi = 0,
(15)

P 1−α
i

K∑

k=1

pkhk
i gk

i

(N0k
i + hk

i Ji)2(
K∑

k=1

pkgk
i

N0k
i + hk

i Ji

)α

{
= ν, Ji > 0,

≤ ν, Ji = 0,
(16)

(b) for α = 1
1
Pi

{
= ω, Pi > 0,

≤ ω, Pi = 0,
(17)

K∑

k=1

pk hk
i gk

i

N0k
i + hk

i Ji

{
= ν, Ji > 0,

≤ ν, Ji = 0.
(18)
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The lemma implies the following result supplying the saddle point.

Theorem 4 Let 0 < α ≤ 1 then the saddle point decision maker strategy is
given as follows

Pi =

(
K∑

k=1

pkgk
i

N0k
i + hk

i Ji(τ∗)

)(1−α)/α

n∑
r=1

(
K∑

k=1

pkgk
r

N0k
i + hk

rJr(τ∗)

)(1−α)/α
P̄ for i ∈ [1, n].

The saddle point jammer strategy is given by

Ji(τ) =

{
the root of Ri(x) = τ, if Ri(0) > τ,

0, if Ri(0) ≤ τ.
(19)

where

Ri(x) :=

(
K∑

k=1

pkgk
i

N0k
i + hk

i x

)1/α−2 K∑

k=1

pkhk
i gk

i

(N0k
i + hk

i x)2
.

and τ = τ∗ is the root of the equation
∑n

i=1 Ji(x) = J̄ . In particular if α ≤ 1/2
this saddle point is unique and if α = 1 then the saddle point decision maker
strategy is the uniform one P.

5 Independent fading channel gains: fairness of
expectation

In this section we assume that the fading channel gains are independent. Namely,
with probability pk, k ∈ [1, K] the fading channel gain of the jammer on the chan-
nel of user i is hk

i and the uncontrolled noise for user i is N0k
i . With probability

ql, l ∈ [1, L] the fading channel gain of user i is gl
i. As a payoff we consider the

expected α-fairness (α ≥ 0) utility function of the SNIRs

v(P, J) =
1

1− α

n∑

i=1

(
K∑

k=1

L∑

l=1

pkql gl
iPi

N0k
i + hk

i Ji

)1−α

for α 6= 1 (20)

and

v(P, J) =
n∑

i=1

ln

(
K∑

k=1

L∑

l=1

pkql gl
iPi

N0k
i + hk

i Ji

)
for α = 1. (21)

It is clear these payoffs are equivalent to the following ones:

v(P, J) =
1

1− α

n∑

i=1

(
K∑

k=1

pk Piḡi

N0k
i + hk

i Ji

)1−α

for α 6= 1,
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and

v(P, J) =
n∑

i=1

ln

(
K∑

k=1

pk ḡlPi

N0k
i + hk

i Ji

)
for α = 1.

where

ḡi =
L∑

l=1

qlgl
i.

The next theorem supplies the saddle point strategies.

Theorem 5 Let 0 < α ≤ 1 then the saddle point decision maker strategy is
given as follows

Pi =

 
KX

k=1

pkḡi

N0k
i + hk

i Ji(τ∗)

!(1−α)/α

nX
r=1

 
KX

k=1

pkḡr

N0k
i + hk

rJr(τ∗)

!(1−α)/α
P̄ for i ∈ [1, n].

The saddle point jammer strategy is given by

Ji(τ) =

{
the root of Ri(x) = τ, if Ri(0) > τ,

0, if Ri(0) ≤ τ.
(22)

where

Ri(x) :=

 
KX

k=1

pkḡi

N0k
i + hk

i x

!1/α−2 KX
k=1

pkhk
i ḡi

(N0k
i + hk

i x)2
.

and τ = τ∗ is the root of the equation
∑n

i=1 Ji(x) = J̄ . In particular, if α ≤ 1/2
this saddle point is the unique one and if α = 1 then the saddle point decision
maker strategy is the uniform one P.

6 The decision maker does not know if the jammer is
present: expected fairness

In this section we consider the power resource allocation problem where in the
environment a jammer could either be present, bringing extra background noise
to the natural one, or be absent. The decision maker has no exact knowledge
about either presence or absence of the jammer. Namely, it knows that in the
environment only a natural background noise could be with probability γ mean-
while with probability 1 − γ a jammer could come into the action distributing
an extra noise of the total power J̄ among users. The decision maker payoff is
given as follows:
for α 6= 1:

vP (P, J) =
1

1− α

n∑

i=1

(
γ

(
giPi

N0
i

)1−α

+ (1− γ)
(

giPi

N0
i + hiJi

)1−α
)

, (23)
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for α = 1:

vP (P, J) =
n∑

i=1

(
γ ln

(
giPi

N0
i

)
+ (1− γ) ln

(
giPi

N0
i + hiJi

))
. (24)

As a cost function to the jammer we consider α-fairness (α > 0) utility function
of the SNIRs . Thus, his payoff is equal to his cost function taken with minus
sign and it is given as follows:

vJ(P, J) = − 1
1− α

n∑

i=1

(
giPi

N0
i + hiJi

)1−α

for α 6= 1 (25)

and

vJ(P, J) = −
n∑

i=1

ln
(

giPi

N0
i + hiJi

)
for α = 1. (26)

We assume that all the fading channel gains gi, hi and the power level of the
uncontrolled noise N0

i for i ∈ [1, n], the probabilities γ which the system is in
as well as the total power resource P̄ of the decision maker as well as the total
noise J̄ induced by the jammer are fixed and known to both players.

We shall look for a Nash equilibrium (NE), that is, we want to find (P ∗, J∗) ∈
A×B such that

vP (P, J∗) ≤ vP (P ∗, J∗), vJ(P ∗, J) ≤ vJ(P ∗, J∗) for any (P, J) ∈ A×B,

where A and B are the sets of all the strategies of the decision maker and the
jammer, respectively. In particular, we shall show that the NE exists and is
unique and we shall provide closed form analytic expressions for its calculation.

It is interesting that this non-zero-sum game is a particular case of the zero-
sum game from Section 4. Namely, for this situation we have two states, so
K = 2 with the same user fading channel gains g1

i = g2
i = gi. The probability

that the environment is in the first state is p1 = γ and the probability that the
environment is in the second state is p2 = 1 − γ. The jammer fading channel
gains for the first state equals to zero, namely, h1

i = 0, while the jammer fading
channel gains for the second state is positive h2

i = hi. Then the jammer payoff
(25) turns into

vJ(P, J) = − 1
1− α

n∑

i=1

(
γ

(
giPi

N0
i

)1−α

+ (1− γ)
(

giPi

N0
i + hiJi

)1−α
)

. (27)

It is clear that the first part of (27) does not depend on J , thus it is equivalent
to (25).

The following result providing the equilibrium in the closed form holds.

Theorem 6 The game has the unique equilibrium (P, J).
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(a) If 0 < α < 1 then the equilibrium decision maker strategy is given as
follows:

Pi =

(
γ

(
gi

N0
i

)1−α

+ (1− γ)
(

gi

N0
i + hiJi

)1−α
)1/α

n∑
m=1

(
γ

(
gm

N0
m

)1−α

+ (1− γ)
(

gm

N0
m + hmJm

)1−α
)1/α

P̄ , i ∈ [1, n], (28)

The equilibrium jammer strategy is Ji = Ji(τ) where

Ji(τ) =

{
the unique root x of the equation Ri(x) = τ, Di > τ,

0, Di ≤ τ.
(29)

where

Ri(x) =

(
γ

(
gi

N0
i

)1−α

+ (1− γ)
(

gi

N0
i + hix

)1−α
)(1−α)/α

hig
1−α
i

(N0
i + hix)2−α ,

Di := Ri(0) =
g
(1−α)/α
i

(N0
i )1/α

hi (30)

and τ = τ∗ is the unique root of the equation
∑n

i=1 Ji(τ) = J̄ .
(b) If α = 1 then the equilibrium decision maker strategy is the uniform one

P. The equilibrium jammer strategy is Ji = [1/ν −N0
i /hi]+ where ν = ν∗ is the

unique root of the following water-filling equation:
∑n

i=1[1/ν −N0
i /hi]+ = J̄ .

7 The decision maker does not know if the jammer is
present: fairness of expectation

In this section we consider a modification of the problem where the decision
maker payoff is the fairness of expectation. So, the decision maker payoff is
given as follows:

vP (P, J) =
1

1− α

n∑

i=1

(
γ

giPi

N0
i

+ (1− γ)
giPi

N0
i + hiJi

)1−α

for α 6= 1 (31)

and

vP (P, J) =
n∑

i=1

ln
(

γ
giPi

N0
i

+ (1− γ)
giPi

N0
i + hiJi

)
for α = 1. (32)

The jammer still wants to minimize fairness of the resource allocation. The
following result shows that the game has the unique equilibrium and it also
supplies the equilibrium in the closed form.
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Theorem 7 The game has the unique equilibrium (P, J).
(a) If 0 < α < 1 then the equilibrium decision maker strategy is given as

follows:

Pi =

(
γ

gi

N0
i

+ (1− γ)
gi

N0
i + hiJi

)(1−α)/α

n∑
m=1

(
γ

gm

N0
m

+ (1− γ)
gm

N0
i + hmJm

)(1−α)/α
P̄ for i ∈ [1, n], (33)

The equilibrium jammer strategy is Ji = Ji(τ) where

Ji(τ) =

{
the unique root x of the equation Ri(x) = τ, Di > τ,

0, Di ≤ τ.
(34)

where

Ri(x) =
(

γ
gi

N0
i

+ (1− γ)
gi

N0
i + hix

)(1−α)2/α
hig

1−α
i

(N0
i + hix)2−α , (35)

and Di is given by (30) (so, it is the same as for the expected fairness model)
and τ = τ∗ is the unique root of the equation

∑n
i=1 Ji(τ) = J̄ .

(b) If α = 1 then the equilibrium decision maker strategy is the uniform one
P. The equilibrium jammer strategy is Ji = Ji(ν) where

Ji(ν) =

{
the unique root x of the equation R1

i (x) = τ, D1
i > ν,

0, D1
i ≤ ν,

(36)

where

R1
i (x) =

(1− γ)hiN
0
i

(N0
i + hix)(N0

i + γhix)
, D1

i := R1
i (0) =

(1− γ)hi

N0
i

and ν = ν∗ is the unique root of the equation:
∑n

i=1 Ji(ν) = J̄ .

8 Numerical examples for the game plots

Here we apply the developed closed form solution to compare the saddle point
strategies of the decision maker for the expected fairness game with dependent
and independent plots and also their Jain’s fairness indexes of P . Let there be
five users, so n = 5 and the system can be in two states (K = 2). Let the total
power be P̄ = 3, the background noise is permanent and N0k

i = 1 for all k and i.
The optimal payoffs vD, vI and the Jain’s fairness indexes JD, JI for dependent
and independents plots are given in Table 1 as functions on α = 0.1(0.2)0.9
and p1 = 0.0(0.1)1.0. We assume that g = ((5, 1), (4, 2), (3, 3), (2, 4), (1, 5)) and
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h = ((1, 1), (1, 1), (1, 1), (1, 1), (1, 1)) and for the independent plot we assume
that K = L qi = pi, i ∈ [1,K]. We consider three cases of jamming power: (a) a
small total jamming power J̄ = 0.1 (Table 1), (b) a comparable total jamming
power J̄ = 1 with the base station power (Table 2) and (c) an overwhelming
jamming power over the base station one J̄ = 30 (Table 3).

It is interesting that the value of the game for dependent plot is less than
or equal to the value of the game for independent plot while the Jain’s fairness
indexes have the opposite relations. The difference between the values of the
game for two plots is decreasing in α. The small total jamming power (Table
1) produces unnoticeable effect for big α compared to the optimization plot
but decreasing α has impact on the value of the game as well as on the Jain’s
index of fairness. For overwhelming jamming power over the base station one
the players tend to equalizing behavior but to switch to the equalizing behavior
the independent plot requests larger jamming power threshold compared to the
independent plots (Table 3). Equalizing behavior becomes earlier for large α
then for small one (Table 2 and 3). Also, an increase in the total jamming power
causes an increase of the Jain’s fairness index.

Table 1. The case J̄ = 0.1

p1 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1

J /v α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

JD 0.1 0.33 0.37 0.44 0.56 0.79 1.00 0.79 0.56 0.44 0.37 0.33
JD 0.3 0.61 0.69 0.78 0.88 0.96 1.00 0.96 0.88 0.78 0.69 0.61
JD 0.5 0.84 0.88 0.93 0.97 0.99 1.00 0.99 0.97 0.93 0.88 0.84
JD 0.7 0.96 0.97 0.98 0.99 1.00 1.00 1.00 0.99 0.98 0.97 0.96
JD 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

vD 0.1 12.02 11.21 10.46 9.80 9.32 9.16 9.32 9.80 10.46 11.21 12.02
vD 0.3 11.42 11.05 11.03 10.52 10.39 10.35 10.39 10.52 10.74 11.05 11.42
vD 0.5 13.21 13.08 12.98 12.91 12.87 12.86 12.87 12.91 12.98 13.08 13.21
vD 0.7 19.30 19.26 19.24 19.22 19.21 19.21 19.21 19.22 19.24 19.26 19.30
vD 0.9 52.27 52.27 52.27 52.26 52.26 52.26 52.26 52.26 52.27 52.27 52.27

JI 0.1 0.27 0.30 0.35 0.45 0.70 0.99 0.70 0.45 0.35 0.30 0.27
JI 0.3 0.60 0.68 0.77 0.87 0.96 1.00 0.96 0.87 0.77 0.68 0.60
JI 0.5 0.83 0.88 0.93 0.97 0.99 1.00 0.99 0.97 0.93 0.88 0.83
JI 0.7 0.96 0.97 0.98 0.99 1.00 1.00 1.00 0.99 0.98 0.97 0.96
JI 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

vI 0.1 12.30 11.47 10.66 9.94 9.38 9.16 9.38 9.94 10.66 11.47 12.30
vI 0.3 11.44 11.06 10.75 10.53 10.39 10.36 10.39 10.53 10.75 11.06 11.44
vI 0.5 13.21 13.08 12.98 12.91 12.87 12.86 12.87 12.91 12.98 13.08 13.21
vI 0.7 19.30 19.26 19.24 19.22 19.21 19.21 19.21 19.22 19.24 19.26 19.30
vI 0.9 52.27 52.27 52.28 52.26 52.26 52.26 52.26 52.26 52.27 52.27 52.27
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Table 2. The case J̄ = 1

p1 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1

J /v α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

JD 0.1 0.59 0.62 0.72 0.86 0.99 1.00 0.99 0.86 0.72 0.62 0.59
JD 0.3 0.75 0.82 0.90 0.96 0.99 1.00 0.99 0.96 0.90 0.82 0.75
JD 0.5 0.89 0.93 0.96 0.99 1.00 1.00 1.00 0.99 0.96 0.93 0.89
JD 0.7 0.97 0.98 0.99 1.00 1.00 1.00 1.08 1.00 0.99 0.98 0.97
JD 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

vD 0.1 8.95 8.55 8.20 7.98 7.91 7.91 7.91 7.98 8.20 8.55 8.95
vD 0.3 9.62 9.43 9.31 9.25 9.24 9.24 9.24 9.25 9.31 9.43 9.62
vD 0.5 11.95 11.90 11.87 11.85 11.85 11.85 11.85 11.85 11.87 11.90 11.95
vD 0.7 18.31 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.31
vD 0.9 51.42 51.42 51.42 51.42 51.42 51.42 51.42 51.42 51.42 51.42 51.42

JI 0.1 0.27 0.30 0.35 0.45 0.70 0.99 0.70 0.45 0.35 0.30 0.27
JI 0.3 0.64 0.72 0.80 0.89 0.97 1.00 0.97 0.89 0.80 0.72 0.64
JI 0.5 0.87 0.92 0.95 0.98 0.99 1.00 0.99 0.98 0.95 0.92 0.87
JI 0.7 0.97 0.98 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.97
JI 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

vI 0.1 10.41 9.78 9.16 8.57 8.11 7.92 8.11 8.57 9.16 9.78 10.41
vI 0.3 9.83 9.61 9.46 9.34 9.27 9.24 9.27 9.34 9.46 9.61 9.83
vI 0.5 11.99 11.92 11.89 11.87 11.86 11.86 11.86 11.87 11.89 11.92 11.99
vI 0.7 18.31 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.31
vI 0.9 51.42 51.42 51.42 51.42 51.42 51.42 51.42 51.42 51.42 51.42 51.42

9 Conclusions

In the present work we have dealt with the concept of alpha-fair resource al-
location in the situation where the decision maker does not have complete in-
formation about the environment. Namely, we develop a concept of α-fairness
under uncertainty to allocate power resource in the presence of a jammer under
two scenarios: (a) the decision maker does not have complete knowledge about
the parameters of the environment but only knows their distribution, (b) the
jammer can come into the environment with some probability bringing extra
background noise. The goal of the decision maker is to maximize the α-fairness
utility function with respect to the SNIR. We have considered short-term fairness
(the expected fairness) as well as long-term fairness (the fairness of expectation).
We have modeled these plots using game-theoretical approaches since the jam-
mer can be considered as an active agent acting against the decision maker. For
all the plots the equilibrium strategies are found in closed form. We have shown
that for all the scenarios the equilibrium has to be constructed in two steps.
In the first step the equilibrium jamming strategy has to be constructed based
on a solution of the corresponding modification of the water-filling equation. In
the second step the decision maker equilibrium strategy has to be constructed
equalizing the induced by jammer background noise.
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Table 3. The case J̄ = 30

p1 p1 p1 p1 p1 p1 p1 p1 p1 p1 p1

J /v α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

JD 0.1 0.84 0.89 0.94 0.97 0.99 1.00 0.99 0.97 0.94 0.89 0.84
JD 0.3 0.89 0.93 0.96 0.98 0.99 1.00 0.99 0.98 0.96 0.93 0.89
JD 0.5 0.94 0.96 0.98 0.99 1.00 1.00 1.00 0.99 0.98 0.96 0.94
JD 0.7 0.97 0.98 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97
JD 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

vD 0.1 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62
vD 0.3 2.69 2.69 2.69 2.69 2.69 2.69 2.69 2.69 2.69 2.69 2.69
vD 0.5 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91
vD 0.7 10.78 10.78 10.78 10.78 10.78 10.78 10.78 10.78 10.78 10.78 10.78
vD 0.9 43.11 43.12 43.11 43.11 43.11 43.11 43.11 43.11 43.11 43.11 43.11

JI 0.1 0.27 0.30 0.35 0.45 0.70 0.99 0.70 0.45 0.35 0.30 0.27
JI 0.3 0.64 0.72 0.80 0.89 0.97 1.00 0.97 0.89 0.80 0.72 0.64
JI 0.5 0.88 0.92 0.95 0.98 0.99 1.00 0.99 0.98 0.95 0.92 0.88
JI 0.7 0.97 0.98 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.98 0.97
JI 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

vI 0.1 2.10 1.96 1.83 1.82 1.62 1.58 1.62 1.71 1.83 1.96 2.10
vI 0.3 2.85 2.80 2.75 2.72 2.70 2.69 2.70 2.72 2.75 2.80 2.85
vI 0.5 4.95 4.93 4.92 4.92 4.91 4.91 4.91 4.92 4.92 4.93 4.95
vI 0.7 10.79 10.78 10.78 10.78 10.78 10.78 10.78 10.78 10.78 10.78 10.79
vI 0.9 43.11 43.11 43.11 43.11 43.11 43.11 43.11 43.11 43.11 43.11 43.11
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