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Rare-event simulation for tandem queues:
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Abstract

This paper focuses on estimating the rare event of overflow in the downstream queue
of a Jacksonian two-node tandem queue, relying on importance sampling. It is known
that in this setting ‘traditional’ state-independent schemes perform poorly. More so-
phisticated state-dependent schemes yield asymptotic efficiency. Their drawback, how-
ever, is that they require a per-state computation of the new measure, so that it still
consumes considerable machine time.
The contribution of this paper is a scheme that combines asymptotic efficiency with
low complexity. It retains the quality of the original state-dependent scheme, but its
implementation is almost as simple as for state-independent analogues.

1 Introduction

Importance sampling (IS) is a powerful and flexible technique to speed up Monte Carlo
simulations of rare events. The main idea behind IS is simulation of a system under a
new probability measure which guarantees more frequent occurrence of the rare event of
interest. To compensate for the influence of the new measure (i.e., to obtain an unbiased
estimator), the simulation outputs need to be corrected by appropriate likelihood ratios.
The challenge is to construct a ‘good’ new measure, by which we mean that the likelihood
ratios of the rare event in which we are interested are ‘small’. If this is not the case, the
variance of the resulting estimator can blow up, or even become infinite. We refer to [1, 8],
as well as the forthcoming book [13], for more background.

In the current paper, we consider a two-node Jacksonian tandem and our interest is in a
rare event of collecting some large number of jobs in the second buffer before the system
becomes empty. A first, naı̈ve approach could be to consider state-independent IS schemes,
that is, schemes in which the change of measure is static. In this context we mention the
landmark paper by Parekh and Walrand [12], where the authors show the appealing result

∗Part of this research has been funded by the Dutch BSIK/BRICKS project. This article is also the result of
joint research in the 3TU Centre of Competence NIRICT (Netherlands Institute for Research on ICT) within
the Federation of Three Universities of Technology in The Netherlands.
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that for overflow in a single M/M/1 queue a swap of the arrival and service rate works
excellently. Later Sadowsky [14] proved that this type of new measure was asymptotically
efficient (or: asymptotically optimal) even for the (multi-server) GI/GI/m queue (with
light-tailed service times), where asymptotic efficiency effectively means that the variance
of the estimator behaves approximately as the square of its first moment. Application of a
similar new measure to a two-node Jacksonian tandem (swapping the arrival rate with the
slowest service rate) was not so encouraging – the method was asymptotically efficient for
a specific set of parameter values, but led to unbounded variance for other values [7, 2].
It was clear that the class of state-independent new measures was not rich enough to ob-
tain asymptotic efficiency, and therefore one started considering state-dependent IS, where
the new measure is not uniform over the state space. In [3, 15] such measures were con-
structed, and asymptotic efficiency was empirically concluded, but without any analytic
proofs. The first provably asymptotically efficient scheme (even for considerably more
general networks) was proposed by Dupuis et al. [5], relying on a control-theoretical ap-
proach. In this approach, a first element is to find the exponential decay rate of the prob-
ability of interest, by relying on a large-deviations formulation (i.e., solving a variational
problem). Understanding of this large-deviations behavior is a crucial step in the construc-
tion of an asymptotically efficient scheme, but, as argued in [6], in general not sufficient.
To make the scheme work, the large-deviations-based new measure has to be subtly mod-
ified, as demonstrated in [5].

In the present paper, our aim is to analyze the probability of the population of the down-
stream queue in a two-node Jacksonian tandem exceeding some predefined threshold, be-
fore the system idles. It is noted that [5] focuses on overflow in either of the buffers during
a busy cycle. A crucial difference (on the technical level) between these two settings, is that
in our setting the states space (that is, the set of states the process can visit before one can
determine whether the threshold has been reached before the system idle) is infinite, as in
principle the first queue can grow beyond any value during such a run. The present paper
is a follow-up of [9], where for this problem a state-independent scheme was proposed that
worked well for just a limited set of parameter values, and [10], where an asymptotically
efficient state-dependent scheme was presented. It is also stressed that [10] is more general
than most of the previous papers, in that it considers the event of exceeding a threshold in
the second buffer before emptying the system, starting from any given state, in contrast to
all previous research where the origin was chosen as the starting state.
Importantly, the IS scheme of [10] has a substantial drawback as well: the state-dependence
entails that one has to compute the new measure for any state in the state space, which may
be time-consuming. Therefore one would like to device an IS algorithm that combines the
attractive features of state-dependent and state-independent schemes. The present paper
provides such a scheme: it is asymptotically efficient, but at the same time of low complex-
ity (as determining the new measure requires minimal computational effort). Numerical
experiments provide further insight in the performance of our method (including a com-
parison with existing methods). We remark that we could have cast our approach in a
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control-theoretic framework, in line with, e.g., [5, 6], but we have refrained from doing so
with the intention to make the paper accessible to an audience as broad as possible.

We finish this introduction with a description of the paper’s structure. We describe the
model of interest in detail in Section 2. Section 3 contains, in addition to a brief review
of IS, the IS schemes themselves. The analytic proof of asymptotic efficiency is given in
Section 4. Supporting numeric results are presented in Section 5. We end the paper with
some final remarks in Section 6.

2 Model

We consider two M/M/1 queues in tandem, with jobs arriving at the first queue according
to a Poisson process of rate λ, and the queues having service rates µ1 and µ2 respectively.
Both stations have infinitely large waiting room. Moreover, we assume that the system is
stable, i.e., λ < min{µ1, µ2}. As we are interested in the probability that the number of jobs
at the second station exceeds a given (typically high) levelB before the system gets empty,
we may rescale time; in the sequel we assume λ + µ1 + µ2 = 1 without loss of generality.
It is also clear that all information required is captured by the embedded discrete-time
Markov chain Qj = (Q1,j , Q2,j), where Qi,j is the number of jobs in queue i after the j-th
transition. The possible transitions of the latter Markov chain are v0 = (1, 0), v1 = (−1, 1)
and v2 = (0,−1) with corresponding probabilities λ, µ1 and µ2. However, note that the
transition vk is impossible while queue k is empty, and to resolve this issue we introduce
self-transitions:

P(Qj+1 = Qj |Qk,j = 0) = µk, for k = 1, 2.

For convenience we also introduce the scaled process Xj = Qj/B. The main benefit of this
is that Xj ’s state space does not depend on B: it is D̄ = D ∪ ∂e ∪ ∂1 ∪ ∂2, where

D := {(x1, x2) : x1 > 0, 0 < x2 < 1}, ∂1 := {(0, x2) : 0 < x2 < 1},
∂2 := {(x1, 0) : x1 > 0}, ∂e := {(x1, 1) : x1 > 0},

see Figure 1. Note that the probability of our interest is equal to the probability that process
Xj reaches the exiting boundary ∂e before reaching the origin. To define it more formally,
we first introduce the stopping time τ sB , which denotes the first entrance of the process Xj

to the exit boundary ∂e starting from the state s = (s1, s2) without visits to the origin:

τ sB = inf{k > 0 : Xk ∈ ∂e, Xj 6= 0 for j = 1, . . . , k − 1}, (1)

where τ sB := ∞ if Xj reaches the origin before ∂e. Denote by IB(As) the indicator of the
event {τ sB < ∞} for the path As = (Xj , j = 0, . . . : X0 = s), as in [10]. Consequently the
probability of interest reads

psB := P(τ sB <∞) = EIB(As). (2)
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Figure 1: State space and transition structure for scaled process Xj .

3 Importance Sampling

This section has two goals: (i) a brief description of IS, (ii) the presentation of our IS scheme
for estimating the probability psB.
IS is one of the most popular and powerful tools to efficiently estimate rare-event probabil-
ities. For example in our case, due to the rarity of the event under consideration, simulat-
ing the system under the original measure to estimate psB is inefficient. In IS this problem
is resolved by simulating the system under a different measure, under which the event of
interest occurs frequently.
To estimate psB , IS generates samples under a new probability measure Q, with respect
to which P is absolutely continuous. It is elementary that psB can now alternatively be
expressed as an expectation under Q, viz. psB = EQ[L(As)IB(As)], where L is the like-
lihood ratio (also known as Radon-Nikodým derivative) of a realization (‘path’) ω, i.e.,
L(ω) = dP

dQ(ω). Performing n independent runs, with observations (Li(As), IB,i(As)), i =
1, . . . , n an unbiased estimator is n−1

∑n
i=1 Li(A

s)IB,i(As).A notion developed to measure
the efficiency of the new measure Q is asymptotic efficiency, which roughly requires that the
second moment of the estimate behaves approximately as the square of its first moment
(thus essentially minimizing the variance of the estimator). Since we know thatB−1 ·log psB
converges to a positive constant as B grows large (see [10]; this constant, the exponential
decay rate of psB , will be denoted by γs(s) in the sequel), we can write the definition of
asymptotic efficiency in our case as follows.

Definition 3.1. The IS scheme is asymptotically efficient if

lim sup
B→∞

1
B

log E[L(As)IB(As)] ≤ 2 lim
B→∞

1
B

log psB. (3)

If the probability of interest decays exponentially in the ‘rarity parameter’ (B in our case),
which holds for our psB , asymptotic efficiency effectively means that the number of replica-
tions needed to obtain an estimate of given accuracy grows subexponentially in the rarity
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Figure 2: Partition of D̄ and some optimal paths to overflow when µ2 < µ1.

parameter.
Before we propose the new measure to be used in this paper, we mention the main dif-
ference with the new measure introduced in [10]. In [10], the new measure Q is state-
dependent, and needs to be computed after every transition (requiring a certain cubic
equation to be solved numerically). In the present paper the new measure is still state-
dependent, but its computation is substantially less demanding, as it requires just a single
three-dimensional system to be solved.

3.1 IS scheme for the case µ2 < µ1

Recall that our goal is to modify the IS scheme described in [10], such that the scheme’s
complexity is reduced, but without compromising the asymptotic efficiency. Again, the
scheme is based on the most probable path to overflow that we identified in [10], as well as
the new measure that ensures that ‘on average’ the process follows this optimal trajectory.
To ease the exposition of the new measures, we partitioned the state space as shown in
Figure 2 into A1, A2 and A3; here, α1 := (µ1 − µ2)/(µ1 − λ). The same figure also provides
some examples (solid lines) of the most probable path to the exit boundary for various
starting states s.
We now proceed by giving the new measure for starting points in A1, A2, and A3. Let
(λ(line), µ(line)

1 , µ(line)
2 ) solve

λ(line) = µ(line)
1 − s1(µ(line)

1 − µ(line)
2 )/(1− s2)

λ(line) + µ(line)
1 + µ(line)

2 = λ+ µ1 + µ2

λ(line)µ(line)
1 µ(line)

2 = λµ1µ2

λ(line) ≤ µ(line)
1 and µ(line)

1 > µ(line)
2

λ(line), µ(line)
1 , µ(line)

2 > 0.

(4)

The superscript “(line)” indicates that the solution is in fact the optimal change of measure
to reach the exit boundary following a straight line starting in s. Now we can define the
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(overall) optimal new measure (λ̃, µ̃1, µ̃2) through

(λ̃, µ̃1, µ̃2) =


(µ2, µ1, λ), if s ∈ A1,

(λ(line), µ(line)
1 , µ(line)

2 ), if s ∈ A2,

(λ, µ1, µ2), if s ∈ A3.

(5)

Note that the dependence of λ̃ etc. on s is suppressed in the notation. Next we define

γs(x) := −x1 log
λ̃

λ
− (1− x2) log

µ̃2

µ2
. (6)

In the context of [10], γs(x) can be interpreted as the residual ’cost’ of moving from state
x to ∂e along the path to overflow that started in s. In particular γs(s), the total cost of
moving from s to ∂e, is equal to the exponential decay rate of psB , i.e.,B−1 ·log psB → −γs(s),
see Theorem 4.5 in [10].
Notice that the function γs(x) is simply linear in x, since the new ’tilde-measure’, i.e.,
(λ̃, µ̃1, µ̃2), depends only on the fixed initial state s, and not on the current state x. This
is the main difference with the new measure studied in [10], where we used the optimal
new measure for each current state xwith its cost γx(x). Therefore a cubic equation (corre-
sponding to system (4) with s replaced by x) had to be solved for each state x in the sample
path. In our current approach, computation of the tilde-measure requires the (numerical)
solution of just a single cubic equation.
It is known, e.g. from our previous research [9], that the new measure (λ̃, µ̃1, µ̃2), which
makes a sample path ‘on average’ follow the optimal trajectory to the rare set, is not neces-
sarily asymptotically efficient; this is due to the possibility of several visits to the horizontal
axis, which inflate the likelihood ratio, cf. [2, 12]. In order to resolve this, we first intro-
duce the measure (λ̂, µ̂1, µ̂2) as in [5], to be used when the current state is on or near the
horizontal axis, through

(λ̂, µ̂1, µ̂2) := (λ̃, µ1λ/λ̃, µ2). (7)

The primary idea behind this ‘hat-measure’ is to make the likelihood ratios of the loops
around the horizontal axis not greater than 1 (by ensuring µ̂2 = µ2).
Having introduced the ‘tilde-measure’ and the ‘hat-measure’, we are now ready to define
the (state-dependent) measure (λ̄(x), µ̄1(x), µ̄2(x)), of which we will prove asymptotic ef-
ficiency, and which is a combination of the two measures defined above and the original
measure:

λ̄(x) = λ̃ρ1(x)λ̂ρ2(x)λρ3(x)M(x),

µ̄1(x) = µ̃
ρ1(x)
1 µ̂

ρ2(x)
1 µ

ρ3(x)
1 M(x),

µ̄2(x) = µ̃
ρ1(x)
2 µ̂

ρ2(x)
2 µ

ρ3(x)
2 M(x).

(8)

Here M(x) is a normalization function, and the ρi(x) are positive weights, adding up to
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unity, such that ρ1(x) is close to 1 on almost all of the state space (leaving the other weights
to be close to zero), while ρ2(x) is close to 1 only near the horizontal axis; the reason that we
include the normal measure with a weight ρ3(x) that should be close to 1 near the origin,
is that applying the ‘hat measure’ there would also lead to high likelihood ratios. For the
precise definition of the weights we have some freedom; here we follow the convenient
choice in [5],

ρi(x) =
e−Wi(x)/ε∑3
j=1 e

−Wj(x)/ε
, i = 1, 2, 3, (9)

where

W1(x) := 2γs(x)− δ, W2(x) := W1(x1, δ/2γs(0)), W3(x) := 2γs(0)− 3δ. (10)

Not only does this choice ensure that the new measure (8) has the ‘appropriate’ form, in
that (λ̄(x), µ̄1(x), µ̄2(x)) ≈ (λ̃, µ̃1, µ̃2) if x ∈ D, or (λ̄(x), µ̄1(x), µ̄2(x)) ≈ (λ̂, µ̂1, µ̂2) if x ∈ ∂2,
etc.; it is also possible to express the new measures (5) and (7), and the natural measure
in terms of the gradients of the functions W1(x),W2(x) and W3(x) respectively, see [5, 10].
This will be useful in the proof of asymptotical efficiency in Section 4.

3.2 IS scheme for the case µ1 ≤ µ2

In this subsection we present the IS scheme for the case when µ1 ≤ µ2. Again, we start
by partitioning the state space D̄ as in [10], see Figure 3. To see whether a starting state s
belongs to B1 or B2 we again need to solve system (4). Then s belongs to B1 if and only if
f(s) ≤ 0, where

f(s) := log
µ2

λ
+ s1 log

λ(line)

µ1
+ (1− s2) log

µ(line)
2

µ2
.

The constant β is the solution to f(0, s2) = 0, while α2 := (µ2 − µ1)/(µ2 − λ).
In the previous subsection, we arrived at a ‘uniform’ new measure (λ̃(x), µ̃1(x), µ̃2(x)) for
all s, but in the case µ1 ≤ µ2, we have to distinguish between two measures, depending on
the starting state.

• At first, let us consider the case s ∈ B2 ∪B3. Then we define

(λ̃, µ̃1, µ̃2) =

{
(λ(line), µ(line)

1 , µ(line)
2 ), if s ∈ B2,

(λ, µ2, µ1), if s ∈ B3.
(11)

The function γs(x) is again defined by (6), but of course its shape is different from
that in the previous subsection, since the ’tilde-measure’ is now different. Simi-
larly, for the IS simulations we propose to use the state-dependent new measure
(λ̄(x), µ̄1(x), µ̄2(x)) again defined by (8) (with the ‘tilde-measure’ given by (11)), and
the weights ρi(x) given through (9) in conjunction with (10).
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Figure 3: Partition of D̄ and some optimal paths to overflow when µ1 ≤ µ2.

• Now consider s ∈ B1. We know from [10] that the optimal trajectory for this case
consist of three straight subpaths, see also Figure 3. In our new measure, we need
the stopping time τ?, defined as the first time Xk visits B3 ∩ ∂2, or, formally,

τ? := min{k : X1,k ≥ α−1
2 and X2,k = 0}. (12)

Now we define the new measure, being (µ1, λ, µ2) before time τ? and (µ1, µ2, λ) after
it, by

(λ̃, µ̃1, µ̃2) = (µ1, λI{k<τ?} + µ2I{k≥τ?}, µ2I{k<τ?} + λI{k≥τ?}); (13)

note that the new measure depends on time k, but (as with the starting state s) we
omit this dependence in the notation. The residual cost γs(x) is not given by (6)
anymore, but rather by

γs(x) := log
µ2

λ
− x1 log

λ̃

λ
+ x2 log

µ̃2

µ2
, if s ∈ B1, (14)

which is again a simple linear function in x; also γs(s) is again the exponential decay
rate of psB , see Theorem 4.5 in [10].

With the function γs(x) defined by (14), the proposed state-dependent new measure
(λ̄(x), µ̄1(x), µ̄2(x)) is given by (8) (with the ‘tilde-measure’ given by (13)), and the
weights ρi(x), as before, through (9) and (10).

8



3.3 Overview of the IS scheme

For convenience we summarize the resulting IS scheme for the different cases.

• When µ2 < µ1 one needs to
1. define the ‘primary’ new measure (5);
2. define the ‘hat’-measure (7);
3. define weights ρi(x) by (9), based on (10) and (6);
4. apply (8).

• When µ1 ≤ µ2 and s ∈ B2 ∪ B3, the same procedure is followed, only
replacing the ‘primary’ new measure (5) by (11) in step 1.

• When µ1 ≤ µ2 and s ∈ B1, again the same procedure is followed, this
time replacing the ‘primary’ new measure by that in (13) and replac-
ing (6) by (14) when determining the Wi(x) and ρi(x) in step 3.

Note that in the last case we always have (λ̂, µ̂1, µ̂2) = (µ1, λ, µ2), both before and after
time τ?. In particular this means that when k < τ?, the hat measure coincides with the
tilde measure (and hence ρ1(x) = ρ2(x)).

4 Asymptotic Efficiency

We now prove the asymptotic efficiency of the IS scheme proposed in the previous section;
the approach is due to [4].

Theorem 4.1. If we choose the strictly positive parameters δ ≡ δB and ε ≡ εB such that as
B → ∞: (i) εB → 0, (ii) δB → 0, (iii) BεB → ∞, (iv) εB/δB → 0, then the IS scheme defined
by (8) is asymptotically efficient.

Proof. Our first step is the decomposition of the likelihood L(A) of any path A = (Xj , j =
0, . . . , σ) in three terms, cf. [10]. For this needs we define the following function

W (x) := −ε log
3∑
i=1

e−Wi(x)/ε, (15)

which was firstly introduced in [5]. It is not difficult to see that

DW (x) =
3∑
i=1

ρi(x)DWi(x), (16)

where the weights ρi(x) are defined by (9). Combining the definition of the likelihood ratio

9



with (15) and (16) one obtains

logL(A) =
B

2

σ−1∑
j=0

〈DW (Xj), Xj+1 −Xj〉

+
2∑

k=1

1
2

σ−1∑
j=0

〈DW (Xj), vk〉I{Xj = Xj+1 ∈ ∂k} (17)

−
σ−1∑
j=0

logM(Xj).

Now we bound all three summations in (17) and show that only the first sum has a signif-
icant impact on the log-likelihood.
(a) We start by analyzing the first term. For any path A = (Xj , j = 0, ..., σ) and some
positive constant C we can, in self-evident notation, construct the following bound:∣∣∣∣∣∣

σ−1∑
j=0

〈DW (Xj), Xj+1 −Xj〉 − (W (Xσ)−W (X0))

∣∣∣∣∣∣ ≤ C

B2ε
σ +

C

B
I{µ1≤µ2}∩{s∈B1}. (18)

The proof of the above inequality is based on the approximation of the increment of the
function W (x) in terms of its gradient DW (x), analogous to Lemma 5.5 in [10]. The accu-
racy of this representation can be shown by bounding the absolute value of any element of
the corresponding Hessian matrix from above. The first term in the right-hand side of (18)
corresponds to the sum of these contributions over all σ steps. The second term appears
only if µ1 ≤ µ2 and s ∈ B1, as a consequence of the non-smoothness of γs(x) as a func-
tion of k, see (13), and therefore also of W (x), after the τ?-th transition; note that a similar
problem was treated in Lemma 4.4 of [11]. Bearing in mind the definition of the function
W (x), see (15), we obtain

W (s) ≥ 2γs(s)− ε log(3)− 3δ and W (Xτs
B

) ≤ − log
λ̃

λ
X1,τs

B
− δ ≤ −δ.

Combining the two last inequalities with (18), we derive an upper bound for the first term
in (17):

τs
B−1∑
j=0

〈DW (Xj), Xj+1 −Xj〉 ≤ −2γs(s) + η(B) +
C

B2ε
τ sB, (19)

where η(B) is such that limB→∞ η(B) = 0.
(b) We now proceed with the second term. For any path A = (Xj , j = 0, ..., σ) and some
positive constant γ? we obtain by routine computations, as were done in in [10],

2∑
k=1

1
2

σ−1∑
j=0

〈DW (Xj), vk〉I{Xj=Xj+1∈∂k} ≤ γ
?e−δ/εσ.
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(c) We finally consider the third term. For any x ∈ D we have logM(x) ≥ 0. We skip
the proof of the result as it consists of lengthy, but basic computations, that can be found
in [10].
Upon combining (a), (b) and (c), we obtain the following upper bound on the likelihood
ratio:

logL(As) ≤ −Bγs(s) +Bη(B) + χ(B)τ sB, where χ(B) := γ?e−δ/ε +
C

Bε
.

After some elementary algebra this leads to

1
B

log E [L(As)IB(As)] =
1
B

log E [L(As)|IB(As) = 1] P [IB(As) = 1]

≤ −γs(s) + η(B) +
1
B

log E
[
eχ(B)τs

B |IB(As) = 1
]

+
1
B

log psB.

Using that limB→∞ χ(B) = 0, due to assumptions (iii) and (iv), in conjunction with

lim
B→∞

1
B

log E(eχ(B)τs
B |IB(As) = 1) = 0, when lim

B→∞
χ(B) = 0,

see Lemma 5.6 in [10], we can neglect the penultimate item in the last expression. Now
recalling that B−1 · log psB → −γs(s), we conclude that

lim sup
B→∞

1
B

log E [L(As)IB(As)] ≤ 2 lim
B→∞

1
B

log psB,

which completes the proof.

5 Numerical Results

In this section we present two types of results. We start with some estimates of psB obtained
using our IS-scheme (8), see Table 1. In the rest of the section we compare the performance
of the current scheme with that of the existing methods, in particular with [10]; see Table 2.
In Table 1 we present simulation results for three different parameter settings using the IS
scheme defined in (8). We compute the weights ρi(x) as in (9), choosing ε = 0.005 and
δ = −ε log ε to enable comparison with [10]; see also [5] for the motivation of this choice.
Each time we perform a fixed number of 106 simulation runs. In Table 1 we present the
resulting estimates of psB with 95%-confidence intervals. In the first two columns we have
µ2 < µ1 while the third column has µ1 < µ2. In columns 1 and 3 we chose s = (0, 0)
and the parameters λ, µ1, µ2 lie close together; the latter is challenging in the sense that
such values are often problematic for IS. A comparison with Tables 1 and 2 in [9], where
the same parameters were simulated using state-independent IS, indeed shows similar
estimates, but with smaller confidence intervals. Column 2 shows a scenario in which the
starting state is not the origin. The results may be compared with those in Table 1 in [10],
showing similar results.
We now turn to comparing the performance of three different IS schemes (as well as
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(λ, µ1, µ2) = (0.3, 0.36, 0.34) (λ, µ1, µ2) = (0.1, 0.55, 0.35) (λ, µ1, µ2) = (0.3, 0.33, 0.37)
B s = (0, 0) s = (0.6B, 0) s = (0, 0)
20 5.96 · 10−2 ± 3.65 · 10−4 2.00 · 10−5 ± 5.19 · 10−8 3.05 · 10−2 ± 2.27 · 10−3

50 1.52 · 10−3 ± 1.17 · 10−5 3.12 · 10−12 ± 9.70 · 10−15 6.15 · 10−5 ± 9.54 · 10−6

100 2.93 · 10−6 ± 2.37 · 10−8 1.82 · 10−23 ± 6.48 · 10−26 1.52 · 10−9 ± 4.01 · 10−10

Table 1: Simulation results: 95%-confidence intervals for psB

st.-indep. [9] st.-dep. old [10] st.-dep. new straightforward
B RE time RE virtual time time RE time RE time
20 6.08 · 10−3 12 2.61 · 10−3 5 · 106 55 + 16 3.12 · 10−3 28 3.95 · 10−3 6
50 2.21 · 10−2 37 3.12 · 10−3 9 · 106 132 + 100 3.94 · 10−3 80 2.18 · 10−2 9
100 1.37 · 10−2 77 N/A N/A N/A 4.74 · 10−3 168 5.70 · 10−1 9

Table 2.1: (λ, µ1, µ2) = (0.3, 0.36, 0.34) and s = (0, 0)

20 N/A N/A 7.01 · 10−4 1 · 106 42 + 11 1.32 · 10−3 7 2.42 · 10−1 3
50 N/A N/A 7.67 · 10−4 3 · 106 104 + 68 1.58 · 10−3 18 N/A N/A
100 N/A N/A N/A N/A N/A 1.81 · 10−3 35 N/A N/A

Table 2.2: (λ, µ1, µ2) = (0.1, 0.55, 0.35) and s = (0.6B, 0)

20 4.59 · 10−2 15 3.10 · 10−2 9 · 106 46 + 11 3.79 · 10−2 28 5.40 · 10−3 9
50 3.67 · 10−1 53 6.73 · 10−2 22 · 106 123 + 68 7.91 · 10−2 84 1.25 · 10−1 11
100 2.33 · 10−1 116 N/A N/A N/A 13.4 · 10−2 189 N/A N/A

Table 2.3: (λ, µ1, µ2) = (0.3, 0.33, 0.37) and s = (0, 0)

Table 2: Comparison of different schemes

straightforward simulations). In Table 2 we present the results for the same three scenar-
ios as in Table 1. For the same fixed number of replications (106) we compare the relative
errors (RE) and machine running times (time; in seconds) of the different schemes. In the
first column we always use the state-independent IS scheme designed in [9]; for the sec-
ond column we use the state-dependent scheme described in [10], and the third column
contains the outcomes of the current scheme. We also applied straightforward simulations
to obtain the same estimates, see the fourth column.
The virtual time in the second column is an estimate of the time it would take to actually
follow the IS scheme from [10], recalculating the path to overflow and the corresponding
new measure after each transition. When the current state x is in subspace A2 (or B2)
this means solving system (4) many times (with s replaced by x). To estimate the virtual
time needed to do this, we multiplied the number of transitions in A2 (or B2) with the
time needed to solve (4). However, when we did the simulations in [10] we actually used
a method which is less time consuming, namely we precalculated the new measure for
each state inside A2 in advance. The real computation time therefore consists of two parts,
which can be found under ’time’ in the second column: the simulation time itself (first
term) and the time needed to pre-compute the new measure (second term). Note that the
pre-computation time grows as a square of the overflow level B.
From Tables 2.1 and 2.3 it becomes clear that both the scheme in [10] and the current
scheme provide a relative error that is much smaller than with the state-independent
scheme from [9]. (Note that the latter is not available in Table 2.2 since we only allowed
the origin as starting state in [9]). This is due to our choice of the parameters: we chose the
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values of the parameters λ, µ1 and µ2 very close to each other, since this is the most diffi-
cult case. Therefore, the IS scheme performs even better when arrival and service rates are
clearly distinctive, as in Table 3, but this may also hold when we apply a state-independent
scheme for these parameter values.
When we compare the current scheme with the old state-dependent scheme in [10], it
becomes apparent that the relative error is slightly larger than in the old scheme, but of
the same order. The big advantage is of course that running times are much lower, and the
scheme is easier to implement.

6 Conclusions

In this work we designed an asymptotically efficient IS scheme for estimating the prob-
ability of overflow in the second buffer of a two-node tandem Jackson network. The IS
scheme presented in this paper is the result of an investigation started in [9, 10]. The
scheme constructed in [9] is easy to implement, but it is not always asymptotically effi-
cient. The scheme from [10] is asymptotically efficient, but it has the drawback that it is
difficult to use in practice, and simulation times are high. The IS scheme designed in this
paper provides a good compromise: it is asymptotically efficient for all parameter values,
giving relative errors that are comparable to those from the ’fully state-dependent’ coun-
terpart in [10] (although slightly larger), and at the same time it is almost as simple to
implement and as fast as the state-independent schemes in [9].
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