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Abstract. In robotics, a key problem is for a robot to explore its envi-
ronment and use the information gathered by its sensors to jointly pro-
duce a map of its environment, together with an estimate of its position:
so-called SLAM (Simultaneous Localization and Mapping) [13]. Various
filtering methods – Particle Filtering, and derived Kalman Filter meth-
ods (Extended, Unscented) – have been applied successfully to SLAM.
We present a new algorithm that applies the Square Root Unscented
Transformation [14], previously only applied to feature based maps [7], to
particle filtering for grid mapping. Experimental results show improved
computational performance on more complex grid maps compared to a
well-known existing grid based particle filtering algorithm, GMapping
[2].

1 Introduction

This paper address the classical robotics problem of a robot needing to explore its
environment and use the information gathered by its sensors to jointly produce a
map of its environment together with an estimate of its position: so-called SLAM
(Simultaneous Localization and Mapping) [13]. Early path tracking methods
such as the Kalman Filter (KF) [13] are based on the idea that, given knowledge
about the position and heading of a moving object, observed data can be used
to track that object; the problem becomes more difficult when the sensors are
mounted on the moving object itself. The Extended KF (EKF) [13] is a widely
used and successful method for modeling the uncertainty of a robot’s noisy
measurements (e.g. encoders, sonar, laser range finders), however it is unstable
and imprecise because of Jacobian calculations [1]; the Unscented KF (UKF)
[16, 10] avoids these calculations.

Particle filtering is a popular sequential estimation technique based on the
generation of multiple samples from the distribution that is believed to approxi-
mate the true distribution. Studies have shown that particle filtering can better



approximate a robot’s real position than KF techniques, but the method is com-
putationally intense because every particle is updated through a lightweight KF
derived technique. Particle filtering has been used successfully to solve SLAM
for both grid and feature based maps [13]. Grid maps generate a representation
of the surrounding (usually closed) environment through a grid of cells. In con-
trast, feature based maps describe a (typically open) environment through a set
of observed features, usually sensor readings (e.g. range and bearing).

Unscented Particle Filtering [14] for SLAM [9] has been successfully applied
to feature based mapping. It mixes Particle Filtering and UKF by updating par-
ticles using an unscented transformation, rather then handling the uncertainty
through Jacobians operations. Our research draws from this wide spectrum of
KF and particle filtering algorithms; in Section 2 we provide a brief introduction
(see [17] for more details). We present a new algorithm (Section 4) which we call
SRUPF-GM (Square Root Unscented Particle Filtering for Grid Mapping) to
apply Unscented Particle Filtering to grid based maps. In Section 5 we present
experiments comparing its performance to the well-known GMapping algorithm
[2], on three grid environments. Our results show that while SRUPF-GM is
slower on simpler maps, it is faster on more complex maps, and its performance
does not degrade as quickly as GMapping as the number of particles increases.

2 Background

2.1 Particle Filtering for SLAM problem

The main idea behind Particle Filtering applied to SLAM [12] is to estimate
the joint posterior for the robot’s state x (which is usually its position X, Y
and bearing θ), and the map of the environment m. This is done using odometry
information (u at time t), that is the robot’s own measurements of its movements
from its wheels and the measurements from sensors (z at time t), e.g. lasers,
sonars, etc. Specifically we have:

p(xt,m|zt, ut) = p(m|xt, zt)
n∏
i=1

p(xit|zt, ut) (1)

This shows we decompose the problem into two factors, updating the robot’s
state first (i.e. the second factor), then using that to update the map. In particle
filtering this second factor calculation is done by maintaining a set of n poses,
S, that make up a region of uncertainty (a Monte Carlo method); these poses
are called particles.

Each particle has its own position and map; its uncertainty is represented
by a Gaussian defined by its position µ (mean) and covariance Σ. The gener-
ated distribution is called the proposal. The proposal is meant to represent the
movement of the robot and is usually derived from u and z. It’s proven that to
solve SLAM the noise that is inherent in the odometry and sensor readings must
be modeled; all SLAM algorithm add a certain amount of noise to do this. The
final set of particles becomes the robot’s final pose uncertainty ellipse.



The final characteristic key step of Particle Filtering is resampling, which
aims to eliminate those particles which are believed to poorly represent the real.
Resampling requires a weighting system. Every particle is generally weighted
according to the particle principle:

w[k] =
p(m|xt, zt)
π(m|xt, zt)

(2)

where k is the index of the particle and π the real proposal distribution. As π is
not known, heuristic methods can be applied to assign weights. Resampling is
very important for decreasing the uncertainty of the final distribution calculated
over the particle poses. Particles which have weight lower then a certain threshold
(which may be varied) are deleted and substituted with existing particles with
higher weights. A balance must be found between continuing sampling while
the approximation is not close enough to the true, while avoiding continuous
resampling, which may discard good particles. It has been proved [5] that the
so-called effective factor for Montecarlo based filters is a good metric to decide
whether to resample or not.

Neff =
1∑M

k=1(w[k])2
(3)

This value represent the variance over particles’ weight. The higher the variance,
the worse the final approximation. Typically resampling is done if this factor
drops below 50% of the total number of particles. Note that the weights are
usually normalized before calculating this value. A brief pseudo-code algorithm
presented in Algorithm 1, where

– S is the set of particles of variable size,
– apply odomand apply measurement are non-linear functions that describe

odometry and measurement with added noise,
– generate mean covariance is the EKF update where mean and covariance are

updated through Jacobian calculations using odometry and measurement,
– generate map generate particle’s internal map,
– sample new pose samples a new random pose from a the gaussian described

by the previously generated mean and covariance, and
– resample is done if n eff drops below a given threshold.

2.2 Unscented Transformation

The EKF update in particle filtering introduces unwanted complexity and error.
The Unscented Transformation aims to avoid Jacobian calculations and has been
proved to better approximate the true values. Instead of linearizing odometry
and measurement functions, the Unscented Transform [16] generates a better



Algorithm 1 Update robot’s pose using latest odometry and measurement
function UpdateStep(zt, ut))
for all xi in S do

apply odom(xi,ut)
apply measurement(xi,zt)
< mean, cov > = generate mean covariance(xi)
generate map(xi,zt)
xi=sample new pose(mean,cov)
update weight(xi)

end for
if neff < threshold then

S = resample();
end if
end function

approximated Gaussian that represent the real through a set of so-called Sigma
Points. It has been used to generate feature based maps using laser or visual
sensors [10, 7]. 2n + 1 Sigma points are generated deterministically around the
previous mean. They are perturbed by an additive noise (for every step) and by
previous covariance.

x0 = µaug (4)

xi = µaug + (
√
γ ∗Σaug)i i = 1, ...., n (5)

xi = µaug − (
√
γ ∗Σaug)i−n i = n+ 1, ...., 2n (6)

where µt−1 is the previous mean and Σt−1 is the previous covariance, γ is a
scaling parameter and depends on implementation and n is usually calculated
using the size of the augmented vector. The index around the parenthesis extracts
the ith column from the matrix

√
γ ∗Σ. The augmented vector is the usual state

vector (x, y, θ) with added zeroes. Unscented Transformation typically adds both
measurement and odometry noise.

µaug =

µt−1

0
0

 , Σaug
Σt−1 0 0

0 Q 0
0 0 R

 (7)

where Σt−1 is the previous state covariance, Q and R are odometry and mea-
surement noise. The resulting matrix would be 7x7 in the usual case where P is
a 3x3 matrix and both Q and R are 2x2 matrices, having then n = 7, although
different implementations have different methods.

Sigma points are passed through the odometry function and transformed
into vectors of size 3 (x, y, θ). The augmented vector’s information is used to
incorporate the noise.

xi = f(xi, ut) (8)



the transformed sigma points are then used to generate the new mean and co-
variance:

µ =
2n∑
i=0

ωgxi (9)

Σ =
2n∑
i=0

ωc(xi − µ)(xi − µ)t (10)

where ωg and ωc are weights assigned to the Sigma points and their sum for 2n
points is equal to 1. µ and Σ represent the belief of the state of the robot after
incorporating odometry. The covariance matrix tend to increase if no measure-
ment is taken in consideration. The measurement update is similar. For each k
feature νk in the map of the particle i, the sigma points previously generated
are passed to the measurement update function:

νl,k = h(xi, νk, zt) (11)

If we have some measurement information we update the mean and covariance
once again:

ν =
2n∑
l=0

ωgνl,k (12)

Ψ =
2n∑
l=0

ωc(νl,k − ν)(νl,k − ν)t (13)

h is used to test the scan result relative to that position. The final update is
then:

Σxi,k =
2n∑
i=0

ωc(νi,k − ν)(xi − µ)t (14)

Kk
i = Σxi,k ∗ Ψ t (15)

µ = µ+Kk
i (zt − ν) (16)

Σ = Σ −Kk
i Ψ(Kk

i )t (17)

where K is the Kalman Gain, which is used to decrease uncertainness while
odometry update increases it. Other important aspects include feature initial-
ization and data association, but these are not addressed in this paper. For
further information on issues with feature based maps and updates, see [13].

Known Problems The Unscented Transformation is proven to be more accu-
rate then EKF, but its calculation is difficult. During the selection of the Sigma



points one needs to calculate the square root of the augmented covariance ma-
trix; this is usually done through a Cholesky Factorization. However, this method
needs the matrix to be positive-defined, otherwise the method dramatically fails.
Unfortunately, after several updates, the matrix may become non-positive [6].
Different solutions has been proposed; here, we look at one such solution, the
Square Root Unscented Transformation method [15]. In this method, the square
root of the covariance matrix is propagated during the updating sequence; this
requires a number of other changes in the updating algorithm. Complexity is
also reduced from O(N3) to O(N2) for N Sigma Points.

2.3 Feature based vs. Grid based maps

Historically, the SLAM problem has been applied to two main type of maps:
grid and feature based.

1. Grid maps treat the resulting map as a set of cells in a grid. The size of the
grid is generally initialized at the beginning of the computation which may
induce problems during real scenarios (rather than simulations). It is used
specifically for closed environments, as it is unclear how to extract features
in a closed place. For grid based maps the problem is to calculate the occu-
pancy grid using measurement (sonar, laser, video). p(m|zt, xt). Odometry is
not included in the calculation. Typically every cell is then filled with 1 or 0
(occupied or not), although some methods use a normalized occupancy like-
lihood for every cell. Grid based maps generally suits 2D worlds. The map
size varies enormously depending on the precision (usually from 0.1 meter to
1 meter). There are examples for 3D computation but these require a huge
amount of memory and computation.
It has been shown that SLAM depends critically on pose correction from
measurements. Grid maps typically use a scan-matching method to correct
the pose. Scan-Matching involves checking a new scan over the old map and
measuring the likelihood of incorporating the new scan on the existing map.
Different scan matching methods have been proposed; they usually return
an heuristic value or a pose correction.

2. Feature based maps treat the resulting map as a set of features. Features
are considered as obstacles encountered. This kind of map generally suits
huge outdoor environments as extracting feature in a closed environment is
tricky (e.g. while scanning a wall, everything can be considered as a fea-
ture). SLAM uses pose correction using known features versus new features
scanned. That means that for every feature recognized, SLAM has to com-
pute a data-association check and correct the pose. After applying odometry,
if measurement occurs, all the features are checked in order to calculate the
belief. The covariance matrix representing the pose’s uncertainty is calcu-
lated over the measurement delta between the new scan and the existing
features. After updating the pose, a scan is tested from the new pose and
for every obstacle returned by the new scan, all the previous scans have to
be checked for possible matching ones. If an observed feature is known to



Fig. 1. An example of Grid Based map

already exists on the map, the delta between the scan and the old feature is
used to increase/decrease the covariance and the pose.

It is not possible to directly compare the the two methods – grid based and
feature based – as different maps are used for different problems.

3 GMapping: a Particle Filter for Grid Based Maps

GMapping is a particle filtering algorithm developed by Grisetti et al.[5, 3] to
solve SLAM for grid based maps. The algorithm [4] follows the usual particle
filtering with two main characteristics.

1. The resulting map is a grid of cells, indicated as occupied or not.
2. The update step is done with a more efficient and fast EKF that avoids

calculating Jacobians.

The update odometry step is unchanged. Odometry data with added noise
is used to draw particles. To generate the map one would use the laser range
finder sensor data; each laser scan returns a set of values representing the point



Fig. 2. An example of Feature Based map

at which each laser beam has bounced. This information is noisy and need to be
estimated. To generate a map, cells are filled with new laser information (1 =
occupied, 0 = unoccupied). The map is generated for every particle in the set.

The next step is to use a scan-matching method to determine the likelihood
of the map for that particle including the measurement. Scan-Matching is a
process that aims to test a scan from a given position; various Scan-Matching
methods exists. GMapping uses a modified Vasco Scan-Matching that compares
the new scan with the particle’s existing map. A new scan is a set of laser beams
that generates a set of occupied points in the space. Those occupied points are
compared to a small portion of the existing map surrounding the robot. The
more points that match the existing map, the higher the robot’s likelihood. This
value can be seen as an heuristic weight.

The Gmapping algorithm as implemented in [4] is presented in Algorithm 3;
we note that this implementation differs from that presented in [3]. The imple-
mented scan-matching acts as in Algorithm 4. It begins by generating a set of



K samples (with a pre-fixed delta) on the axis. Every sample xd is passed to the
likelihood function that assigns it a weight. This gradient-descent technique is
repeated until a pose better then the initial one is discovered out; Figure 3(a)
illustrates the GMapping pose correction.

Algorithm 2 Correct particle’s pose using measurement information
function scanMatch(xt,readings)
l = −∞
likelihood = likelihood(xt, readings)
delta = presetDelta
for i = 1 to n refinements do

repeat
delta = delta/2
for d = 1 to K do
xd = deterministic sample(xt,delta)
localL = likelihood(xd,readings)
if localL > l then

l = localL
bestPose = xd

end if
end for

until l > likelihood
end for
xt=bestPose
return l
end function

Grisetti et al. [3] describe the mean and covariance being then calculated as
follows:

µ =
1
ν

K∗n refinements∑
d=0

xdp(zt|mt−1, xd) (18)

Σ =
1
ν

K∗n refinements∑
d=0

(xd − µ)(xd − µ)tp(zt|mt−1, xd) (19)

with ν being a normalizing factor and p(zt|mt−1, xd) being the likelihood of the
map including latest measurement and previous map. If no measurements are
received, odometry only is used. However, in the actual implementation, the
mean and covariance are handled differently. The mean is calculated using the
best found pose among the sampled ones using the scan-matching algorithm
described above. The covariance is not calculated and the pose is not sampled
after scan-matching. This method ensures precision, as it has the advantage
of using a tested pose rather then sampling another that could have a worse
likelihood and invalidate the map.



Fig. 3. (a) GMapping pose correction, initial step. Every ∆ is divided by two until a
better pose is found. (b) SRUPF pose correction delta

To ensure particle spreading, sampling is done during the odometry update
over 3 different zero-mean Gaussian with different σ (one for each value: x y
and theta). This value is related to the odometry readings and an error factor.
Sole odometry without pose-correction would fail map calculation. On the other
hand, scan-matching is costly, so it is a good decision to use measurement update
only after a certain distance has been traveled. If we consider the odometry as
a pair (v,ω) as respectively linear and angular δ we have:

δv = v + |v| ∗ sample(α1) + |ω| ∗ sample(α2) (20)
δω = ω + |v| ∗ sample(α3) + |ω| ∗ sample(α4) (21)

xt = xt−1 + δv ∗ cos(θt + δω/2) (22)
yt = xt−1 + δv ∗ sin(θt + δω/2) (23)

θt = atan2(sin(θt + δω), cos(θt + δω)) (24)

3.1 Input parameters

The GMapping algorithm has been tested widely on various map types and
has been shown to work quite well. The scan-matcher is capable of handling
issues related to odometry and measurement noise. By testing various position
and guessing the most likelihood position using measurement, the algorithm effi-
ciently models different robots in different situations. The GMapping algorithm
uses a number of parameters that can be changed to suit different environments
or devices:



– Added odometry noise: a 2x2 matrix covariance is used to add noise to
the odometry function. [

α1 α2

α3 α4

]
(25)

The higher these values are, the noisier the odometry is. High noise is some-
times required for high noisy encoders and for complicated and large maps.

– Window size: this parameter controls the number of cells around the mean
that the scan-matcher checks to determine the likelihood of the new pose
over the old map.

– Number of particles: this is an important parameter that determines how
many particles are used to model the real pose.

– Minimum Weight: this parameter controls the scan-match result. When a
scan-match is being considered for correcting the pose, the correction must
have a map likelihood greater then this threshold to be accepted. Otherwise
the scan-match is considered to fail and pure odometry is used to model the
real.

– Scan-matcher iterations N: this is the main parameter that increases the
computation time. Every scan-matching, every particle is tested around its
position for K samples over the axis with the usual scan-match algorithm
described above. This step is repeated N times. The algorithm often work
well with one iteration, but some cases may require more iterations.

The above parameters control the GMapping algorithm behaviour. Still, com-
putation time may be high especially on computers with low memory or slow
processors. The scan-matching step is actually the most important feature as
it makes use of measurement to correct the pose. Sometimes using high noise
is necessary to model big maps, although high noise would make trajectories
look definitely unreal and as tested increase computational time. Another is-
sue is the scan-matcher refining process that is done around the axis, basically
“guessing” where the particle could be in a very straight way. In this paper, we
use the GMapping algorithm as our base algorithm. In the following section, we
show how we modified it by substituting the KF update step with an Unscented
Transformation and by replacing the pose correction step with a more faster and
accurate one.

4 Square Root Unscented Particle Filtering for grid
mapping

The Unscented Kalman Filter (UKF) as described in [9, 7] is an algorithm for
feature based maps. Here we describe how we adapted the UKF for use with grid
based maps. Our base algorithm was the GMapping Particle Filtering algorithm
described in the previous section. Our new algorithm involved modifying the
GMapping algorithm in four main way:



1. Unstableness of the Unscented Transformation
2. Gmapping approximated pose sampling
3. Unscented Kalman Update without using features
4. Pose-correction

We describe each of these now in turn.

4.1 Unscented Transformation

The numerical unstableness of UKF of the GMapping algorithm is one of its
main problems. At certain time in computation, the covariance matrix eventu-
ally dropped to non-positiveness and hence the algorithm failed. We solved this
problem by implementing a different version of Unscented Particle filtering that
propagates the square root of the covariance matrix instead of the covariance
matrix itself. Cholesky factorization is then no longer required to calculate the
sigma points and this new algorithm does not fail.

4.2 New pose sampling

We reformulated GMapping simple odometry update step (Section 3) with with
a more complex Square Root Unscented Transformation. To implement the
Square Root Unscented Transformation, several changes to the original Un-
scented Transformation need to be made:

(1) the state vector (x,y,θ) is augmented with the odometry noise (Q) only
and (2) no measurement error (R) is used in the update.

µaug =
[
µt−1

0

]
, Σaug =

[
Σt−1 0

0
√
Q

]
(26)

where
√
Q is a 2x2 matrix defined as:[

|α1 ∗ v| 0
0 |α2 ∗ ω|

]
(27)

The regular Unscented Sigma Point creation step is substituted with Square
Root unscented step. Note that we approximate

√
Q with added noise values

that are constants. Sigma points are then calculated in the usual way, but with
the difference that one does not need to calculate the matrix square root of the
augmented covariance matrix:

x0 = µaug (28)
xi = x0 + (γΣaug)i i = 0, ...., n (29)

xi = x0 − (γΣaug)i−n i = n+ 1, ...., 2n+ 1 (30)



The Sigma points are passed through the odometry function f that incor-
porates the noise and odometry information to generate vectors xi of size 3
(x, y, θ).

xi = f(xi, ut) (31)

The transformed SPs are then used to generate the new mean and covariance.
While the new mean is calculated in the usual way, the covariance is calculated
with a QR Decomposition of the weighted deltas between the Sigma points and
the new mean:

µ =
2n∑
i=0

ωgxi (32)

Σ = qrdcmp
[√
|ωc|(xi − µ)

]
i = 1, ...2n+ 1 (33)

Σ = cholupdate (Sigma′, xi − µ, ω0) (34)

where qrdcmp means QR Decomposition that returns the transpose of the Cholesky
Factorization of the matrix defined as: if S is the result of the QR Decompo-
sition then A = St * S = R * Rt = A where R is the result of the Cholesky
Factorization on A. Note that QR Decomposition is faster (O(n2)) and more
stable then Cholesky factorization(O(n3)). cholupdate (O(n2)) is the Cholesky
update/downdate of the resulting QR Factor; it is used to incorporate the first
Sigma point, excluded from the covariance calculation. The weight system, in-
spired by [7], is as follows:

ω0 =
1
n/3

(35)

ωg = ωc =
1− ω0

2n
(36)

where n is the augmented vector size: 5. Note that the covariance matrix tends
to increase every odometry update. If needed, the γ factor can be changed to
reduce or increase the speed at which the uncertainty increases every odometry
update step; in our approach we use a gamma factor as suggested in [7]. Finally
the new particle’s pose is generated sampling around the gaussian generated by:

xt+1 ∼ N (µ,ΣtΣ) (37)

4.3 Measurement Update

The Unscented Transform needs a set of features to compare its Sigma points
with and decrease uncertainty; obviously when applying to a grid-based map
we do not have such features available. We solved this issue by using the Sigma



points pre-calculated during odometry update. Every Sigma point is passed to
the scan-matcher generating a likelihood. The likelihood is used to select the
best Sigma point between the existing ones. Our update is then changed to:

ν = h(xi, zt) (38)

Σµ,ν =
2n∑
i=0

√
ωc(µ− xi)(ν − xi)t (39)

Σ = qrdcmp
[√
|ωc|(xi − ν)

]
i = 1, ...2n+ 1 (40)

Σ = cholupdate (Σ, xi − ν, ω0) (41)

where ν is the best selected Sigma point and Σν,µ is the cross covariance between
the newly calculated mean and the previously calculated mean (with odometry).
Σ is calculated and the final step is then to calculate the final mean and covari-
ance:

K = Σµ,ν [ΣΣt]−1 (42)
µ = ν (43)

Σ = cholupdate
(
Σ,KΣt,−1

)
(44)

where K is the Kalman Gain. We don’t want to perturbate the final mean, as the
scan matcher returned the best pose so µ is just equal to the best Sigma point.
The final Σ is decreased with M successive Cholesky update using all the M
columns of the resulting matrix KΣt. No drawing is done after a scan-matching
step. The overall algorithm is summarized in Algorithm 5.

4.4 Pose correction

One reason GMapping works quite well is due to its accurate pose-correction
step. The pose corrector generates a number of deterministic samples around a
particle’s mean and tries to find the best pose within a given δ. Pose correction
checks, for every measurement update, if the particle is generating a consistent
map. It uses the scan-matching method that incorporates a new scan into par-
ticle’s existing map to generate a weight. This value is also used to weight the
particle. Our square root unscented particle approach works quite well with no
accurate pose correction (function h) on simple maps, however more challenging
maps do require a pose-correction step. Thus SPs are no longer used to search
for the best pose, instead their mean is taken as the starting point.

Algorithm 4 describes it in detail.

4.5 Complexity

Square Root Unscented Particle Filter introduces computational complexity
compared to the GMapping version used as a base. This is mainly due to the ma-
trix operations. The simple model used by GMapping is substituted with a more



Algorithm 3 SRUPF-GM Update Step Algorithm
Input: sensor zt and odometry ut data at time t;
Initialize state (ST) and Sigma point (SP) vectors to < 0 > {Cycle all particles}
for all xi in S do
{Sigma Point Generation}
xaug = [xi 0 0]
covaug = [covi Cholesky(Q)]
SP = [xaug xaug + γ(covaug)i xaug − γ(covaug)i−n] for i=0 to 2n
{Odometry Update Step}
for all xj in SP do
< v, δ > = ut

V = v + xj [3]
G = δ + xj [4]

xj =

0@Xxj + V × cos(G+ θxj )
Yxj + V × sin(G+ θxj )

θxj +G

1A
add(ST,xj)

end for
xi =

P2n
i=0 ωcxj for all xj in ST

covi = QRDecomposition(< xj − xi >) for j = 1 to 2n
covi = CholeskyUpdate(covi, x0 − xi, w0)
{Measurement Update Step}
if measurementoccurs then
< xi, covi > = scanmatch(xi, zt)
Generate Map(xi,zt)
Update Weight(xi)

end if
end for
if neff < threshold then

S = resample() {Resampling Step}
end if
xi = sample new pose(xi, cov

′
i × covi) {Final Update Step}

end function

accurate mean and covariance calculation. For every particle we introduce O(m2)
computational complexity, with m being the number of Sigma point, given by
the QR decomposition and Cholesky Update. The same computation is intro-
duced to the measurement part of the usual QR decomposition and Cholesky
Update. We note, however, that an optimized version of those functions can be
generated for a small sized matrix. We currently use a fixed small size matrix
to calculate mean and covariance; a better algorithm design would decrease the
amount of memory and computational time. Nonetheless, as we will see in the
following experimental section, testing shows that our approach is faster than
the original GMapping method.



Algorithm 4 Correct particle’s pose using measurement information
function scanMatch(xt,covt,SP,readings)
l = −∞
likelihood = likelihood(xt, readings)

if NOT (pose correction ) then

for all xd in SP do
localL = likelihood(xd,readings)
if localL > l then

l = localL
bestPose = xd

end if
end for

else

delta = ellipse(covt)
for i = 1 to n refinements do

repeat
delta = delta/2
for d = 1 to K do
xd = deterministic sample(bestPose,delta)
localL = likelihood(xd,readings)
if localL > l then

l = localL
bestPose = xd

end if
end for

until l > likelihood
end for

end if

xt=bestPose
return l
end function



5 Experiments

We testing two version of the new SRUPF algorithm – with and without pose
correction – against the original GMapping implementation. We now describe
our experiments comparing these three algorithms:

i GMapping
ii SRUPF with no pose correction
iii SRUPF with pose correction

5.1 Methodology

Each algorithm was tested on three different grid-map SLAM problems provided
by the Radish Repository [8] in CARMEN [11] format. Each problem consists
of a dataset generated by the sensors of a robot driven around by a human
controller, inside a building. The dataset consists of odometry and laser scan
readings. The Radish Repository [8] does not provide a real map neither in a
accurate sensor reading format nor in an image format. Hence it was not possible
to compare algorithms performance in terms of the quality of the map (for
example by generating an error measure). Therefore, we compare the algorithms
firstly in whether they achieve the main goal of generating a consistent map.
The consistency test assessed whether the overall shape of the map follows the
real map, by visually inspecting an image of the results.

Secondly, we compared the computation time of the three algorithms. Each
result reported for the following experiments is the mean of the computational
time calculated for 10 runs. To explore the relative computational performance
of the algorithms, we also varied the two important parameters: (1) the number
of particles, and (2) the amount of added noise.

5.2 Experiment 1

The first test was done on a very simple map, generally squared with one sin-
gle loop and no rooms, as shown in Figure 5. For this experiment, we used
30 particles, and the noise parameters were linear 0.1, angular 0.2. (The noise
parameters were chosen through preliminary investigations which showed, coin-
cidentally, that these were the best values for all three algorithms.) Table 5.2
shows the difference in computational time (plotted in Figure 4.

Table 1. computational average time with 30 particles for NSH Building

Avg. Time (sec) Std. Deviation

(i) 21.7994 0.3635
(ii) 27.2739 0.5679
(iii) 17.3140 0.2340



Fig. 4. NSH Building with 30 particles

As one can see, on this simple map, Gmapping is quite fast even using its
pose-correction method. SRUPF without pose correction is faster than GMap-
ping, while SRUPF with pose correction is slower, as expected, due to the com-
plexity introduced by the QR and Cholesky computations. For this simple map,
SRUPF without pose correction is enough to generate a consistent map with no
detectable differences from that generated by GMapping. Simple maps do not
require pose correction as they can easy be achieved using correction upon the
sigma points. Though in real situation one wouldn’t know weather the environ-
ment you are going to scan is going to be hard or simple

Fig. 5. NSH Building



5.3 Experiment 2

In the second experiment the same algorithms were applied to a medium difficult
situation. This dataset comes from a scanning of the Cartesium Building, Univ.
of Bremen, depicted in Figure 6.

Fig. 6. Cartesium Building, University of Bremen. Though robot’s path is not show
in this picture, it generates numerous loop around the building. Loop closure is one of
the main issues in SLAM because it requires previous path to be quite accurate.

This map increases the difficulty due to the robot’s path, which generates
a number of loops; closing a loop in the right way is not a simple task. We
minimized the error and the number of particles for each algorithm for which it
was always successful (generating a consistent accurate map).

In this experiment, we varied the noise parameters and particle number to
explore the resultant changes in computational time. In Figure 7 we present the
variation of time when increasing the number of particles.

Each version shows a linear increment of time as particles increase. Though,
GMapping present the highest inclination. Increasing the number of particles
is necessary to increase precision. Some maps require a consistent number of
particles to be modeled. Figure 8 shows the variation of time when increasing
the odometry noise. We used different minimum noise to model the same map.
Note that the added noise is implementation-dependent and is related to how
the odometry incorporates this noise into the model function.

First, we can see that in this experiment, across all variations of particles and
noise, SRUPF always sproduces a consistent map faster than GMapping, even
with pose correction (though of course the no pose correction version is faster).
Further, as the number of particles is increased, the computational time of all
algorithms looks to be increasing linearly although with different gradients.

As the noise is increased, SRUPF with no pose correction shows no significant
difference, that is, it is unaffected as expected. GMapping and SRUPF with pose
correction behave differently. GMapping increases its computational time when
increasing the added noise, while SRUPF decreases it. The explanation for this
relies on the pose correction function. Gmapping use a fixed delta to search the



Fig. 7. Cartesium Building: increasing particles number

Fig. 8. Cartesium Building: increasing added noise

best pose after a scan. That delta depends on the initial input and does not vary
with time. If noise is higher, odometry model is more likely to generate inaccurate
particles and pose correction step increase its number of cycles to get a better
pose. SRUPF instead generates more accurate particles and its pose correction
step delta varies with covariance. When a particle has a high covariance, its
uncertainness makes the pose corrector search further away from its mean. If
the odometry added noise is low, SRUPF works more to search the correct pose.
Low odometry noise also means low particle’s uncertainness, so that the pose-
corrector searches in vain within a too small surrounding area, most of time



falling back to the original mean. This suggests a differently scaled delta would
be a good idea to even the search time and improve the pose corrector.

5.4 Experiment 3

In this last experiment, a relatively complicated map was used, still relatively
small in area but with an irregular shape and numerous loops in the path. This
dataset was taken in the MIT CSAIL building (see Figure 9).

Fig. 9. MIT CSAIL with robot’s path

In this particular dataset SRUPF with no pose correction always failed to
generate a consistent map (regardless of the number of particles and the amount
of noise). Hence it is clear that pose correction is actually needed to generate
more difficult maps. This fact of course makes SRUPF without pose correction
unusable unless the map complexity is known a priori (a rare case).

The difference in the computational time (Figures 10 and 11) are even more
pronounced than for the simpler maps, although the same linear increment ob-
served previously is again seen when as the the number of particles is increased.
And again, SRUPF performs better as the noise increases, while GMapping takes
longer.

6 Conclusions and future works

In this paper, we have presented an improved particle filtering algorithm for solv-
ing SLAM on grid based maps. We used as our starting point the the GMapping
particle algorithm which has been shown (as we confirmed), to generate very
accurate maps even for large scale environments. To improve this algorithm,
we took aspects from the square root Unscented particle filtering algorithms,



Fig. 10. MIT CSAIL Building: increasing added noise

Fig. 11. MIT CSAIL Building: increasing particle number

previously only applied to feature based maps. We adapted this as required
for grid-based mapping, increases the precision during the odometry update as
well as decreasing the computation time required for pose correction. We have
presented results from computational experiments showing that while the full
version of SRUPF is slower than GMapping on smaller maps, is performs better
on more complex maps, while generating a consistent map that is as accurate
(as far as we can determine from visual image inspection).

One obvious future step is to obtain suitable test datasets that give the real
map in a form that allows accurate error measurements to be computed, which



will allow us to compare the quality of the resultant maps more accurately. Still
much work can be done to decrease the computation time related to SRUPF’s
pose correction, while further optimisations of the algorithm should may improve
its performance also. We envisage these future improvement being based on
topological hiererchical methods that should decrease the computation time by
focusing the accuracy on smaller submaps.
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