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Abstract. Model checking games are instances of Hintikka’s game semantics
for logic used for purposes of debugging systems verification models. Previous
work in the area has developed these games for branching time logic. The paper
develops an extension to a logic that adds epistemic operators, and interprets the
branching time operators with respect to fairness constraints. The implementation
of the extended games in the epistemic model checker MCK is described.

1 Introduction

Model checking is a technique used in computer science for the verification of systems
designs. Traditionally, model checkers deal with specifications expressed in a variant
of temporal logic — this class of model checkers is now widely applied to the verifica-
tion of computer hardware and computer network communications protocols. In recent
years, a number of model checkers have been developed that are based on modal log-
ics that combine temporal and epistemic modalities [1-4]. These enable the analysis
of systems from the perspective of information theoretic properties, and have been ap-
plied to problems such as the verification of security protocols [5] and the verification
of knowledge-based programs [1, 6]. In the context of Artificial Intelligence, epistemic
logic has been the focus of a line of work in the multi-agent systems literature, [7, 8],
where it is used for reasoning about systems of communicating agents.

One of the reasons for the success of model checking technology is that, at least in
the case of linear-time temporal logic specifications, it is possible for a model checker to
return to the user a counter-example, in the form of an “error-trace” which illustrates a
possible execution of the system on which the specification fails. This provides concrete
information that helps the user to diagnose the source of the error.

For branching-time temporal logics, the situation is somewhat more complex: while
counter-examples can be defined [9], in general, they have a structure that is neither eas-
ily presented to the user nor easily comprehended, since, rather than a single execution
of the system, one needs to deal with multiple executions, in a complicated branch-
ing structure. Once one considers temporal and epistemic logics, it becomes even less
clear how to make counter-examples comprehensible, since epistemic operators require
even greater flexibility to move between different points of different executions of the
system.
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In the setting of branching-time temporal logic, the complexity of counter-examples
has motivated the application of ideas based on Hintikka’s game theoretical semantics
for logic [10] as an interactive debugging tool. Game theoretical semantics character-
izes the truth of a formula in a model in terms of the existence of a winning strategy
in a game constructed from the formula and model. In Hintikka games, there are two
players: a verifier, whose objective in the game is to justify that the formula holds in the
model, and a refuter, whose objective is to show that the formula is false. The rules of
the game are constructed so that steps of the game proceed from a formula to its subfor-
mulas, with moves corresponding to cases of the recursive semantics of the logic, with
players taking turns depending on the structure of the subformula under consideration.
If there exists a winning strategy for verifier, then the assertion holds, otherwise refuter
has a winning strategy, and the assertion fails. Playing such a game forces the player to
focus on particular subformulas of the specification, and particular states of the model.
This provides a useful discipline for helping the user to understand the structure of both,
while keeping each step of the process simple enough to be easily comprehended.

Originally developed for simpler logics, Hintikka Games have been adapted to the
area of temporal logic model checking [11-15] where they are called model check-
ing games. Our contribution in this paper is to further adapt model checking games
to the richer setting of temporal epistemic model checking. We extend previous work
on model checking games in two directions. First, we deal with epistemic operators as
well as branching-time temporal logic operators. Second, we deal with systems that are
subject to fairness constraints, which express properties of infinite executions, such as
“every action that is always enabled is eventually executed”. These are more commonly
considered in linear-time temporal logic, but have also been considered in a branching
time setting. Fair CTL [16] extends CTL (Computational Tree Logic [17]) models with
fairness constraints and thus is strictly more expressive. In this paper, we deal with a
language combining Fair CTL and epistemic logic with observational semantics.

The structure of the paper is as follows. Section 2 gives the syntax and semantics
of a fair branching time epistemic logic CTLK,. In Section 3, we present a number
of variants of the model checking game for this logic. We state the main theoretical
results concerning the connection between the semantics and strategies in the game in
Section 4. In Section 5 we briefly describe our implementation of the game in the model
checker MCK [1]. We make some concluding remarks in Section 6.

2 Syntax and Semantics

We work with a logic CTLK,, that combines CTL and the logic of knowledge and com-
mon knowledge for n agents. It will be interpreted with respect to structures represent-

ing fairness constraints. Let Prop be a set of atomic propositions and Ags = {1,...,n}
be a set of n agents. The syntax of CTLK,, is given by the following grammar:
¢ == pl-¢|d1V | EXP|E[01Udr] | EGo| Kip | Coop ey

where p € Prop andi € Ags and G € P(Ags) \ {0}.
The formula K;¢ says that agent i knows ¢, and Cg¢ says that ¢ is common knowl-
edge to the group of agents G. The operators EX, EU and EG are from the logic CTL,



and refer to the branching structure of time. EX¢ says that in some possible future, ¢
will hold at the next moment of time, E[¢; U¢,] says that in some possible future, ¢;
holds until ¢, does, and EG¢ says that in some possible future, ¢ holds at all future
times. The logic CTL contains other operators, but these can be treated as defined. For
example, EF¢ = E[TrueU¢], AX¢p = ~EX—¢, AF¢p = ~EG—¢, etc.

We use a semantics for CTLK,, that is based on a variant of the interpreted systems
model for the logic of knowledge [18]. Let S be a set, which we call the set of global
states. A run over S is a function r : N — S. An interpreted system for n agents is a
tuple 7 = (R, ~1,...,~n, ), where R is a set of runs over S, each ~; is an equivalence
relation on S, and 7 : S — P(Prop) is an interpretation function.

A point of T is a pair (r, m) where r € R and m € N. We say that arun r’ is equivalent
to a run r up to time m € N if r'(k) = r(k) for 0 < k < m. We define the semantics of
CTLK, by means of a relation 7, (r,m) |= ¢, where I is an intepreted system, (r,m) is a
point of 7 and ¢ is a formula. This relation is defined inductively as follows:

- I,(r,m) E pif p € n(r(m)),

- I, (rrm)E —¢ifnot 7,(r,m) E ¢

- I,rm)E ¢1 V¢ if I,(r,m) E ¢y or I,(r,m) E ¢

— I,(r,m) E EX¢ if there exists a run r’ € R equivalent to r up to time m such that
I,(r,m+1)E¢

— I,(r,m) E E[¢,U¢,] if there exists a run ' € R equivalent to r up to time m and
m’ >msuchthat I,(*',m’) E ¢r,and I, (r', k) E ¢ form <k <m’.

— I,(r,m) E EG¢ if there exists a run ' € R equivalent to r up to time m such that
I,(rk)E¢forallk>m

- I,(r,m) E K;¢ if for all points (+',m’) of I such that r(m) ~; r'(m’) we have
Lo m)E ¢

— I,(r,m)  Cg¢ if for all sequences of points (r,m) = (rg, mo), (r1,my), ... (rx, my)
of 7, such that for each j = 0...k — 1, there exists i € G such that r;(m;) ~;
riv1(mji1), we have I, (re, my) | ¢.

For the knowledge operators, this semantics is essentially the same as the usual inter-
preted systems semantics. For the temporal operators, it corresponds to a semantics for
branching time known as the bundle semantics [19, 20].

While they give a clean and coherent semantics to the logic, interpreted systems are
not suitable as inputs for a model checking program, since they are infinite structures.
We therefore also work with an alternate semantic representation based on transition
systems with epistemic indistinguishability relations and fairness constraints. A (finite)
systemis atuple M = (S,1,—,~1,...,~y, T, @) where S is a (finite) set of global states,
I C S is the set of initial states, »C § X § is a serial temporal transition relation,
each ~; is an equivalence relation representing epistemic accessibility for agenti € Ags,
m . § — P(Prop) is a propositional interpretation, and « is a set of subsets of §,
representing a (generalised Biichi) fairness condition. The fairness condition is used
to semantically represent constraints such as ‘whenever A occurs, B occurs at some
later time,” or ‘A occurs infinitely often,” that refer to infinite temporal evolutions of the
system.

Given a system M over global states S, we may construct an interpreted system
I(M) = (R,~1,...,~y, 1) over global states S, as follows. The components ~; and 7



are identical to those in M. The set of runs is defined as follows. We say that a fullpath
from a state s is an infinite sequence of states sys;... such that so = s and s; — 541 for
all i > 0. We use Path(s) to denote the set of all fullpaths from state s, and FinPath(s) for
the set of finite prefixes of fullpaths in Path(s). The fairness condition is used to place
an additional constraint on paths. A fullpath s¢s; ... is said to be fair if for all Q € a,
there exists a state s € Q such that s = s; for infinitely many i. We write Path’ (s) for the
set of all fair fullpaths from s. A run of the system is a fair fullpath sgs; ... with 59 € I.
We define R to be the set of runs of M. A formula is said to hold in M, written M = ¢,
if 7(M), (r,0) E ¢ for all r € R.

We say that a state s is fair if it is the initial state of some fair fullpath, otherwise
the state is unfair. We write F(M) for the set of fair states of M. A state s is reachable if
there exists a sequence sp — §; — ... ¢ = s where so € 1. A state is fair and reachable
iff it occurs in some run. We write FR(M) for the set of fair and reachable states of M.

3 Game Semantics for CTLK,

We now reformulate the semantics of CTLK,, on structures M in the form of a Hintikka
game. In such a game, there are two players, namely system (Sys) and user (Usr). If p is
a player, we write opp(p) for the opponent of p; thus, opp(Sys) = Usr and opp(Usr) =
Sys. In addition to the two players, we have two roles, verifier (V) and refuter (R).
At each game state each player will be in some role, and the opponent will be in the
opposite role. Intuitively, a player is in the verifier’s (refuter’s) role when she believes
that the specific formula holds (resp., fails) in current state.

One of the main novelties in our game is that we need to deal with fairness and
reachability. In principle, one could avoid this by first restricting systems to the fair
reachable states, which would not change the semantics of validity. However, in prac-
tice, the existence of unfair reachable states is typically an error that the user will want
to be able to diagnose. For this reason, we include unfair and unreachable states in the
game, and introduce new propositional constants Fair, Reach and Init to represent that
a state is fair (resp., reachable, initial).

Each pair (M, ¢) consisting of a system M and a formula ¢ determines a game. We
assume a fixed system M in what follows, and focus on the role of the formula ¢ (and
its subformulas) in determining the states of this game. We call the states of the game
configurations. There are three types of configuration:

1. Initial configuration: there is a unique initial configuration of the game, denoted
Usr: ¢. Intuitively, this corresponds to the user taking the role of the verifier V, and
claiming that the formula ¢ is valid in M.

2. Intermediate configurations: these have the form p : {(s1, 1), ..., (S, $n)} Where
p € {Sys, Usr}isaplayer and {(s1, ¢1), ..., (Sm, @)} 1S a set of pairs, where each sy is
a state in S and each ¢y is either a formula or one of the constants Fair, Reach, Init.
Intuitively, such a configuration corrresponds to the player p taking the role of the
verifier V, and claiming that the assertion represented by all of the pairs (s, @) is
true of the system M. If ¢y, is a formula then pair (si, ¢¢) asserts that M, s | ¢. If
¢r = Fair (Reach, Init) then pair (sy, ¢r) means sy is a fair (resp. reachable, initial)
state.



3. Final configuration. Configurations “p wins”, where p € {Sys, Usr}, are used to
denote the completion of play. Intuitively, this means that player p has won the
game and opp(p) has lost the game.

Note that each initial and intermediate configuration has the form p : x, implying that
player p is in the role of verifier and player opp(p) is in the role of the refuter. We
write intermediate representations p : {(sy, ¢;)} with a singleton set of pairs simply as
p (s, 1)

At each round of the game, it is the turn of one of the players to make a move, de-
pending on the configuration. Players’ roles may exchange during the game. In Table 1,
we list the rules of the game. Each rule is in the form

CurrentConfiguration

NextConfiguration ole  (Condition) 2)

representing that “if the game is in the CurrentConfiguration and the Condition holds,
then it is the turn of the player in role Role to move, and one of the choices available
to this player is to move the game into configuration NextConfiguration.” In the rules,
Condition and Role may not be present. If Condition is not present, the move can be
made unconditionally. If Role is not present, there is only one possibility for the next
configuration of the game, and the move can be made automatically without any player
making a choice. We assume that M = (S,I, —,~1,...,~,, 7, @) and that the fairness
condition « has been presented as a set of propositional logic formulas {yi,...,xn},
where each y; represents the set of states {s | M, s = xi}. The rule for the common
knowledge operator uses the set Kchain(G, s), where G is a set of agents and s is a
state, defined to be the set of finite sequences of states s = sj ... s, such that for all
k=1...m~—1 we have s; ~; sx41 for some j € G.

Note the use of the propositions Fair and Reach in the cases for the epistemic oper-
ators. For example, to refute a claim that K;¢ holds at a state s, we need not just a state
t ~; s where —¢ holds, but we also need to assure that this state is in fact fair and reach-
able. We remark that in the rule for E[¢; U¢,], of the tuples (s, Fair) it would suffice to
include only the last (s,,, Fair). However, inclusion of the earlier such tuples allows the
refuter at the next move to select the earliest stage in the path at which a transition to an
unfair state is made: this is more informative for the user in debugging the system.

In the rules for EG¢ and Fair, we make use of a fact concerning generalized Biichi
automata, viz., that there exists a fair fullpath from s (satisfying ¢ at every state) iff
there exists a cyclic finite path (satisfying ¢ at every state) such that each of the fairness
conditions are satisfied on the loop. More precisely, there exists a finite path s = 5o —
s = ... — s, such that s,, = s; for some i < m, and for each fairness constraint yy,
there exists an index / in the loop (i.e.. i < [y < m), such that M, s = y. In the case
of EG¢ we also need that M, s, = ¢ for all k = 0...m — 1. Note that, whereas rules
typically include pairs of the form (s, Fair) to represent that only fair states are used in
the semantics, we do not need to do this in the case of the rules for EG and Fair since
these rules already imply fairness of the states introduced.



Table 1. Game Semantics for Fair CTLK,,
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4 Main result

We can now state the main theoretical result of the paper, which is the equivalence of
the model checking problem given above with the existence of a winning strategy in the
associated game.

A strategy of a player is a function mapping the set of configurations in which it
is the players’ turn, to the set of possible next configurations according to the rules in
Table 1.

A play of the game for (M, ¢) according to a pair of strategies (o yy, 0sys) for the
user and system, respectively, is a sequence of configurations CoCj ... such that Cy is
the initial configuration Usr : ¢, and at each step k, if it is player p’s turn on configu-
ration Cy, then there is a successor Cy in the play, and Ci.1 = 0,(Cy). Note that it is
no player’s turn on a final configuration. Thus, a play is either infinite, or ends in a final
configuration. In fact, we can show that all plays are finite.

Proposition 1 If M is a finite state system and ¢ is any CTLK, formula, then all plays
of the game for (M, ¢) are finite.

A winning strategy for player p is a strategy o, such that for all strategies o pp(p)
for the opponent, all plays of the game according to (o7, 0 opp(p)) are finite and end in
the configuration “p wins”.

Theorem 1 For all finite state systems M and formulas ¢ of CTLK,,, we have M ¥ ¢ iff
there exists a winning strategy for Sys in the game for (M, ¢).

This theorem forms the basis for our game-based debugging approach. Suppose the
user has written a specification ¢ for a system M, and this specification fails to hold
in the system. If the user takes the role Usr in the game for (M, ¢), and plays against
a winning strategy for Sys, then the user will lose the game, however they play. In the
process of playing the game, and trying different strategies, the user’s attention will be
drawn to particular states and subformulas. This may help the user to diagnose why their
intuitions (concerning either the systems or the specification ¢) are not in accordance
with the facts.

While the game as defined above guarantees termination of any play of the game, it
does so at the cost of including rules that involve the construction of rather large game
states: viz., the rules for E[¢;U¢,], EGp, Cc¢ and Reach, which involve construction
of possibly lengthy paths. This creates a cognitive burden for the human player. It is
possible to alleviate this in some cases by using more incremental versions of the rules,
provided we weaken the correspondence between satisfaction and strategies.

Define the recursive variant of the game by replacing the rules for E[¢; U¢,], Cg¢
and Reach by the rules in Table 2. The recursive variant admits non-terminating plays.
E.g., if s — s then Usr : (s,Reach), Usr : (s,Reach),... is an infinite play. Thus,
Theorem 1 no longer holds for this variant. However, we can recover the result with a
slightly different notion of strategy.

Say that a non-losing strategy is a strategy o p, such that for all strategies () for
the opponent, all finite plays of the game according to (07, 0opp(p)) €nd in the configu-
ration “p wins”.



Table 2. Recursive Game Semantics for Fair CTLK,

. p:(s,El¢1U¢,])
Elo:Ug:l: P10, V (@1 A EXCELG UFD))

p:(5,Co8)
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C(;¢Z

Reach: IM (sel)
p wins
p : (s, Reach)
p : (t,Reach) V-

Theorem 2 For all finite state systems M and formulas ¢ of CTLK,,, we have M I~ ¢ iff
there exists a non-losing strategy for Sys in the recursive variant of the game for (M, ¢).

The recursive version of the game is equally useful for debugging purposes: it en-
ables the user to diagnose the error based on seeing that they cannot win the game,
rather than based on seeing that they always lose the game. The key feature that they
may explore the most relevant states and subformulas while playing is retained.

Further variants of the game could be constructed: the recursive variant retains the
path constructing rules for EG¢, but we could also make this more incremental by
recording in the configuration, the state on which we claim the path under construc-
tion loops, as well as the fairness constraints already claimed to have been satisfied on
previous states in the loop. We could furthermore revise the recursive variant to make
it terminating by adding to configurations sufficient information to detect when a play
revisits a previously visited configuration (at the cost of admitting very large configura-
tions). We leave the development of such variants to the reader.

5 Implementation

We have implemented the game to provide a debugging facility for the epistemic model
checker MCK [1]. MCK provides the ability to model check specifications in both lin-
ear and branching time, using a variety of model checking algorithms, depending on the
formula in question and a choice of semantics for knowledge: this can be the observa-
tional semantics (as in the present paper), a semantics in which local states consist of the
current observation plus a clock value, and a synchrononous perfect recall semantics.
Older versions of MCK have been based on algorithms that use symbolic techniques
(binary decision diagrams) [21] to do model checking. The implementation of the game
adds to MCK a new explicit-state model checking facility: this is an algorithm that
performs model checking by means of an explicit construction of the reachable states



of the system. The approach is essentially an extension of standard explicit-state algo-
rithms for CTL [21] to include epistemic operators. Explicit-state model checking is
only feasible for systems with a small state space, but its benefit for our present pur-
poses is that the explicit-state model checking algorithm can be extended to construct
during model checking a winning/non-losing strategy for the system. This strategy is
then used by the system to play the game against the user in case the debugging game
is invoked. An additional benefit of explicit construction of the (reachable) state space
is that this allows the state space to be displayed using a graph visualization tool. Our
implementation allows the Graphviz tools to be used for this purpose.

The implementation is based on a version of the game that employs the recursive
rules of Table 2 only when it is the turn of the user; at system moves the rules of Table 1
are used. In case unfair reachable states exist in the system, the user is offered the choice
of playing the game on the system as given (for diagnosing the reason for such states)
or a variant of the system in which such states are removed (in case the existence of
such states is what the user actually intended).

6 Conclusion and Future Work

We have presented a model checking game for a fair branching time epistemic logic
and its implementation in the model checker MCK. Playing the game can help a user to
diagnose errors in MCK models.

In future work, we intend to strengthen our tool in two directions: The first is to
enable the system to play the game using symbolic model checking algorithms: this
will allow the game to be played on models with much larger statespaces. The second is
to make the logic supported by the game more expressive: we are presently developing
an extension of the game to include u-calculus operators (these are already supported
in the symbolic model checking algorithms in MCK). This will enable notions such as
eventual common knowledge [18] to be handled.

Acknowledgements: An initial implementation of the game and explicit state model
checking facility for MCK was done by Jeremy Lee; the current implementation is a
significant revision by the authors. Cheng Luo has conducted some maintenance on the
system.
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