Skip to main content

Classification-Assisted Memetic Algorithms for Equality-Constrained Optimization Problems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5866))

Abstract

Regressions has successfully been incorporated into memetic algorithm (MA) to build surrogate models for the objective or constraint landscape of optimization problems. This helps to alleviate the needs for expensive fitness function evaluations by performing local refinements on the approximated landscape. Classifications can alternatively be used to assist MA on the choice of individuals that would experience refinements. Support-vector-assisted MA were recently proposed to alleviate needs for function evaluations in the inequality-constrained optimization problems by distinguishing regions of feasible solutions from those of the infeasible ones based on some past solutions such that search efforts can be focussed on some potential regions only. For problems having equality constraints, however, the feasible space would obviously be extremely small. It is thus extremely difficult for the global search component of the MA to produce feasible solutions. Hence, the classification of feasible and infeasible space would become ineffective. In this paper, a novel strategy to overcome such limitation is proposed, particularly for problems having one and only one equality constraint. The raw constraint value of an individual, instead of its feasibility class, is utilized in this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Handoko, S.D., et al.: Using Classification for Constrained Memetic Algorithm: A New Paradigm. In: Proceedings of the 2008 IEEE International Conference on Systems, Man and Cybernetics (2008)

    Google Scholar 

  2. Handoko, S.D., et al.: Feasibility Structure Modeling: An Effective Chaperone for Constrained Memetic Algorithms. IEEE Transactions on Evolutionary Computation (in press)

    Google Scholar 

  3. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley-Interscience, Hoboken (2006)

    MATH  Google Scholar 

  4. Zoutendijk, G.: Methods of Feasible Directions. Elsevier, Amsterdam (1960)

    MATH  Google Scholar 

  5. Baker, T.E., Ventker, R.: Successive Linear Programming in Refinery Logistic Models. Presented at the ORSA/TIMS Joint National Meeting (1980)

    Google Scholar 

  6. Baker, T.E., Lasdon, L.S.: Successive Linear Programming at Exxon. Management Science 31(3), 264–274 (1985)

    Article  MATH  Google Scholar 

  7. Zhang, J.Z., Kim, N.H., Lasdon, L.S.: An Improved Successive Linear Programming Algorithm. Management Science 31(10), 1312–1331 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wilson, R.B.: A Simplicial Algorithm for Convex Programming. Ph.D. Thesis, Harvard University (1963)

    Google Scholar 

  9. Schittkowski, K.: NLPQL: A FORTRAN Subroutine Solving Constrained Nonlinear Programming Problems. Annals of Operations Research 5(2), 485–500 (1986)

    Article  MathSciNet  Google Scholar 

  10. Wright, S.J.: Nonlinear and Semidefinite Programming. In: Proceedings of Symposia in Applied Mathematics, vol. 61, pp. 115–138 (2004)

    Google Scholar 

  11. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press (1975)

    Google Scholar 

  12. Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray (1859)

    Google Scholar 

  13. Deb, K.: An Efficient Constraint Handling Method for Genetic Algorithms. Computer Methods in Applied Mechanics and Engineering 186(2-4), 311–338 (2000)

    Article  MATH  Google Scholar 

  14. Koziel, S., Michalewicz, Z.: Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization. Evolutionary Computation 7(1), 19–44 (1999)

    Article  Google Scholar 

  15. Runarsson, T.P., Xin, Y.: Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Transactions on Evolutionary Computation 4(3), 284–294 (2000)

    Article  Google Scholar 

  16. Hamida, S.B., Schoenauer, M.: ASCHEA: New Results Using Adaptive Segregational Constraint Handling. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 884–889 (2002)

    Google Scholar 

  17. Mezura-Montes, E., Coello, C.A.C.: A Simple Multi-Membered Evolution Strategy to Solve Constrained Optimization Problems. IEEE Transactions on Evolutionary Computation 9(1), 1–17 (2005)

    Article  Google Scholar 

  18. Barbosa, H.J.C., Lemonge, A.C.C.: A New Adaptive Penalty Scheme for Genetic Algorithms. Information Science 156(3-4), 215–251 (2003)

    Article  MathSciNet  Google Scholar 

  19. Farmani, R., Wright, J.A.: Self-Adaptive Fitness Formulation for Constrained Optimization. IEEE Transactions on Evolutionary Computation 7(5), 445–455 (2003)

    Article  Google Scholar 

  20. Chootinan, P., Chen, A.: Constraint Handling in Genetic Algorithms Using a Gradient-based Repair Method. Computers and Operation Research 33(8), 2263–2281 (2006)

    Article  MATH  Google Scholar 

  21. Elfeky, E.Z., Sarker, R.A., Essam, D.L.: A Simple Ranking and Selection for Constrained Evolutionary Optimization. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 537–544. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Tang, J., Lim, M.H., Ong, Y.S.: Diversity-Adaptive Parallel Memetic Algorithm for Solving Large Scale Combinatorial Optimization Problems. Soft Computing: A Fusion of Foundations, Methodologies, and Applications 11(9), 873–888 (2007)

    Google Scholar 

  23. Torn, A., Zilinskas, A.: Global Optimization. Springer, Heidelberg (1989)

    Google Scholar 

  24. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)

    Google Scholar 

  25. Handoko, S.D., et al.: A Study on Constrained MA Using GA and SQP: Analytical vs. Finite-Difference Gradients. In: Proceedings of the 2008 Congress on Evolutionary Computation (2008)

    Google Scholar 

  26. Liang, J.J., et al.: Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization. Technical Report (2006)

    Google Scholar 

  27. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Handoko, S.D., Kwoh, C.K., Ong, Y.S. (2009). Classification-Assisted Memetic Algorithms for Equality-Constrained Optimization Problems. In: Nicholson, A., Li, X. (eds) AI 2009: Advances in Artificial Intelligence. AI 2009. Lecture Notes in Computer Science(), vol 5866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10439-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10439-8_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10438-1

  • Online ISBN: 978-3-642-10439-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics