Skip to main content

An Optical Wavelength-Based Solution to the 3-SAT Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5882))

Abstract

The NP-complete is a class of complexity including many real-world problems. Although many efforts made to find efficient solutions to NP-complete problems, no such a solution having polynomial complexity of used resources is found yet.

Optical computing, as a branch of unconventional computing, provides new capabilities to solve NP-complete problems, using physical properties of light such as high parallelism nature of it. Some optical approaches to solve NP-complete problems in efficient manner are already provided, such as delaying the light motion, using optical masks, and using continuous space machines. In this paper, a new optical approach, using wide range of wavelengths exist in a light ray, is provided to solve the 3-SAT problem, a well-known NP-complete problem, in polynomial time. Each instance of the 3-SAT problem is a CNF-formula consisting m clauses be composed of n boolean variables. The question is if there is a value-assignment to the boolean variables which satisfies the formula or not. In the method provided in this paper, wavelengths presented in a light ray are considered as possible value-assignments to n variables. Basic optical devices such as prisms and mirrors are used to discriminate proper wavelengths which satisfy the CNF-formal. The method uses exponential size blocks to drop improper wavelengths, which may be constructed in a preprocessing phase and be used in many 3-SAT problem instances. After the preprocessing phase, the method takes O(m) time and exponential number of different wavelengths in light rays to find the answer of each 3-SAT problem instance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM symposium on Theory of computing, Shaker Heights, Ohio, United States, pp. 151–158. ACM, New York (1971)

    Chapter  Google Scholar 

  2. Rintanen, J., Heljanko, K., Niemel, I.: Planning as satisfiability: parallel plans and algorithms for plan search. Artificial Intelligence 170(12-13), 1031–1080 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amla, N., Du, X., Kuehlmann, A., Kurshan, R.P., McMillan, K.L.: An analysis of SAT-Based model checking techniques in an industrial environment. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 254–268. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Oltean, M., Muntean, O.: Exact cover with light. 0708.1962 (August 2007). In: New Generation Computing, vol. 26(4), pp. 327–344. Springer, Heidelberg (2008)

    Google Scholar 

  5. Oltean, M.: Solving the hamiltonian path problem with a light-based computer. Natural Computing: an international journal 7(1), 57–70 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Oltean, M., Muntean, O.: Solving the subset-sum problem with a light-based device. Natural Computing: an international journal 8(2), 321–331 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Haist, T., Osten, W.: An optical solution for the traveling salesman problem. Optics Express 15(16), 10473–10482 (2007) PMID: 19547400.

    Article  Google Scholar 

  8. Dolev, S., Fitoussi, H.: The traveling beams optical solutions for bounded NP-Complete problems. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 120–134. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Shaked, N.T., Tabib, T., Simon, G., Messika, S., Dolev, S., Rosen, J.: Optical binary-matrix synthesis for solving bounded NP-complete combinatorial problems. Optical Engineering 46(10), 108–201 (2007)

    Article  Google Scholar 

  10. Shaked, N.T., Messika, S., Dolev, S., Rosen, J.: Optical solution for bounded NP-complete problems. Applied Optics 46(5), 711–724 (2007) PMID: 17279159.

    Article  Google Scholar 

  11. Woods, D., Gibson, J.: Lower bounds on the computational power of an optical model of computation. Natural Computing 7(1), 95–108 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Woods, D., Naughton, T.J.: An optical model of computation. Theor. Comput. Sci. 334(1-3), 227–258 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Woods, D., Naughton, T.: Parallel and sequential optical computing. In: Dolev, S., Haist, T., Oltean, M. (eds.) OSC 2008. LNCS, vol. 5172, pp. 70–86. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goliaei, S., Jalili, S. (2009). An Optical Wavelength-Based Solution to the 3-SAT Problem. In: Dolev, S., Oltean, M. (eds) Optical SuperComputing. OSC 2009. Lecture Notes in Computer Science, vol 5882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10442-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10442-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10441-1

  • Online ISBN: 978-3-642-10442-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics