Skip to main content

Optical Correlator for Star Identification and Tracking

  • Conference paper
Optical SuperComputing (OSC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5882))

Included in the following conference series:

  • 678 Accesses

Abstract

Star tracker is one of the most important spacecraft attitude sensors which can achieve accuracies within several arc-seconds utilizing star identification and star tracking. The refresh rate and accuracy of star tracker are constrained as there are so many stars in the sky. A novel star identification and tracking method for star tracker using optical correlator is proposed to solve this problem of star map comparing and identification. The proposed optical correlator can optically execute the correlation operation between current star map and the standard star map constructed from the star catalog. The whole sky star identification can be completed within 100ms due to the inherent parallel computing ability of optical correlator. Star map motion can be tracking with an accuracy of up to 1/100 pixel. Computer simulations and experiments indicate that this method has great robustness to small signal-to-noise ratio, and improve the performance of star tracker remarkably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liebe, C.C.: Accuracy Performance of Star Trackers -A Tutorial. IEEE T. Aero. Elec. Sys. 38, 587–599 (2002)

    Article  Google Scholar 

  2. Eisenman, A.R., Liebe, C.C.: Advancing State-of-the-Art in Second Generation Star Trackers. In: 1998 IEEE Aerospace Conference, vol. 1, pp. 111–118. IEEE, Los Alamitos (1998)

    Google Scholar 

  3. Liebe, C.C.: Pattern Recognition of Star Constellations for Spacecraft Applications. IEEE Aero. El. Sys. Mag. 8, 31–39 (1993)

    Article  Google Scholar 

  4. Meng, N., Peifa, J.: A Survey of All-sky Autonomous Star Identification Algorithms. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics, Harbin, China, pp. 896–901. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  5. Samaan, M.A., Mortari, D., Junkins, J.L.: Recursive Mode Star Identification Algorithms. IEEE T. Aero. Elec. Sys. 41, 1246–1254 (2005)

    Article  Google Scholar 

  6. VanderLugt: Signal Detection by Complex Spatial Filtering. IEEE Trans. Inf. Theory IT-10, 139–145 (1964)

    Google Scholar 

  7. Weaver, C.S., Goodman, J.W.: A Technique for Optically Convolving Two Functions. Appl. Opt. 5, 1248–1249 (1966)

    Article  Google Scholar 

  8. Janschek, K., Tchernykh, V., Dyblenko, S.: Performance Analysis of Opto-Mechatronic Image Stabilization for a Compact Space Camera. Control Eng. Pract. 15, 333–347 (2007)

    Article  Google Scholar 

  9. Alam, M.S., Bal, A.: Improved Multiple Target Tracking via Global Motion Compensation and Optoelectronic Correlation. IEEE T. Ind. Electron 54, 522–529 (2007)

    Article  Google Scholar 

  10. Tchernykh, V., Beck, M., Janschek, K.: An Embedded Optical Flow Processor for Visual Navigation using Optical Correlator Technology. In: 2006 IEEE/RSJ IROS 2006, Beijing, China, pp. 67–72. IEEE, Los Alamitos (2006)

    Google Scholar 

  11. Bergeron, A., Bourqui, P., Harnisch, B.: Lightweight Compact Optical Correlator for Spacecraft Docking. In: Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications, vol. 6739, p. 67390. SPIE, Florence (2007)

    Google Scholar 

  12. Chao, T.H., Lu, T.: System Issues of Developing Grayscale Optical Correlator for ATR Applications. In: Proceedings of SPIE, vol. 6574, p. 657405 (2007)

    Google Scholar 

  13. Chao, T.H., Lu, T., Zhou, H.: Recent Progress on Grayscale Optical Correlator for Automatic Target Recognition. In: Proceedings of SPIE, vol. 6245, p. 624503 (2006)

    Google Scholar 

  14. Padgett, C., Kreutz-Delgado, K.: A Grid Algorithm for Autonomous Star Identification. IEEE T. Aero. Elec. Sys. 33, 202–212 (1997)

    Article  Google Scholar 

  15. Silani, E., Lovera, M.: Star Identification Algorithms: Novel Approach and Comparison Study. IEEE T. Aero. Elec. Sys. 42, 1275–1288 (2006)

    Article  Google Scholar 

  16. Akkiraju, N.: Approximating Spheres and Sphere Patches. Comput. Aided Geom. D. 15, 739–756 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hui, J. et al. (2009). Optical Correlator for Star Identification and Tracking. In: Dolev, S., Oltean, M. (eds) Optical SuperComputing. OSC 2009. Lecture Notes in Computer Science, vol 5882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10442-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10442-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10441-1

  • Online ISBN: 978-3-642-10442-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics