Skip to main content

Discriminative Human Full-Body Pose Estimation from Wearable Inertial Sensor Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5903))

Abstract

In this paper, a method is presented that allows reconstructing the full-body pose of a person in real-time, based on the limited input from a few wearable inertial sensors. Our method uses Gaussian Process Regression to learn the person-specific functional relationship between the sensor measurements and full-body pose. We generate training data by recording sample movements for different activities simultaneously using inertial sensors and an optical motion capture system. Since our approach is discriminative, pose prediction from sensor data is efficient and does not require manual initialization or iterative optimization in pose space. We also propose a SVM-based scheme to classify the activities based on inertial sensor data. An evaluation is performed on a dataset of movements, such as walking or golfing, performed by different actors. Our method is capable of reconstructing the full-body pose from as little as four inertial sensors with an average angular error of 4-6 degrees per joint, as shown in our experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aminian, K., Andres, E.D., Rezakhanlou, K., Fritsch, C., Robert, P.: Motion analysis in clinical practice using ambulatory accelerometry. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) CAPTECH 1998. LNCS (LNAI), vol. 1537, pp. 1–11. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Cunha, J., Li, Z., Fernandes, J., Feddersen, B., Noachtar, S.: Movement quantification during epileptic seizures: a new technical contribution to the evaluation of the seizure semiology. In: International Conference of the IEEE EMBS (2003)

    Google Scholar 

  3. Jovanov, E., Milenkovic, A., Otto, C., Groen, P.D.: A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of NeuroEngineering and Rehabilitation 2(1), 6 (2005)

    Article  Google Scholar 

  4. Najafi, B., Aminian, K., Paraschiv-Ionescu, A.: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Transactions on Biomedical Engineering (January 2003)

    Google Scholar 

  5. Luinge, H., Veltink, P., Baten, C.: Ambulatory measurement of arm orientation. Journal of Biomechanics 40(1), 78–85 (2007)

    Article  Google Scholar 

  6. Roetenberg, D., Slycke, P., Veltink, P.: Ambulatory position and orientation tracking fusing magnetic and inertial sensing. IEEE Transactions on Biomedical Engineering 54(4), 883–890 (2007)

    Article  Google Scholar 

  7. Zhou, H., Stone, T., Hu, H., Harris, N.: Use of multiple wearable inertial sensors in upper limb motion tracking. Medical Engineering and Physics 30, 123–133 (2008)

    Article  Google Scholar 

  8. Grochow, K., Martin, S., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Transactions on Graphics 23(3), 522–531 (2004)

    Article  Google Scholar 

  9. Gupta, A., Chen, T., Chen, F., Kimber, D., Davis, L.: Context and observation driven latent variable model for human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  10. Shon, A., Grochow, K., Hertzmann, A., Rao, R.: Learning shared latent structure for image synthesis and robotic imitation. Neural Information Processing Systems (NIPS) 18, 1233 (2006)

    Google Scholar 

  11. Urtasun, R., Fleet, D., Hertzmann, A., Fua, P.: Priors for people tracking from small training sets. In: IEEE International Conference on Computer Vision, ICCV (2005)

    Google Scholar 

  12. Agarwal, A., Triggs, B., Montbonnot, F.: Recovering 3d human pose from monocular images. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 28(1), 44–58 (2006)

    Article  Google Scholar 

  13. Fossati, A., Salzmann, M., Fua, P.: Observable subspaces for 3d human motion recovery. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), March 2009, pp. 1–8 (2009)

    Google Scholar 

  14. Urtasun, R., Darrell, T.: Sparse probabilistic regression for activity-independent human pose inference. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (January 2008)

    Google Scholar 

  15. Zhao, X., Ning, H., Liu, Y., Huang, T.: Discriminative estimation of 3d human pose using gaussian processes. In: International Conference on Pattern Recognition (ICPR), pp. 1–4 (2008)

    Google Scholar 

  16. Sminchisescu, C., Kanaujia, A., Li, Z., Metaxas, D.: Discriminative density propagation for 3d human motion estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2005)

    Google Scholar 

  17. Sun, Y., Bray, M., Thayananthan, A., Yuan, B., Torr, P.: Regression-based human motion capture from voxel data. In: British Machine Vision Conference, BMVC (2006)

    Google Scholar 

  18. Okada, R., Soatto, S.: Relevant feature selection for human pose estimation and localization in cluttered images. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 434–445. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Chai, J., Hodgins, J.: Performance animation from low-dimensional control signals. In: International Conference on Computer Graphics and Interactive Techniques, pp. 686–696 (2005)

    Google Scholar 

  20. Zhu, R., Zhou, Z.: A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(2), 295–302 (2004)

    Article  Google Scholar 

  21. Rasmussen, C., Williams, C.: Gaussian processes for machine learning (2006)

    Google Scholar 

  22. Ek, C., Torr, P., Lawrence, N.: Gaussian process latent variable models for human pose estimation. Machine Learning for Multimodal Interaction, 132–143 (2008)

    Google Scholar 

  23. Lawrence, N.: Gaussian process latent variable models for visualisation of high dimensional data. Neural Information Processing Systems, NIPS (2004)

    Google Scholar 

  24. Lawrence, N.: Gaussian process library (2009), http://www.cs.man.ac.uk/neill/gplvm/

  25. Abe, S.: Support Vector Machines for Pattern Classification. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwarz, L.A., Mateus, D., Navab, N. (2009). Discriminative Human Full-Body Pose Estimation from Wearable Inertial Sensor Data. In: Magnenat-Thalmann, N. (eds) Modelling the Physiological Human. 3DPH 2009. Lecture Notes in Computer Science, vol 5903. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10470-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10470-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10468-8

  • Online ISBN: 978-3-642-10470-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics