Skip to main content

A Variational Approach to Semiautomatic Generation of Digital Terrain Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5876))

Abstract

We present a semiautomatic approach to generate high quality digital terrain models (DTM) from digital surface models (DSM). A DTM is a model of the earths surface, where all man made objects and the vegetation have been removed. In order to achieve this, we use a variational energy minimization approach. The proposed energy functional incorporates Huber regularization to yield piecewise smooth surfaces and an L1 norm in the data fidelity term. Additionally, a minimum constraint is used in order to prevent the ground level from pulling up, while buildings and vegetation are pulled down. Being convex, the proposed formulation allows us to compute the globally optimal solution. Clearly, a fully automatic approach does not yield the desired result in all situations. Therefore, we additionally allow the user to affect the algorithm using different user interaction tools. Furthermore, we provide a real-time 3D visualization of the output of the algorithm which additionally helps the user to assess the final DTM. We present results of the proposed approach using several real data sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belliss, S., Mcneill, S., Barringer, J., Pairman, D., North, H.: Digital terrain modelling for exploration and mining. In: Proceedings on New Zealand Minerals & Mining Conference (2000)

    Google Scholar 

  2. Paparoditis, N., Boudet, L., Tournaire, O.: Automatic man-made object extraction and 3D scene reconstruction from geomatic-images. Is there still a long way to go? In: Urban Remote Sensing Joint Event (2007)

    Google Scholar 

  3. Champion, N., Matikainen, L., Rottensteiner, F., Liang, X., Hyyppä, J.: A test of 2D building change detection methods: Comparison, evaluation and perspectives. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 37 (2008)

    Google Scholar 

  4. Eckstein, W., Munkelt, O.: Extracting objects from digital terrain models. In: Remote Sensing and Reconstruction for Three-Dimensional Objects and Scenes, SPIE, pp. 43–51 (1995)

    Google Scholar 

  5. Weidner, U., Förstner, W.: Towards automatic building extraction from high-resolution digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing 50, 38–49 (1995)

    Article  Google Scholar 

  6. Zhang, K., Ching Chen, S., Whitman, D., Ling Shyu, M., Yan, J., Zhang, C., Member, S.: A progressive morphological filter for removing nonground measurements from airborne lidar data. IEEE Transactions on Geoscience and Remote Sensing 41, 872–882 (2003)

    Article  Google Scholar 

  7. Champion, N., Boldo, D.: A robust algorithm for estimating digital terrain models from digital surface models in dense urban areas. In: PCV Photogrammetric Computer Vision (2006)

    Google Scholar 

  8. Sohn, G., Dowman, I.: Terrain surface reconstruction by the use of tetrahedron model with the mdl criterion. In: Photogrammetric Computer Vision, A, p. 336 (2002)

    Google Scholar 

  9. Rottensteiner, F.: Automatic generation of high-quality building models from lidar data. Computer Graphics and Applications, IEEE 23, 42–50 (2003)

    Article  Google Scholar 

  10. Baillard, C., Maître, H.: 3-D reconstruction of urban scenes from aerial stereo imagery: a focusing strategy. Comput. Vis. Image Underst. 76, 244–258 (1999)

    Article  Google Scholar 

  11. Sithole, G., Vosselman, G.: Filtering of airborne laser scanner data based on segmented point clouds. In: Workshop on Laser Scanning (2005)

    Google Scholar 

  12. Baillard, C.: A hybrid method for deriving dtms from urban dems. In: ISPRS International Society for Photogrammetry and Remote Sensing, vol. B3b, p. 109 (2008)

    Google Scholar 

  13. Zebedin, L., Klaus, A., Gruber Geymayer, B., Karner, K.: Towards 3D map generation from digital aerial images. ISPRS Journal of Photogrammetry and Remote Sensing 60, 413–427 (2006)

    Article  Google Scholar 

  14. Pock, T., Unger, M., Cremers, D., Bischof, H.: Fast and exact solution of total variation models on the GPU. In: CVPR Workshop on Visual Computer Vision on GPU’s, Anchorage, Alaska, USA (2008)

    Google Scholar 

  15. Huber, P.: Robust Statistics. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  16. Tikhonov, A.: On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 195–198 (1943)

    MathSciNet  Google Scholar 

  17. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  18. Keeling, S.L.: Total variation based convex filters for medical imaging. Appl. Math. Comput. 139, 101–119 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation–based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rockafellar, R.T.: Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997); Reprint of the 1970 original, Princeton Paperbacks

    MATH  Google Scholar 

  21. Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition–modeling, algorithms, and parameter selection. Intl. J. of Computer Vision 67, 111–136 (2006)

    Article  Google Scholar 

  22. Chan, T., Esedoglu, S.: Aspects of total variation regularized L 1 function approximation. SIAM Journal of Applied Mathematics 65, 1817–1837 (2004)

    Article  MathSciNet  Google Scholar 

  23. Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 136–152 (2005)

    Google Scholar 

  24. Goldstein, T., Osher, S.: The split bregman method for L 1 regularized problems. UCLA CAM Report 08-29 (2008)

    Google Scholar 

  25. NVidia: NVidia CUDA Compute Unified Device Architecture programming guide 2.0. Technical report, NVIDA Corp., Santa Clara, CA, USA (2008)

    Google Scholar 

  26. Wernecke, J.: The Inventor Mentor. Addison-Wesley, Reading (1994)

    Google Scholar 

  27. Grabner, M.: On-the-fly greedy mesh simplification for 2\(\frac12\)D regular grid data acquisition systems. In: Proceedings Annual Conference of the Austrian Association for Pattern Recognition (AAPR), Graz, Austria, pp. 103–110 (2002)

    Google Scholar 

  28. Segal, M., Akeley, K.: The OpenGL graphics system: A specification. Technical report, The Khronos Group Inc. (2009), http://www.opengl.org

  29. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, vol. 1, pp. 384–393 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Unger, M., Pock, T., Grabner, M., Klaus, A., Bischof, H. (2009). A Variational Approach to Semiautomatic Generation of Digital Terrain Models. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_107

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10520-3_107

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10519-7

  • Online ISBN: 978-3-642-10520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics