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Abstract. In this paper, a four-dimensional spatiotemporal shape context de-
scriptor is introduced and used for human activity recognition in video.  The 
spatiotemporal shape context is computed on silhouette points by binning the 
magnitude and direction of motion at every point with respect to given vertex, 
in addition to the binning of radial displacement and angular offset associated 
with the standard 2D shape context.  Human activity recognition at each video 
frame is performed by matching the spatiotemporal shape context to a library of 
known activities via k-nearest neighbor classification.  Activity recognition in a 
video sequence is based on majority classification of the video frame results.  
Experiments on the Weizmann set of ten activities indicate that the proposed 
shape context achieves better recognition of activities than the original 2D 
shape context, with overall recognition rates of 90% obtained for individual 
frames and 97.9% for video sequences. 

1   Introduction 

Human activity recognition has important applications in the areas of video surveil-
lance, medical diagnosis, smart spaces, robotic vision and human computer interac-
tion. Several strategies have been employed in activity recognition to develop features 
such as principal components [1, 2] and skeletonization [4, 5, 6] from the human 
subjects in video sequences, and to recognize these features by HMMs, neural net-
works and nearest neighbors.  Improvement in recognition can be obtained when 
spatial and temporal features are combined into one representation. Pioneering work 
in this field was done in [3] by using motion energy and motion history images. The 
authors of [16] use spatiotemporal features such as sticks, balls and plates developed 
as solutions of the Poisson equation on a volume constructed by concatenating frames 
of a subject’s silhouette, obtained by background subtraction, along the temporal axis. 
The authors of [21] use spatiotemporal features found by linear filters for activity 
recognition; these have also been used by [18] in a hierarchical model (of the constel-
lation of bags-of-features type) together with spatial features found with the 2D shape 
context [7].  In [20], the authors store distances between all combinations of frame 
pairs in a self-similarity matrix and analyze the inherent similarities in action recogni-
tion. In [21], a two-stage recognition process is used together with local spatiotempo-



ral discriminant embedding; in the first stage, the silhouette is projected into a space 
where discrimination is enhanced between classes that are further apart in the spatial 
domain, and if such discrimination is not obtained, then in the second stage, a short 
segment of frames centered at the present frame is used to form a temporal subspace 
for discrimination. 

The precursor to the descriptor proposed in this paper is the 2D shape context [7]. 
The 2D shape context is a shape descriptor that bins points in the contour of an object 
using a log-polar histogram. For every point along the contour, such a log-polar his-
togram is maintained that counts how surrounding points fall within various sections.  
Contour points are binned according to their radial distance and angular offset from 
the point under consideration. The use of these two criteria for binning makes its 
histograms two-dimensional resulting in the 2D shape context, but typically, the his-
tograms are vectorized, and histogram vectors for various points are stacked to form a 
matrix. In [7] and [8], in-depth description of the shape context and its use in applica-
tions such as matching numerical digits, objects and trademarks has been provided. In 
the area of human subject representation, the 2D shape context was used for human 
body configuration estimation in still images [9], pose estimation in motion sequences 
[11], and action recognition [10]. Extension of this descriptor to 3D was proposed in 
[12] where the log-polar histogram is stretched out into the third dimension to form a 
cylindrical histogram. A spherical-histogram based 3D shape context has been used 
in [13] for action recognition on a spatiotemporal volume formed (as in [16]) by con-
catenating silhouettes along the temporal dimension. Points for the 3D shape contexts 
are usually obtained from the surface of the volumes (3D objects or spatiotemporal); 
however, in [14], they have been generated by using all the voxels within the 3D 
object. 

In this paper, we propose a 4D spatiotemporal shape context (STSC) descriptor, 
which captures both spatial and temporal description of the object based on its con-
tour shape and motion over consecutive frames.  For a contour point under considera-
tion, in addition to the radial distance and angular offset of surrounding points used 
for spatial representation, the STSC uses two more criteria, namely the magnitude and 
direction of the velocity at the surrounding points for development of histograms. The 
use of velocity magnitude allows distinction between fast and slow moving objects 
for example, running versus walking, while the use of direction allows distinction 
between the trajectories of object parts, for example, bending versus jumping. Since 
there are two additional criteria of magnitude and direction for binning velocity in-
formation, the resulting histograms in the STSC are four-dimensional. The four-
dimensional histograms for various points are vectorized and concatenated into a 
matrix for processing. 

For activity recognition applications, the advantage of the STSC descriptor over 
the traditional 2D shape context is that it incorporates local motion information that 
makes it possible to distinguish between similarly-shaped stances of activities that are 
separable due to the subject’s motion.  In comparison with the 3D shape context in 
[12], it requires fewer frames and can be applied for activity recognition in multiple-
action sequences. The spatiotemporal shape context is applicable to other areas be-
sides activity recognition, such as expression recognition, semantic annotation and 
content-based video retrieval.  



This paper is organized as follows.  Section 2 outlines the feature extraction proc-
ess for generating the spatiotemporal shape context, Section 3 presents a comparison 
of results for activity recognition on the Weizmann dataset [16] using the 2D and 
spatiotemporal shape contexts, and comparison of our results against those from other 
works on the same dataset, and Section 4 includes concluding remarks. 

2   Methodology 

This section outlines the process of generating the STSC descriptor and the method-
ology for using it for activity recognition.  

2.1   Extraction of points and generation of motion vectors 

                      
         (a)                        (b)                        (c)                       (d) 

Fig. 1. Motion vector extraction for a point along the boundary of a walking subject: (a) con-
tour of the subject, (b) 50 equidistant points from the contour; (c) for a given silhouette point a 
7x7 window (white) around the point is selected; (d) the best match 7x7 window (light gray) in 
the next frame within a 13x19 search region (dark gray) is found and the displacement between 
the centers (black arrow) represents the motion vector 

For each video frame, background subtraction is performed by subtracting a back-
ground frame obtained by concatenating subject-free halves of the corresponding 
subject’s walking video. After background subtraction, the contour of the subject’s 
silhouette is obtained at each frame using the chain code. Uniformly spaced points on 
the silhouette contour are selected for generating the STSC.  The number of silhouette 
points N is chosen to be 50 in this paper, but it is a parameter that may be varied to 
optimize performance or efficiency.  To estimate the motion vectors, a 7x7 square 
centered at each contour point is selected in the current video frame and the nearest 
7x7 square within the next video frame is found by searching within a 13x19 win-
dow. The displacement between the centers of their centers provides a motion esti-
mate for that particular point. Fig. 1 shows the process of getting motion vectors. 
Examples of the resulting contour points and their motion vectors are provided in Fig. 
2. 



 

Fig. 2. Boundary points, with 50 points per silhouette, and corresponding motion vectors for 
(a) bend, (b) run, (c) jump forward, (d) side-shuffle, (e) walk, (f) wave with two hands, (g) 
jumping jacks, (h) jump in place, (i) skip, (j) wave with one hand  

2.2  Generation of the Spatiotemporal Shape Context 

The STSC can be generated by specifying the number of bins required along the 
radial, angular, motion magnitude and motion direction dimensions denoted by nr, nθ, 
nvr, and nvθ  respectively, and the bounds for the distance and motion magnitudes, 
namely rmin, rmax, vmax, and vmin=0. Given points Pi and Pj on the contour of an object, 
the individual bin for the distance r between Pi and Pj is determined as: 
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where tr is the nr-element threshold vector given as 
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Similarly, the individual bin for the motion change magnitude vr at point Pj, is de-
termined as: 
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where tvr is an nvr-element threshold vector given by Equation (4). 
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The vectors tr and tvr contain the thresholds for the various bins within which the r- 
and vr-values of the point Pj get categorized. The selected bins form an upper cap on 
these values. Bins for angular offset θ and motion change direction vθ are obtained as 
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The index for the final bin in the STSC-vector for Pi in which to place Pj is given 
as: 

( ) ( ) ( ) θθθθθθ vvvvvvvr bnbnnbnnnbf +−+−+−= 111  (7) 

Let Hi be the shape context vector for Pi; then Hi is incremented by one at position 
f to reflect the inclusion of Pj in the shape context vector description of Pi: 

( ) ( ) 1: += fHfH ii  (8) 

The process is repeated for all points to get a matrix of size N × nr nθ nvr nvθ which 
forms the STSC. In our implementation, nr = 5, nθ = 12, nvr = 5, nvθ = 12. These pa-
rameters may be varied in order to obtain optimal performance. Fig. 3 gives an image 
version of the STSC matrix; it tends to be sparse. 
 

 
Fig. 3. Spatiotemporal shape context (STSC) developed for the frames in Fig. 1: the STSC 
matrix shown here has 50 rows corresponding to the 50 points in Fig. 1 (b), and 3600 columns 
corresponding to nr nθ  nvr nvθ = 5x12x5x12; each row has a total of 50 points that have been 
binned according to their radial displacement from the point corresponding to that row, angular 
offset, magnitude of motion vector and direction of motion vector 

 



2.3   Matching and Classification with the Spatiotemporal Shape Context 

For a given pair of images or video frames, a match value can be attributed by 
computing the STSCs of the objects in the two images, and by finding an optimal 
correspondence between the two STSCs. This correspondence is essential prior to 
matching. Since rows of the STSC correspond to points from the object contour, row-
wise ordered matching is not guaranteed between STSCs of two image pairs, even if 
they are visually similar in shape and motion. To introduce an ordered match, an 
optimal permutation must be computed for the rows of one STSC. The authors of [7] 
compute the correspondence between their 2D shape contexts with the Hungarian 
algorithm [15], which we adopt in our implementation.  The Hungarian algorithm 
computes correspondence using an NxN cost matrix as input which can be obtained 
by computing pair-wise distances between each of the N rows in one STSC to each of 
the N rows in the other STSC. The distances are computed using the Х2 metric; if Hi 
is the i-th row in the first STSC, and Hj is the j-th row in the second STSC then the 
element of the cost matrix at the (i,j)-th location is given using the Х2 metric as: 
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Once the Hungarian algorithm is used to compute the optimal correspondence be-
tween rows of the two STSCs, then a match value can be assigned to the pair by com-
puting the sum of Х2 distances between optimally corresponded rows of the STSCs. A 
small match value indicates that two activity stances are similar in their shapes and 
motion, while a large match value indicates the opposite.  This allows k-NN classifi-
cation to be used on the match values in order to identify the activity. For the purpose 
of classification, a library of action stances and their STSCs can be maintained, and 
one can compute the STSC of an input frame from itself and the next adjacent frame 
using the equations listed in section 2.2. Match values can then be computed between 
the input frame’s STSC and the STSCs in the library after optimal correspondence is 
found using the Hungarian algorithm, and the k nearest match values can be used to 
classify the input frame’s action. Such a classification is done for every frame in the 
sequence and the activity for the entire video is found by majority voting on the re-
sults of individual frames within the video. 

3   Results 

Recognition was performed on the ten activities of the Weizmann dataset [16]. Two 
experiments were conducted for the purpose of comparison: one using the 2D shape 
context, and one using the STSC. For each experiment, a library of the corresponding 
shape contexts was maintained by hand-picking 10 frames per subject per activity, 
and computing shape contexts for each frame. The spatiotemporal shape context 
calculation was done using silhouette points on each frame and motion information 
between successive frames. Classification was done using the leave one out tech-
nique, i.e. for every test subject, library shape contexts corresponding to all activities 



for that subject were left out. During testing, shape contexts were computed from 
each frame in the video sequence and were matched to the library using k-NN with 
k=1, i.e. the closest matching library shape context was selected. The activity corre-
sponding to the closest match was used to classify the input frame, and for a video 
sequence, majority vote of the activity classifications for individual frames were used 
to make the activity decision for the video. Results from the two experiments were 
used to generate confusion matrices that contain percentages of frames classified as 
various activities for individual video frames and entire video sequences. 

Table 1. Results from individual frame recognition using the 2D shape context 

 B JF R SS W V2 JJ JP S V1 
B 93.5 4.3 0 0 0 0 0 1.1 0 1.1 
JF 5.1 79.5 1.6 0.2 3.1 0 0.2 0.2 10.1 0 
R 0 2.0 72.4 1.3 8.4 0 0 0.2 15.7 0 
SS 0.5 0.2 0.2 86.2 0.7 0.2 0.9 11.1 0 0 
W 0 5.0 3.6 0 88.3 0 0.3 0 2.8 0 
V
2 0 0 0 0.3 0 95.9 2.8 0.8 0 0.2 

JJ 0 0 0 2.5 0 2.6 87.4 7.5 0 0 
JP 0.8 0 0 5.3 0 0 2.4 91.3 0 0.2 
S 0 7.4 31.1 0 6.5 0 0.2 0 54.8 0 
V
1 1.9 0 0 0 0 0 0 1.5 0 96.6 

 
Table 1 provides results for classifying individual video frames and entire video 

sequences respectively using the 2D shape context. The nomenclature is as follows: 
B=bend, JF=jump forward, R=run, SS=side-shuffle, W=walk, V2=wave with two 
hands, JJ=jumping jacks, JP=jump in place, S=skip and V1=wave with one hand. 
Individual frame classification rates for most activities are above 80%; however, 
jumping, running and skipping show lower classification. There is room for im-
provement in the recognition of several actions, since bending and jumping confuse 
with each other due to the hunched-back posture of the subject. Several stances of 
profile-based actions such as walking, running and jumping overlap with one another. 
Similarly, shapes of frontally-faced actions such as side-shuffling, jumping jacks, 
waving with two hands and jumping in place overlap. Some frames of waving with 
one hand confuse with bending due to incorrect silhouette extraction that causes the 
elbow to connect with the head. Correct video classification is attained for all actions 
except skipping which is recognized at a rate of 70%. An overall frame recognition 
rate of 86% and video recognition rate of 96.8% is obtained.  
 
Table 2 provides results of individual frame recognition and video recognition when 
the STSC is used during classification. We observe that the mismatches due to the 2D 
shape context between bending and jumping, and between walking and running (on 
account of similarities in shape) are reduced when STSC is used. Mismatches of 
several jumping and running frames with the skipping action are reduced as well. 



Mismatches of jumping in place with two-handed waving and jumping jacks, and of 
side-shuffling with jumping in place are reduced considerably. Some misclassifica-
tions are introduced for jumping jacks frames with jumping in place, jumping in place 
frames with one-handed waving, and side-shuffling with walking, primarily due to 
the added similarity of motion vectors. The classification rate for the bending activity 
is much higher, and the classification rate for waving with one hand now attains 
100% rate.  All videos are classified correctly except skipping which is recognized at 
a rate of 80%. Overall recognition rates of 90% for frames and 97.9% for videos are 
obtained. Thus, we observe that there is an overall increase in classification over the 
original shape context. 

Table 2. Results from individual frame recognition using the STSC 

 B JF R SS w V2 JJ JP S V1 
B 98.4 0 0 0 0 0 0 0 0 1.6 
JF 0 86.6 0.9 2 0.7 0 0 0 9.8 0 
R 0 2.5 86.1 0.2 1.3 0 0 0 9.9 0 
SS 0 1.9 0.5 93.3 4.1 0 0.2 0 0 0 
W 0.3 0.6 0.4 2.1 95.6 0 0 0 1 0 
V2 0 0 0 0 0 97.1 0 0 0 2.9 
JJ 0.7 0 0 0 0 1.4 83.1 13.7 0 1.1 
JP 0.2 0 0 0 0 1.1 0.2 93.8 0 4.7 
S 0 20.4 17.4 1.0 3.4 0 0 0 57.8 0 

V1 0 0 0 0 0 0 0 0 0 100 
 

Table 3. Individual frame and video recognition rates of the 2D and STSC compared against 
other works (- indicates that result was not provided ,* recognition was done on space-time 
cubes with 8 frames per cube as opposed to individual frames). 

 Frame recognition 
rate 

Video recognition 
rate 

STSC (this paper) 90% 97.9% 
2D Shape Context 86% 96.8% 
Grunmann et al [13] - 94.4% 
Gorelick et al [16]* - 97.8% 
Jhuang et al (skip excluded, 
using C3 features) [17] - 98.8% 

Niebles et al (skip excluded) 
[18] 55% 72.8% 

Junejo et al [19] - 95.3% 
Jia et al (using LSTDE) [21] 90.9% - 
 
Table 3 shows the overall frame and video recognition rates for the work in this 

paper compared against other works done using the Weizmann dataset. It must be 
noted that for [16], recognition has been done on space-time cubes consisting of 8 



frames per cube, and hence cannot necessarily be categorized as frame or video clas-
sification. However, our video recognition rates are similar to the space-time cube 
classification rates. Our frame-based activity recognition with the STSC is on par 
with that in [21], and is better than [13] and [19]. In [17] and [18], recognition has 
been done by excluding the skipping action from the dataset: we observe that our 
frame and video recognition rates even with skipping are higher than those from [18], 
and since we obtain 100% video classification on all actions except skipping, then if 
skipping were excluded from the library, we obtain 100% overall video recognition 
rate which is higher than the rate in [17].  

4   Conclusions 

In conclusion, this paper proposes a new 4D spatiotemporal shape context which is a 
descriptor for objects in video sequences that encodes information about the shape of 
the object and the change in its motion from one frame to the next. Using the spatio-
temporal shape context for activity recognition demonstrates that it performs at least 
as well as other leading methods and is better than the shape context for most activi-
ties, since it allows the separation of similarly shaped stances using the differences in 
their motion over frames. The spatiotemporal shape context can be used to represent 
shape and motion in other areas of object or category recognition, such as content 
based video retrieval, expression or face recognition in video, and distinction between 
individual actions in multiple-action sequences. Future work includes analyzing the 
performance of the spatiotemporal shape context for activity recognition over short 
segments of video for the purpose of recognizing changes in activities using a sliding 
window. 
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