Skip to main content

Gloss and Normal Map Acquisition of Mesostructures Using Gray Codes

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5876))

Included in the following conference series:

Abstract

We propose a technique for gloss and normal map acquisition of fine-scale specular surface details, or mesostructure. Our main goal is to provide an efficient, easily applicable, but sufficiently accurate method to acquire mesostructures. We therefore employ a setup consisting of inexpensive and accessible components, including a regular computer screen and a digital still camera. We extend the Gray code based normal map acquisition approach of Francken et al. [1] which utilizes a similar setup. The quality of the original method is retained and without requiring any extra input data we are able to extract per pixel glossiness information. In the paper we show the theoretical background of the method as well as results on real-world specular mesostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Francken, Y., Cuypers, T., Mertens, T., Gielis, J., Bekaert, P.: High quality mesostructure acquisition using specularities. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 1–7. IEEE Computer Society Press, Los Alamitos (2008)

    Google Scholar 

  2. Rushmeier, H., Taubin, G., Guéziec, A.: Applying Shape from Lighting Variation to Bump Map Capture. IBM TJ Watson Research Center (1997)

    Google Scholar 

  3. Hernández, C., Vogiatzis, G., Brostow, G.J., Stenger, B., Cipolla, R.: Non-rigid photometric stereo with colored lights. In: Proceedings of International Conference on Computer Vision (2007)

    Google Scholar 

  4. Morris, N.J.W., Kutulakos, K.N.: Reconstructing the surface of inhomogeneous transparent scenes by scatter-trace photography. In: Proceedings of International Conference on Computer Vision (2007)

    Google Scholar 

  5. Chung, H.S., Jia, J.: Efficient photometric stereo on glossy surfaces with wide specular lobes. In: Proceedings of Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Press, Los Alamitos (2008)

    Google Scholar 

  6. Malzbender, T., Gelb, D., Wolters, H.J.: Polynomial texture maps. In: SIGGRAPH, pp. 519–528 (2001)

    Google Scholar 

  7. Han, J.Y., Perlin, K.: Measuring bidirectional texture reflectance with a kaleidoscope. In: SIGGRAPH, pp. 741–748. ACM Press, New York (2003)

    Google Scholar 

  8. Neubeck, A., Zalesny, A., Gool, L.V.: 3d texture reconstruction from extensive btf data. In: Texture 2005 Workshop in conjunction with ICCV 2005, pp. 13–19 (2005)

    Google Scholar 

  9. Wang, J., Dana, K.J.: Relief texture from specularities. Transactions on Pattern Analysis and Machine Intelligence 28, 446–457 (2006)

    Article  Google Scholar 

  10. Ma, W.C., Hawkins, T., Peers, P., Chabert, C.F., Weiss, M., Debevec, P.: Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In: Proceedings of Eurographics Symposium on Rendering (2007)

    Google Scholar 

  11. Chen, T., Goesele, M., Seidel, H.P.: Mesostructure from specularity. In: Proceedings of Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1825–1832 (2006)

    Google Scholar 

  12. Holroyd, M., Lawrence, J., Humphreys, G., Zickler, T.: A photometric approach for estimating normals and tangents. SIGGRAPH Asia 27, 133 (2008)

    Google Scholar 

  13. Nicodemus, F., Richmond, J., Hsia, J., Ginsberg, I., Limperis, T.: Geometrical considerations and nomenclature for reflectance. NBS monograph 160, 201–231 (1977)

    Google Scholar 

  14. He, X.D., Torrance, K.E., Sillion, F.X., Greenberg, D.P.: A comprehensive physical model for light reflection. In: SIGGRAPH, New York, NY, USA, pp. 175–186. ACM Press, New York (1991)

    Google Scholar 

  15. Ashikhmin, M., Shirley, P.: An anisotropic phong brdf model. Journal of Graphics Tools 5, 25–32 (2000)

    Google Scholar 

  16. Ashikmin, M., Premože, S., Shirley, P.: A microfacet-based brdf generator. In: SIGGRAPH, New York, NY, USA, pp. 65–74. ACM Press, New York (2000)

    Chapter  Google Scholar 

  17. He, X.D., Heynen, P.O., Phillips, R.L., Torrance, K.E., Salesin, D.H., Greenberg, D.P.: A fast and accurate light reflection model. SIGGRAPH 26, 253–254 (1992)

    Article  Google Scholar 

  18. Ward, G.J.: Measuring and modeling anisotropic reflection. SIGGRAPH 26, 265–272 (1992)

    Article  Google Scholar 

  19. Lafortune, E.P.F., Foo, S.C., Torrance, K.E., Greenberg, D.P.: Non-linear approximation of reflectance functions. In: SIGGRAPH, New York, NY, USA, pp. 117–126. ACM Press/Addison-Wesley Publishing Co (1997)

    Google Scholar 

  20. Lensch, H.P.A., Goesele, M., Kautz, J., Heidrich, W., Seidel, H.P.: Image-based reconstruction of spatially varying materials. In: Theoharis, T. (ed.) Algorithms for Parallel Polygon Rendering. LNCS, vol. 373, pp. 103–114. Springer, Heidelberg (1989)

    Google Scholar 

  21. Gardner, A., Tchou, C., Hawkins, T., Debevec, P.: Linear light source reflectometry. In: SIGGRAPH, pp. 749–758. ACM Press, New York (2003)

    Google Scholar 

  22. Ngan, A., Durand, F., Matusik, W.: Experimental analysis of brdf models. In: Proceedings of Eurographics Symposium on Rendering, Eurographics Association, pp. 117–226 (2005)

    Google Scholar 

  23. Koenderink, J.J., Doorn, A.J.v., Stavridi, M.: Bidirectional reflection distribution function expressed in terms of surface scattering modes. In: Proceedings of European Conference on Computer Vision, London, UK, pp. 28–39. Springer, Heidelberg (1996)

    Google Scholar 

  24. Westin, S.H., Arvo, J.R., Torrance, K.E.: Predicting reflectance functions from complex surfaces. In: SIGGRAPH, pp. 255–264. ACM Press, New York (1992)

    Google Scholar 

  25. Ramamoorthi, R., Hanrahan, P.: Frequency space environment map rendering. In: SIGGRAPH, pp. 517–526. ACM Press, New York (2002)

    Google Scholar 

  26. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. Transactions on Pattern Analysis and Machine Intelligence 25, 218–233 (2003)

    Article  Google Scholar 

  27. Lalonde, P., Fournier, A.: A wavelet representation of reflectance functions. Transactions on Visualization and Computer Graphics 3, 329–336 (1997)

    Article  Google Scholar 

  28. Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. In: SIGGRAPH, pp. 376–381. ACM Press, New York (2003)

    Google Scholar 

  29. Blinn, J.F.: Models of light reflection for computer synthesized pictures. In: SIGGRAPH, pp. 192–198. ACM Press, New York (1977)

    Google Scholar 

  30. Ghosh, A., Chen, T., Peers, P., Wilson, C.A., Debevec, P.: Estimating specular roughness and anisotropy from second order spherical gradient illumination. In: Theoharis, T. (ed.) Algorithms for Parallel Polygon Rendering. LNCS, vol. 373, Springer, Heidelberg (1989)

    Google Scholar 

  31. Francken, Y., Hermans, C., Bekaert, P.: Screen-camera calibration using gray codes. In: Proceedings of Canadian Conference on Computer and Robot Vision. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  32. Bouguet, J.Y.: Camera calibration toolbox for matlab (2006)

    Google Scholar 

  33. Umeyama, S., Godin, G.: Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images. Transactions on Pattern Analysis and Machine Intelligence 26, 639–647 (2004)

    Article  Google Scholar 

  34. Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: SIGGRAPH, pp. 117–128. ACM Press, New York (2001)

    Google Scholar 

  35. Lamond, B., Peers, P., Ghosh, A., Debevec, P.: Image-based separation of diffuse and specular reflections using environmental structured illumination. In: Proceedings of International Conference on Computational Photography (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Francken, Y., Cuypers, T., Mertens, T., Bekaert, P. (2009). Gloss and Normal Map Acquisition of Mesostructures Using Gray Codes. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10520-3_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10519-7

  • Online ISBN: 978-3-642-10520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics