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Abstract. This paper describes an automatic annotation, or autotagging, 
algorithm that attaches textual tags to 3D models based on their shape and 
semantic classes. The proposed method employs Manifold Ranking by Zhou et 
al, an algorithm that takes into account both local and global distributions of 
feature points, for tag relevance computation. Using Manifold Ranking, our 
method propagates multiple tags attached to a training subset of models in a 
database to the other tag-less models. After the relevance values for multiple 
tags are computed for tag-less points, the method selects, based on the 
distribution of feature points for each tag, the threshold at which the tag is 
selected or discarded for the points. Experimental evaluation of the method 
using a text-based 3D model retrieval setting showed that the proposed method 
is effective in autotagging 3D shape models. 

Keywords: 3D geometric modeling, content based retrieval, automatic 
annotation, manifold ranking, text tags, semantic retrieval. 

1 Introduction 

Specification of a query is one of the most fundamental issues in retrieving 
multimedia objects such as images and 3D geometric models. These data objects may 
be searched either by example(s) or by text(s), each approach having its own 
advantages and disadvantages. To retrieve 3D models, a query for the Query-By-
Example (QBE) approach could be sketches in either 2D [12] or 3D of the desired 
shape, an example 3D model, or a photograph of a real-world object having the 
desired shape. Most of the published work on 3D model retrieval used the QBE 
approach [2, 5, 6, 7, 9, 10, 12, 14]. While the QBE approach is quite powerful and 
useful in many application scenarios, it does have drawbacks. For example, it is often 
impractical to find a 3D model that have a shape similar enough to the desired one. 
Or, a user may find sketching a complex shape difficult. Capturing semantic aspect of 
the desired shape is also difficult with the QBE approach. Previous work used either 
single-class learning via relevance feedback [6, 7] or off-line multi-class learning [10] 
for semantics. 

An alternative, Query-By-Text (QBT) approach, employs a text as a query, as in 
text-based search engines. While the QBT is disadvantageous in directly specifying a 
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desired shape, it has an advantage in describing semantic content of the desired shape. 
For example, a word “mammal” could be used to retrieve both dolphin and cat that 
have very different geometric shapes. The issue in QBT of 3D models is that most of 
the 3D models are not associated with text tags, and that adding consistent tags 
manually to a large number of 3D models can be quite difficult. An automatic or 
semi-automatic approach, e.g., propagation of tags from a set of tagged models to a 
large number of tag-less models, is necessary.  

The authors know of only two examples, one by Zhang et al [16] and the other by 
Goldfeder et al [3] that studied autotagging of 3D models. The method by Zhang et al 
[16] associates a list of attributes, not text tags, with a 3D model. The method 
employs biased kernel regression to propagate probabilities of the attributes from the 
manually tagged source models to the tag-less models. For retrieval, the method treats 
the list of probabilities as a feature vector, and computes distances among feature 
vectors. Thus, it is not strictly a QBT method. The method by Goldfeder et al [3] is a 
QBT approach, in which text tags are propagated from tagged 3D models to tag-less 
3D models. To propagate tags, it uses local structure of the shape feature space via 
nearest neighbor search. For experiments, they used a set of 192,343 mesh-based 3D 
models having text tags in a snapshot of Google 3D Warehouse (G3W). The G3W is 
an evolving set of a large number of 3D models contributed by users, and it contains 
errors and inconsistencies in its tags. Unfortunately, the G3W snapshot they have 
used is not available for use at this time. Goldfeder et al evaluated tagging 
performance of their method by using a retrieval task, by comparing retrieval 
performance of their auto-tagging based QBT algorithm with that of a QBE algorithm 
that uses 3D models as its queries. The paper [3] reported that the QBT performed 
equal or better than the QBE algorithm they have compared against.  

In this paper, we propose a novel off-line semi-supervised algorithm for 
autotagging 3D model collections that exploits both local and global distribution of 
tagged and tag-less shape features by means of the Manifold Ranking (MR) algorithm 
by Zhou, et al. [17, 18]. From a set of shape features extracted from a set of tagged 
3D models that shares a same text tag, the MR algorithm diffuses a relevance rank 
value indicating the likelihood of tag-less models to have the tag. This MR process is 
performed once for each of keyword to determine a set of tags a tag-less model should 
receive. To discard an unreliable tag attached to the tag-less model, compactness of 
the distribution of the tagged models sharing the tag is taken into consideration. An 
evaluation of the proposed algorithm by using a 3D model retrieval scenario showed 
that a QBT retrieval method by using the text tags added by the method significantly 
outperforms a QBE retrieval method that used 3D shape feature comparison  

2 Autotagging 3D Models via Multiple Manifold Ranking 

Our algorithm, whose outline is shown in Figure 1, consists of the following three 
steps. Details of the steps will be described in the following subsections.  

(1) Shape feature extraction: Extract a shape feature from the input 3D model.  
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(2) Tag propagation: For each tag, propagate, in the shape feature space, the 
likelihood of a 3D model having the tag from the tagged “training example” 3D 
models to the tag-less models. The tag likelihood propagation is performed by 
using the Manifold Ranking (MR) algorithm by Zhou, et al [17, 18]. Repeat the 
MR-based tag likelihood propagation for all the tags.  

(3) Tag selection: A tag-less model now has multiple likelihood values for multiple 
tags. Select, based on the mutual distance of the tagged and tag-less models, the 
most likely tags to be attached to the model.  

2.1 Feature extraction 

So far as a shape descriptor, or a feature, of a 3D model is a vector, it can be used in 
the proposed autotagging algorithm. A feature for comparing 3D shapes is required to 
have a set of invariances. Typically, certain invariance to shape representation, 
invariance to geometrical transformation up to similarity transformation, and 
invariance to geometrical and topological noise are expected. One might need to 
compare a CAD model defined as a 3D solid by using curved surface patches with a 
polygon soup model or a point set model. Invariance against three rotational degrees 
of freedom is not trivial to achieve [14]. Topological and geometrical noises, such as 
holes, variation in vertex connectivity in a mesh, displacements of vertices, need to be 
tolerated. Depending on an application, additional invariance, such as invariance 
against joint articulation, may be required.  

For the experiment described in this paper, we used our extension of Wahl’s Surflet 
Pair Relation Histograms (SPRH) [15], a shape feature that has nice invariance 
properties, readily available, and has reasonable retrieval performance. The Windows 
32bit executable of our extension of the SPRH is available at our web site [8]. The 
SPRH was originally developed for oriented point set models acquired by Laser range 
scanners. We added a step to convert a surface based model to an oriented point-set 
model by using quasi-Monte Carlo sampling of surfaces [10]. As a result, the 
extended SPRH is able to accept popular surface-based shape representations such as 
polygon soup and closed polygonal mesh. The SPRH feature is a joint histogram of 

 
Fig. 1.  The method estimates a Tag Relevance Rank (TRR), a likelihood of a model having a 
text tag, by Manifold Ranking [17, 18]. Estimation of TRR is performed for every tag. Then 
most relevant of the tags are selected for a 3D model by using tag-specific threshold values. 
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quadruples (δ, α, β, γ), in which δ is the distance and α, β, and γ are the angles 
between a pair of oriented points. By default, each of the four quantities has 5 bins, 
making a SPRH feature a 5ସ ൌ ܦ625  vector. The SPRH is invariant to similarity 
transformation without requiring pose normalization. It is also insensitive to various 
noises, such as variation in mesh tessellation or connectivity, holes, or small vertex 
displacements.  

2.2 Tag propagation and selection 

Our method uses the Manifold Ranking (MR) [17, 18] algorithm to estimate the 
relevance of a text tag to tag-less 3D models. The MR algorithm is a graph-based 
learning algorithm that can be used either in unsupervised, supervised, or semi-
supervised modes. Our method uses the MR in semi-supervised mode. Intuitively, the 
MR resembles to solving a diffusion equation on an irregular connectivity mesh in a 
high-dimensional feature space. The mesh is created by connecting, by their 
proximity, the feature points in the feature space.  For example, given the 625D 
feature of the SPRH, the mesh is embedded in a 625D space with its feature points 
having 625D coordinate. In our autotagging framework, the mesh for the MR is 
created from union of feature vectors of the tagged as well as tag-less 3D models. 
Typically, a text tag is associated with multiple tagged (or “source”) 3D models so 
that a MR process would have multiple sources for diffusion. Given N text tags, or 
keywords, the proposed algorithms runs N such MR processes to diffuse Tag 
Relevance Rank (TRR) value for the N tags onto all the tag-less 3D models. At the 
equilibrium of solving the diffusion equation iteratively, the higher the diffused TRR 
value, the higher the likelihood of the tag-less model having the tag.  

 Let us assume propagation of a tag from a set of tagged 3D models to the other 3D 
models without the tag. Let { }1 1 1, , , , , , , ,s s t t nx x x x x xχ + +=  be a set of n 
features in a m-dimensional feature space ,m  in which first s t+  points from 1x  to  

tx  are the feature points for the tagged models. Among the tagged points, points from 
1x  to tx  are the source set, and the point from 1sx +  to tx  are the probe set. This 

splitting of the tagged points is done to estimate a TRR threshold value th, which 
decides if a tag should be attached to a tag-less point or not. The source set and the 
probe set is of equal size, and are drawn randomly from the set of s t+  points sharing 
the same tag. To put it briefly, by performing TRR diffusion within a set of models 
sharing a tag, the tightness of the distribution of the tag is estimated to compute the th. 
Details on tag selection will be explained below.  The rest of the points from 1tx +  to 

nx  are the tag-less ones for which the TRR values need be computed. Let 
:d χ χ× →  denote a distance metric on ,χ  e.g., L1-norm or Cosine distance, that 

assigns a pair of points ix  and ix  a distance ( , )i jd x x .  Let :f χ →  be a ranking 
function that assigns each ix  a ranking score if , thereby forming a rank vector 

1, , T
nf f= ⎡ ⎤⎣ ⎦f . Let the n-dimensional binary-valued vector 1, , T

ny y= ⎡ ⎤⎣ ⎦y  be a 
label vector, in which 1iy =  for the tagged (“source”) point and 0iy =  for the rest, 
i.e., points to which tags are assigned.  

We first create the affinity matrix W where ijW  indicates the similarity between 
samples ix  and jx
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The distance metric ( ),i id x x  used in forming W affects ranking performance. We 
will compare several distance measures for their performance in Section 3.1. The 
positive parameter σ  defines the radius of influence. Note that 0ii =W   since there 
is no ark connecting a point with itself. The matrix W  is positive symmetric. A 
normalized graph Laplacian S  is then defined as; 

1 1
2 2

− −
=S D WD  (2) 

where D is a diagonal matrix in which ijD  equals to sum of i-th row of W, that is, 
ij ijj= ∑D W  Then the ranking vector 1, , T

nf f= ⎡ ⎤⎣ ⎦f  can be estimated by iterating 
the following until convergence; 

( )( 1) ( ) 1t tα α+ = + −f Sf y  (3) 

As the equilibrium is reached, each tag-less point would have a TRR value 
associated with them, indicating the likelihood of the point having the tag. We call the 
ranking vector at the equilibrium *.f   

The algorithm performs the tag propagation process describe above n times, once 
for each of the n tags. After all the tags have been diffused, a point in the feature 
space would have n positive TRR values corresponding to the n tags. A TRR value ௜݂ 
indicates how relevant the tag is to the point i. The system must now decide what 
subset of the n tags should be attached to the point. To decide, our method employs a 
simple proving to estimate the cut-off threshold th of the TRR for each tag. As 
described above, the method randomly splits the set of s t+  tagged points sharing the 
same tag into two (roughly) equal-sized subsets, the source set and the probe set. 
After the MR, the TRR values of the points in the probe set, that is, the points from 

1sx +  to tx in the set of features ,χ  are used to estimate a threshold th by using the 
following equation; 

݄ݐ  ൌ min௦ାଵஸ௜ஸ௧ሺ ௜݂ሻ (4) 

The threshold th is computed for each tag. If the TRR ௜݂ ൒ th  at a tag-less point, 
the tag i is attached to the point. The tag is also given the TRR value ௜݂  as its 
confidence value at the point. In general, a point may be associated with multiple tags 
if more than one tag has TRR values greater than or equal to their respective threshold 
values. As a reviewer pointed out, the use of minimum to compute the threshold th is 
debatable, as it is not robust against outliers. However, given small size of some of 
the classes in the benchmark dataset, e.g., just 4 models per class and 2 models in its 
prove set, we could not come up with a better method that is statistically robust. 
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In the example of Figure 2, tagged points belonging to the tag “car” has the tightest 
distribution, with the similarity threshold th=0.8. The TRR of the “car” tag at the tag-
less point in question is 0.5, which is below the threshold th=0.8. Thus, the “car” tag 
is not attached to the point. Similarly, the “animal” tag is not attached to the point. 
The “chair” tag, on the other hand, has the TRR=0.5, while the threshold for the 
“chair” tag is th=0.4. Thus, the point is associated with the tag “chair”. 

3. Experiments and Results 

As the research on autotagging, or automatic annotation of 3D models just started, 
there is no established benchmark for an objective evaluation. Ideally, one should use 
a large enough corpus, something similar to the snapshot of G3W containing 190k 
models used by Goldfeder et al, for tagging. Unfortunately, the G3W snapshot used 
by Goldfeder et al is not available for us. In addition to the database, one also needs a 
method to evaluate the tagging performance numerically and objectively.  

We resorted to using a well accepted benchmark for QBE 3D model retrieval, the 
Princeton Shape Benchmark (PSB) [13] for our evaluation. The 1,814 model PSB 
contains two equal-sized subsets, the train set and test set, each consisting of 907 
models. We regard class labels of the PSB train set as text tags, and transfer the tags 
from the train set to the test set. We then regarded the retrieval performance derived 
under the QBT framework as the performance index of the autotagging method.  

The PSB has a 4-level class hierarchy, from the most detailed “Base” level classes 
to the most abstract “Coarse 3” level classes containing only two classes; “natural” 
and “manmade”. Of these four levels, we use the Base level classes only in the 
following experiments. The Base level class itself has four internal levels of 
hierarchy. If leaf nodes of the Base level are counted, there are about 90 classes in the 
Base level of both train and test set. Note that some of the classes in the Base class of 
the train set do not have their counterparts in the Base level of the test set, and vice versa. If 
both leaf and non-leaf nodes of the Base level classes are counted there are about 130 
classes. (To be exact, there are 129 classes in the train set and 131 classes in the test 

 
Fig. 2.  A tag is attached to a feature if its Tag Relevance Rank (TRR) propagated from features 
with the tag exceeds the threshold th specific to the tag. The threshold is the estimated 
minimum TRR of the prove set of features having the tag. 
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set.) Note also that the size of a class at the leaf-node of the Base class can be quite 
small, ranging from just four per class to a couple of dozen per class.  

As the feature vector, we used the SPRH by Wahl [15] modified to accept polygon 
soup and polygonal mesh models found in the PSB. Note that the performance of the 
SPRH is only modest by current state of the art. Here we do not aim for the highest 
retrieval performance, but we want to evaluate our autotagging algorithm by using a 
QBT framework.  

3. 1. Distance measures for similarity matrix 

This set of experiments compares, using the retrieval performance, the autotagging 
performance of various distance measures used in forming the affinity matrix W  in 
equation (1).  

For this experiment, we used 63 class labels that are common among the train and 
test sets of the PSB. These 63 classes are selected from the Base level, and include 
both leaf and non-leaf nodes in the Base level. These 63 classes correspond to 811 
models in the train set and 823 models in the test set. We used the 3D models in the 
train set as the tagged models, and propagated their class labels to the models in the 
test set.  

We compared five distances measures, that are, -normkL having k=0.5, 1.0, and 
2.0, the cosine (cos) measure, and the Kullback-Leibler divergence (KLD). In the 
following equations, ( )ix=x  and ( )iy=y  are the feature vectors and n is the 
dimension of the vectors. The  -normkL   is defined by the following equation; 

( ) ( )
1

,
n kk

k i ii
d x y⎡ ⎤= −⎢ ⎥⎣ ⎦∑x y  (5) 

The original paper on MR used the Euclidian distance, or 2 -normL  with k=2.0, to 
form the affinity matrix [17, 18]. The Manhattan distance with k=1.0 is often said to 
perform better in higher dimension. Aggarwal, et al in [1] argued that k<1.0, e.g., 
k=0.5, works even better in higher dimension than k=1.0. As the cosine measure is a 
measure of similarity having the range [ ]0,1 , we converted it to a distance using the 
following equation; 

cos ( , ) 1d ⋅
= −

⋅
x yx y

x y
 (6) 

The KLD is sometimes referred to as information divergence, or relative entropy, 
and is not a distance metric, for it is not symmetric. We use a version of KLD that is 
symmetric as below; 

( )
1

( , ) ln
n

i
KLD i i

ii

yd y x
x

=

= −∑x y  (7) 
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Figure 3 shows the retrieval performance in R-precision of various distance 
measures ( , )i jd x x

 
used in forming the affinity matrix W  of equation (1). Both the 

0.5-normL  and the KLD performed equally well, finishing at the top. The 2-normL  
employed in the original paper on manifold ranking [17, 18] finished the last in this 
case. The result will likely be different for other features and databases having 
different distribution of feature points. However, it is definitely worth experimenting 
with several different distance measures. We will use the 0.5-normL  for the 
experiments that follow.  

 
Fig. 3. Distance measures used in forming the affinity matrix W (Equation (1)) and retrieval 
performance measured in R-precision.  

3.2. Query By Text v.s. Query By (3D model) Example 

In this set of experiments, in an effort to quantify autotagging performance, 
retrieval performances of the QBT and QBE frameworks are compared. The QBE 
retrieval and the autotagging step for the QBT used the same shape feature, the SPRH 
modified by us to accept polygon-based models. As tags, we used 21 class labels of 
21 leaf nodes in the Base level that are common among the PSB train and test set. 
This is different from the 63 class labels using in the previous experiment, which 
included both leaf and non-leaf nodes in the Base level of the PSB. This experiment 
used the leaf node only since performance evaluation in QBE framework could only 
use the leaf-nodes as its query. That is, it is not possible for the QBE framework to 
query by using a “super shape” corresponding to a super class.  

Figure 4 shows the recall-precision plots for the QBT and QBE frameworks. The 
QBT outperformed the QBE almost everywhere except at the lowest recall. The QBE 
won at the lowest recall since the top ranked retrieval in the QBE is always correct, as 
it is the query itself. For the QBT retrieval, however, the top-ranked result may be 
wrong if the tagging step made mistakes.  

Figure 5 compares the retrieval performance of the QBT and the QBE for when 
only leaf classes in the Base level are considered (case “leaf”) and both leaf classes 
and non-leaf classes in the Base level are considered (case “all”). The R-precision 
values are averaged over the classes and models used in each experiment. R-precision 
for both QBT and QBE dropped for when non-leaf classes are included in the queries. 
Still, the QBT performed better than the QBE in both cases.  
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We observe that that the QBT retrieval performance of average R-precision=55% 
is on a par with some of the state-of-the-art QBE methods evaluated by using the 
same database but with different set of classes. (For reference, the Light Field 
Descriptor (LFD) by Chen et al. [2] has average R-precision=45% if evaluated by 
using all the 93 leaf node classes of the Base level PSB test set.) Such an apparently 
good performance of the QBT may be explained as follows. The proposed algorithm 
adds a tag by propagating TRR from multiple feature points sharing the tag.  

This resembles to the case in which the MR is used in a relevance-feedback based 
3D model retrieval system [11]. The system described in [11] produced a high 
retrieval performance after multiple 3D models are marked as relevant after a few 
relevance feedback iterations. 

 

Fig. 4.  Recall-precision plot for the QBE and QBT retrieval experiments. Overall, the QBT 
using the automatically added tags significantly outperformed the QBE using the shape feature.  

 
Fig. 5.  The QBT based on the autotagging performed significantly better than the QBE for 
both the “leaf” case, which included only leaf classes in the Base level PSB, and the “all” case, 
which included both leaf and non-leaf classes in the Base level PSB. 
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3.3. Tagging Examples 

Figure 6, Figure 7, and Figure 8 show examples of tags attached to models by using 
the proposed algorithm. Figure 6, Figure 7, and Figure 8 show, respectively, the 
successful, unsuccessful, and mixed cases. The tags in red are correct tags, while 
those in blue are incorrect tags. The size of the letters indicate the estimated quality of 
the tag; the larger the letter, the more confident the system is about the tag. 

Successful examples in Figure 6 are associated with both correct and incorrect 
tags. However, the incorrect tags should matter little in practice as they have low 
confidence values. Unsuccessful examples, e.g., a balloon (m1345) mistakenly tagged 
as “body part” and “head”, seem to suggest the need for a better shape feature as well 
as more training examples. For example, a multiresolution feature acquisition method 
similar to the one used in [10] might help.  

4. Conclusion and Future Work 

In this paper, we proposed and evaluated a shape-based algorithm for automatic 
annotation, or autotagging, of 3D models with text keywords by learning the tags 
from a corpus of tagged 3D models. The algorithm first extracts shape features from 
3D models both with tags (training corpus) and without tags (autotagging target.) The 
algorithm then computes, for each tag, the relevance of each 3D model to the tag. To 
compute the relevance, the algorithm takes into account distribution of shape features 
in the ambient feature space with both local and global consistency by using the 
Manifold Ranking (MR) algorithm of Zhou, et al [17, 18]. The algorithm chooses 
those tags that are reasonably high in confidence based on the mutual distance of 
tagged models sharing tag.  

We evaluated the autotagging algorithm by using a 3D model retrieval scenario, 
assuming a good tagging result should produce a good retrieval performance by using 
the Query By Text (QBT) framework. Our experiment showed that the QBT retrieval 
that employed the automatically added tag significantly outperformed the Query By 
Example (QBE) retrieval that employed query 3D models and their shape features.  

In the future, we definitely would like to employ more “realistic” corpus, e.g., 
larger size, presence of noise and error, etc., to evaluate the proposed algorithm. To 
this end, availability of a snapshot of the G3W will greatly benefit the research 
community. Assuming the availability of a large corpus, we need to improve the 
scalability of the MR algorithm so that it could handle a large number of features. We 
also would like to enhance the method, for example, by using a feature refined by 
using other learning based algorithms, or by using a combination of multiple shape 
features.  
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Fig. 6. Examples of tags (successful cases.) 

 
Fig. 7. Examples of tags (unsuccessful cases.) 

 

Fig. 8. Examples of tags (mixed cases.) 


