Skip to main content

Default α-Logic for Modeling Customizable Failure Semantics in Workflow Systems Using Dynamic Reconfiguration Constraints

  • Conference paper
Book cover Grid and Distributed Computing (GDC 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 63))

Included in the following conference series:

  • 520 Accesses

Abstract

In this paper, we propose a logic based framework to handle failures that occur during the execution of workflows by encoding the failures in formalism of a default normal modal logic. Default logic provides a set of rules for adding premises to logical arguments. Since the specifications of services are encoded in α-logic, defaults can be added to this logic to accommodate the failure semantics for the predicates. We encode predicate failures as predicates and provide a dynamic proof system that handles failures at the execution time. Workflow adaptations are re-synthesized from proofs in our logic using a Curry-Howard style correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beguiling, A., Seligman, E., Stephan, P.: Application level fault tolerance in heterogeneous networks of workstations. Journal of Parallel and Distributed Computing on Workstation Clusters and Networked-based Computing (1997)

    Google Scholar 

  2. Besnard, P.: An Introduction to Default Logic. In: Symbolic Computation. Springer, Berlin (1989)

    Google Scholar 

  3. Condor manuals, http://www.cs.wisc.edu/condor/manual/

  4. Elder, M.C.: Fault Tolerance in Critical Information Systems. PhD thesis, University of Virginia (2001)

    Google Scholar 

  5. Etherington, D.W.: Relating default logic and circumstription. In: Proceedings of 11th International Joint Conference on Artificial Intelligence (IJCAI 1989), Milan, Italy, pp. 489–494 (1987)

    Google Scholar 

  6. Gartner, F.C.: Fundamentals of fault-tolerant distributed computing in asynchronous environments. ACM Computing Surveys 31(1) (1999)

    Google Scholar 

  7. Hwang, S., Kesselman, C.: GridWorkflow: A Flexible Failure Handling Framework for the Grid. In: Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, HPDC 2003 (2003)

    Google Scholar 

  8. Leon, J., Fisher, A.L., Steenkiste, P.: Fail-safe pvm: A portable package for distributed programming with transparent recovery. Technical Report CMU-CS-93-124, Carnegie Mellon University (1993)

    Google Scholar 

  9. Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent checkpointing under unix. In: Proceedings of the the USENIX Winter Technical Conference, New Orleans, Louisiana (1995)

    Google Scholar 

  10. Poole, D., Goebel, R., Aleliunas, R.: Theorist: A logical reasoning system for defaults and diagnosis. In: Cercone, N., McCalla, G. (eds.) The Knowledge Frontier: Essays in the Representation of Knowledge, pp. 331–352. Springer, New York (1987)

    Google Scholar 

  11. Poole, D.: A logical framework for default reasoning. Artificial Intelligence 36(1), 27–47 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Poole, D.: Default Logic, Handbook of Logic for AI & Logic Programming (1998)

    Google Scholar 

  13. Reiter, R.: A logic for default reasoning. Artificial Intelligence 12(1,2), 81–132 (1980)

    Article  MathSciNet  Google Scholar 

  14. Stellner, G.: Cocheck: Checkpointing and process migration for mpi. In: 10th International Parallel Processing Symposium, pp. 526–531. IEEE Computer Society, Los Alamitos (1996)

    Google Scholar 

  15. Yau, S.S., Davulcu, H., Mukhopadhyay, S., Huang, D., Gong, H., Singh, P., Gelgi, F.: Automated Situation-Aware Service Composition in Service-Oriented Computing. International Journal of Web Services Research on Services Engineering (JWSR) 4(4), 59–82 (2007)

    Google Scholar 

  16. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic (Paperback)

    Google Scholar 

  17. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Studies in Logic and the Foundations of Mathematics, vol. 149 (Hardcover)

    Google Scholar 

  18. Goebel, R.G., Goodwin, R.G.: Applying theory formation to the planning problem. In: Proc. of of the Workshop on the Frame Problem in AI, pp. 207–232 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davulcu, H., Mukhopadhyay, S., Singh, P., Yau, S.S. (2009). Default α-Logic for Modeling Customizable Failure Semantics in Workflow Systems Using Dynamic Reconfiguration Constraints. In: Ślęzak, D., Kim, Th., Yau, S.S., Gervasi, O., Kang, BH. (eds) Grid and Distributed Computing. GDC 2009. Communications in Computer and Information Science, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10549-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10549-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10548-7

  • Online ISBN: 978-3-642-10549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics