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Abstract 

The Mann-Whitney-Wilcoxon (MWW) test statistic, while distribution-free, suffers from a loss 
of efficacy for certain underlying distributions. In this manuscript, we instead use a data-adaptive 
weighted generalized Mann-Whitney-Wilcoxon (AWGMWW) test statistic, one that is optimal in 
the Pitman Asymptotic Efficacy (PAE) sense, to discern differences in hippocampus shape among 
twin populations with or without Major Depressive Disorder (MDD). Using this more powerful 
statistic, we verify, based on a previous study using the MWW statistic, that a high-risk group is 
more similar to the control group than the depressed group, the depressed group is more similar 
to the control group than the high-risk group, and the control group cannot be distinguished as 
more similar to one group or the other in terms of hippocampus shape. 

 
 
1. Introduction 
 
1.1. Nonparametric Statistics 
 
     Wilcoxon and Mann-Whitney [1,2] are principally responsible for the advent of nonparametric 
statistics. The unbiased Rank-Sum and U-statistic have since been applied in a great deal of 
applications, and are most effective in situations where information about underlying distributions 
is not known a priori. One such application is in interpoint distance analysis [3]. The major 
obstacle in preventing even wider use of these statistics is the loss of efficacy owing to their 
nonparametric and distribution-free properties. To combat this, Xie & Priebe [4] provided 
weighted generalizations of the Mann-Whitney-Wilcoxon (WGMWW) and of the Wilcoxon-
Signed-Rank (WGWSR) statistics, which were shown to be optimal in the Pitman Asymptotic 
Efficacy (PAE) sense. Unfortunately, these weighted generalizations were not practically viable 
owing to their containing parameters which were functions of the unknown null distribution. A 
data-adaptive alternative (AWGMWW), which has efficacy and power as good as WGMWW, 
and dependent on two parameters r and s, was provided by John & Priebe [5]. The efficacy and 
power of AWGMWW was compared with WGMWW and the classical MWW test statistic for 



several underlying densities. The results suggest that AWGMWW is only marginally more 
powerful and efficacious when the underlying density is normal or mildly left-skewed, but 
optimal when the underlying distribution is strongly right skewed, asymmetric bimodal or heavily 
kurtotic [5]. 
 
1.2. Major Depressive Disorder 
 
     Major Depressive Disorder (MDD), or Clinical Depression, is one of the most prevalent 
mental disorders in the United States, where approximately 16.2% of the population is affected at 
least once in their lifetime [6]. The disorder is characterized by a “combination of symptoms that 
interfere with an individual's ability to work, sleep, study, eat, and enjoy once-pleasurable 
activities” [7]. In order for an individual to be diagnosed with MDD, at least one of the primary 
symptoms, namely depressed mood or anhedonia, and at least three of the secondary symptoms, 
among marked weight loss, insomnia, fatigue, and thoughts of suicide, must be present for a 
period of six months or more [8]. The physiology of MDD has been examined in great detail over 
the past few decades. It is known that changes in the amounts of the neurotransmitters serotonin 
and dopamine are associated with depressive symptoms, and restoring the amounts of these 
neurotransmitters to normal levels is the function of most modern anti-depressant drugs [9]. 
Neuroimaging studies have revealed that certain structural abnormalities such as “enlarged 
ventricles, sulci, or reduced volume of the frontal lobe and basal ganglia” are also significantly 
correlated with MDD [2,9]. 
 
1.3. Computational Anatomy 
 
     Computational Anatomy (CA) has only recently emerged as a discipline; it involves “the 
development of mathematical and software tools...specialized to the study of brain anatomy” [10]. 
In fact, the shape of the brain as related to its anatomy is quite complex, and thus difficult to 
quantify. The underlying principle in CA is to “construct a mapping model” [3] that can measure 
the difference in shape between two brain regions-of-interest (ROIs). Several publications have 
used CA models on subsections of the brain to further the understanding of several psychological 
disorders; Posener et al. [11] examined the role of the hippocampus, a small structure found in the 
limbic system of the brain, in MDD, Miller et al. [12] studied the role of the cingulate gyrus in 
Dementia of the Alzhiemer's Type (DAT), while Csernansky et al. [13] correlated hippocampus 
shape changes with schizophrenia. 
 
1.4. Goals 
 
     Recently, significant differences in hippocampus shape were gleaned between twin 
populations with or without Clinical Depression using the classical MWW test and interpoint 
comparison analysis [3]. The probability density function (pdf) of the underlying distribution, 
simulated using a kernel estimator, was shown to be mildly right-skewed. The goal of this study 
is to develop an algorithm for the AWGMWW statistic and compare its efficacy and power with 
the classical MWW when applied towards interpoint comparison data from Park et al. [3]. 
 
2. Data 

Using Missouri birth records, three twin populations, including both monozygotic (MZ) and 
dizygotic (DZ) twin pairs, were recruited according to varying levels of Clinical Depression: (1) 
the Control group (CTRL) was unaffected by depression, (2) the High-Risk (HR) group included 



one twin in a pair having Depression and the other not, and the (3) Major Depressive Disorder 
(MDD) group having both twins in a pair being clinically depressed [3]. There were 59 twins (29 
pairs, one unpaired) in CTRL, 22 twins in HR, and 33 twins (16 pairs, one unpaired) in MDD. All 
recruits were female, and a screening procedure excluded individuals with conditions that may 
influence structural changes of the brain, namely loss of consciousness greater than 5 minutes, 
pregnancy, and any chronic neurological illnesses [3].  

High-resolution Magnetic Resonance Imaging (MRI) scans were obtained for all 114 
individuals in the study, a first step in the analysis of hippocampus shape. Three MPRAGE scans 
(“160 slices at 256x256 FoV, 1 mm3 isotropic voxels”) were acquired using the Siemens 
Vision/Sonata 1.5T scanner. Three-dimensional surfaces of the left and right hippocampi were 
extracted from the scans in accordance with current neuroanatomical guidelines [3]. 

 
3. Methods 
 
3.1. Image Processing 

The following protocol was the same as the one employed by Park et al. [3]. For every 
hippocampus surface, 22 three-dimensional landmarks were anatomically defined. An “interpoint 
comparison matrix” 

~

D  was generated by applying a “non-parametric Landmark Matching (LM) 
transformation”, which computes as a measure of shape difference the energy of the minimizing 
diffeomorphism between every possible pair of hippocampus landmarks [3]. 

For every pair of hippocampi, the following “error criterion” was used [3]: 

 

 

where “d is a geodesic distance in a group of diffeomorphisms and 0σ > is a regularization 
parameter which controls the relative contribution of transformation complexity and the 
landmark mismatch to the optimization objective” [3]. The norm of the optimal mapping 
i.e., *( , )LM x y ϕ= , was used as the final measure of shape difference between the pair of 
hippocampi [3]. 

Such an analysis was conducted independently on the left hippocampi, the right hippocampi, 
and finally both hippocampi together. The resulting three interpoint comparison matrices were 
asymmetric, with dimension 114 114× , and zeroes on the diagonal. Each of the matrices were 
symmetrized from 

~

D  to D using dij = min(dij, dji), since the asymmetry was not an accurate 
reflection of hippocampus shape space. For more details, see Park et al. [3]. 
 
3.2. Statistical Analysis 
 

3.2.1. Stochastic Ordering: Each interpoint comparison matrix generated by the LM 
tranformation (see Section 3.1), being nonparametric, has an underlying probability density 
function (pdf) that is unknown. Park et al. [3] had shown, using “kernel probability density 
estimates” [14], that there exists a stochastic ordering relationship between the interpoint 
comparisons of HR and CTRL, written d(HR,CTRL), and those of HR and MDD, written 
d(HR,MDD), such that d(HR,CTRL)<st d(HR,MDD) [3]. Figure 1, a plot of the kernel pdfs, 
demonstrates this relationship. 
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Figure 1: This figure shows two kernel pdfs for DLM-Left: the solid line shows 

d(HR,CTRL) and the dashed line shows d(HR,MDD) - this representation verifies the 

relationship obtained by Park et al. [3]. 

 
Based on the structure of D, we conclude that every row of the interpoint comparisons 

corresponding to any one HR subject provides two vectors of comparison: one that 
compares that HR subject to every CTRL subject, and one that compares that HR subject to 
every MDD subject [3]. We call these two samples {d(HRi,CTRL)} and {d(HRi,MDD)} 
respectively; the HR subject's own twin is ignored when considering these samples in order 
to eliminate any bias that may arise from twinnedness not due to the underlying disease 
condition [3]. Park et al. conducted a two-sample hypothesis test using the MWW statistic, 
where the null hypothesis was equality of the distributions of d(HR,CTRL) and d(HR,MDD) 
against the alternative of stochastic ordering [3]. Here, we instead use the AWGMWW 
statistic (with 2r s= = ) to conduct the same hypothesis test and obtain a p-value. 

Figure 2 and Figure 3 compare the quantile-quantile plots of the p-values obtained by 
Park et al. using the MWW statistic [3], and those obtained in this study using the 
AWGMWW statistic, respectively. 

If the null hypothesis were true, the p-values for both these plots should lie on the 
diagonal i.e. be distributed Uniform(0,1). Both plots, although with different p-values, 
clearly suggest the alternative of stochastic ordering between the distributions. This seems 
to show that the modified statistic does not alter the overall result, but affects the strength 
of the underlying conclusion. 

 
3.2.2. Classification: Recall, we have two samples {d(HRi,CTRL)} and {d(HRi,MDD)} 

for each HR subject, and that a p-value of 0.5 indicates that the distributions of these 
samples are equal. Thus, we can use the one-sided (d(HR,CTRL)<std(HR,MDD)) 
AWGMWW p-value (instead of the MWW p-value as implemented in Park et al. [3]) to  
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Figure 2: QQ-plot for the two samples d(HR,CTRL) and d(HR,MDD) from DLM-Left using 

the MWW statistic - this verifies the distribution of p-values obtained by Park et al. 

[3]. 
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Figure 3: QQ-plot for the two samples d(HR,CTRL) and d(HR,MDD) from DLM-Left using 

the AWGMWW statistic. 



classify each HR subject as “closer” to CTRL or MDD. That is, if 0.5p ≤  for some HR 
subject, we classify that subject as CTRL, and if0.5p > , we classify that subject as MDD. 
Extending this procedure to every HR subject would allow us to assess classifier 
performance on the HR group as a whole. In this case, we have fixed the HR group as the 
population of interest; we can equally fix one of the other groups (namely CTRL or MDD) 
as the population of interest, and follow the same procedure as above. Also note we can 
apply our classifier on the left hippocampi alone, the right hippocampi alone, or both left 
and right hippocampi simultaneously. The results are tabulated in Table 1. 
 
 LM-Left LM-Right LM-Left&Right 
H:CvM 17(19) 13(16) 15(20) 
H:MvC 5(3) 8(6) 7(2) 

 
M:HvC 14(5) 12(9) 11(6) 
M:CvH 19(28) 21(24) 22(27) 

 
C:HvM 40(48) 30(22) 33(31) 
C:MvH 19(32) 29(33) 26(25) 
Table 1: Classification of individual subjects based on AWGMWW p-values. The 

numbers in parentheses correspond to classification using the MWW statistic from 

Park et al. [3]. The column-label “LM-Left” corresponds to the LM procedure being 

applied on the left hippocampi alone, and the row label “H:CvM” corresponds to the 

number of HR subjects classified as CTRL as opposed to MDD, and similarly, “H:MvC” 

corresponds to the number of HR subjects classified as MDD as opposed to CTRL. 

The rest of the column- and row-labels are defined analogously. 

 
4. Results 

Table 1 shows some interesting results, where we observe that the general classification trends 
for the AWGMWW statistic are consistent with the MWW statistic - more HR subjects are 
classified as CTRL as opposed to MDD (p< 0.00005 for MWW and p< 0.01 for AWGMWW 
respectively), more MDD subjects are classified as CTRL than HR (p < 0.00005 for MWW and 
p< 0.05 for AWGMWW respectively), and CTRL subjects are more or less distributed evenly 
between the two groups (p ~ 0.2 for alternate hypothesis that CTRL is more similar to HR). 

 
5. Conclusions 

The overarching results obtained using the AWGMWW statistic are consistent with those 
obtained using the MWW statistic; in terms of hippocampus shape, the high-risk group is 
more similar to the control group than the depressed group, the depressed group is more 
similar to the control group than the high-risk group, and the control group cannot be 
distinguished as more similar to one group or the other. Considering the hippocampus 
shape of the three populations in the one-dimensional Euclidean space 1

ℝ  a la Park et al. 
[3], we again show that the control group is approximately in the middle between the high-
risk and depressed groups (see Figure 4). However, we have demonstrated that 
AWGMWW, a PAE-optimal statistic, has more statistical power and eliminates the loss of 
efficacy for this analysis, which increases the validity and veracity of the results obtained. 
The AWGMWW statistic shows promise for future applications involving nonparametric 
statistical testing. 



 

 
Figure 4: Hippocampus shape-space if viewed in one dimension, similar to the 

representation depicted by Park et al. [3]. 
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