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Abstract

The Mann-Whitney-Wilcoxon (MWW) test statistic, while distribution-free, suffers from a loss
of efficacy for certain underlying distributions. In this manuscript, we instead use a data-adaptive
weighted generalized Mann-Whitney-Wilcoxon (AWGMWW) test statistic, one that is optimal in
the Pitman Asymptotic Efficacy (PAE) sense, to discern differences in hippocampus shape among
twin populations with or without Major Depressive Disorder (MDD). Using this more powerful
statistic, we verify, based on a previous study using the MWW statistic, that a high-risk group is
more similar to the control group than the depressed group, the depressed group is more similar
to the control group than the high-risk group, and the control group cannot be distinguished as
more similar to one group or the other in terms of hippocampus shape.

1. Introduction
1.1. Nonparametric Statistics

Wilcoxon and Mann-Whitney [1,2] are principally pemsible for the advent of nonparametric
statistics. The unbiased Rank-Sum and U-statisiie hbsince been applied in a great deal of
applications, and are most effective in situatishgre information about underlying distributions
is not knowna priori. One such application is in interpoint distancalgsis [3]. The major
obstacle in preventing even wider use of thesasttat is the loss of efficacy owing to their
nonparametric and distribution-free properties. dambat this, Xie & Priebe [4] provided
weighted generalizations of the Mann-Whitney-Wilsox(WGMWW) and of the Wilcoxon-
Signed-Rank (WGWSR) statistics, which were showréooptimal in the Pitman Asymptotic
Efficacy (PAE) sense. Unfortunately, these weiglgederalizations were not practically viable
owing to their containing parameters which werecfioms of the unknown null distribution. A
data-adaptive alternative (AWGMWW), which has effig and power as good as WGMWW,
and dependent on two parametends, was provided by John & Priebe [5]. The efficacy a
power of AWGMWW was compared with WGMWW and thessigal MWW test statistic for



several underlying densities. The results sugdest AWGMWW is only marginally more
powerful and efficacious when the underlying dgnsit normal or mildly left-skewed, but
optimal when the underlying distribution is stronghht skewed, asymmetric bimodal or heavily
kurtotic [5].

1.2. Major Depressive Disorder

Major Depressive Disorder (MDD), or Clinical Depsa®1, is one of the most prevalent
mental disorders in the United States, where apmbely 16.2% of the population is affected at
least once in their lifetime [6]. The disorder fscacterized by a “combination of symptoms that
interfere with an individual's ability to work, €p, study, eat, and enjoy once-pleasurable
activities” [7]. In order for an individual to beéatyjnosed with MDD, at least one of the primary
symptoms, namely depressed mood or anhedonia,tdedsa three of the secondary symptoms,
among marked weight loss, insomnia, fatigue, amdights of suicide, must be present for a
period of six months or more [8]. The physiologyMiDD has been examined in great detail over
the past few decades. It is known that changelseramounts of the neurotransmittegsotonin
and dopamine are associated with depressive symptoms, andriregtthe amounts of these
neurotransmitters to normal levels is the functadnmost modern anti-depressant drugs [9].
Neuroimaging studies have revealed that certaincttral abnormalities such as “enlarged
ventricles, sulci, or reduced volume of the frortdle and basal ganglia” are also significantly
correlated with MDD [2,9].

1.3. Computational Anatomy

Computational Anatomy (CA) has only recently emdrges a discipline; it involves “the
development of mathematical and software toolgcistized to the study of brain anatomy” [10].
In fact, the shape of the brain as related to nst@my is quite complex, and thus difficult to
guantify. The underlying principle in CA is to “cstnuct a mapping model” [3] that can measure
the difference in shape between two brain regidriaterest (ROIs). Several publications have
used CA models on subsections of the brain to éurtie understanding of several psychological
disorders; Posenet al. [11] examined the role of the hippocampus, a sstalicture found in the
limbic system of the brain, in MDD, Millegt al. [12] studied the role of the cingulate gyrus in
Dementia of the Alzhiemer's Type (DAT), while Csamnskyet al. [13] correlated hippocampus
shape changes with schizophrenia.

1.4. Goals

Recently, significant differences in hippocampusaph were gleaned between twin
populations with or without Clinical Depression ngithe classical MWW test and interpoint
comparison analysis [3]. The probability densitydtion (df) of the underlying distribution,
simulated using a kernel estimator, was shown tmitdly right-skewed. The goal of this study
is to develop an algorithm for the AWGMWW statistind compare its efficacy and power with
the classical MWW when applied towards interpoornparison data from Pagkal. [3].

2. Data

Using Missouri birth records, three twin populagpmcluding both monozygotic (MZ) and
dizygotic (DZ) twin pairs, were recruited accorditagvarying levels of Clinical Depression: (1)
the Control group (CTRL) was unaffected by depassf2) the High-Risk (HR) group included



one twin in a pair having Depression and the ottwgr and the (3) Major Depressive Disorder
(MDD) group having both twins in a pair being ctiaily depressed [3]. There were 59 twins (29
pairs, one unpaired) in CTRL, 22 twins in HR, aBdwins (16 pairs, one unpaired) in MDD. All
recruits were female, and a screening procedurkided individuals with conditions that may
influence structural changes of the brain, namesg lof consciousness greater than 5 minutes,
pregnancy, and any chronic neurological illnes8gs [

High-resolution Magnetic Resonance Imaging (MRlarsc were obtained for all 114
individuals in the study, a first step in the as&yof hippocampus shape. Three MPRAGE scans
(“160 slices at 256x256 FoV, 1 mma3 isotropic voXelaere acquired using the Siemens
Vision/Sonata 1.5T scanner. Three-dimensional sagaf the left and right hippocampi were
extracted from the scans in accordance with currentoanatomical guidelines [3].

3. Methods

3.1. Image Processing

The following protocol was the same as the one eyaul by Parket al. [3]. For every
hippocampus surface, 22 three-dimensional landmaeke anatomically defined. An “interpoint
comparison matrix’> was generated by applying a “non-parametric Lamkirivéatching (LM)
transformation”, which computes as a measure gbeslaifference the energy of the minimizing
diffeomorphism between every possible pair of hggropus landmarks [3].

For every pair of hippocampi, the following “errmniterion” was used [3]:

#" =arginf od Boey, #F + 210 0= ¥

where ‘d is a geodesic distance in a group of diffeomompisieando > 0is a regularization

parameter which controls the relative contributi@htransformation complexity and the
landmark mismatch to the optimization objective’].[The norm of the optimal mapping
i.e.,LM(X,y) :H¢* H , was used as the final measure of shape differbabegeen the pair of
hippocampi [3].

Such an analysis was conducted independently otethippocampi, the right hippocampi,
and finally both hippocampi together. The resultthgee interpoint comparison matrices were
asymmetric, with dimensiod14x 114, and zeroes on the diagonal. Each of the matviecrs
symmetrized fromp to b usingd; = min(dy, d;), since the asymmetry was not an accurate
reflection of hippocampus shape space. For molslesee Parkt al. [3].

3.2. Statistical Analysis

3.2.1. Stochastic Ordering: Each interpoint comparison matrix generated by lthe
tranformation (see Section 3.1), being nonparameklras an underlying probability density
function (pdf) that is unknown. Pagk al. [3] had shown, using “kernel probability density
estimates” [14], that there exists a stochasticedrd relationship between the interpoint
comparisons of HR and CTRL, writted{HR,CTRL), and those of HR and MDD, written
d(HR,MDD), such thad(HR,CTRL)<* d(HR,MDD) [3]. Figure 1, a plot of the kernel pdfs,
demonstrates this relationship.
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Figure 1: This figure shows two kernel pdfs for Dyw..er: the solid line shows
d(HR,CTRL) and the dashed line shows d(HR,MDD) - this representation verifies the
relationship obtained by Park et al. [3].

Based on the structure &f, we conclude that every row of the interpoint camgons
corresponding to any one HR subject provides twatars of comparison: one that
compares that HR subject to every CTRL subject, @mal that compares that HR subject to
every MDD subject [3]. We call these two sampfegHR,,CTRL)} and {d(HR,MDD)}
respectively; the HR subject's own twin is ignorelden considering these samples in order
to eliminate any bias that may arise from twinnesthaot due to the underlying disease
condition [3]. Parket al. conducted a two-sample hypothesis test using ti@statistic,
where the null hypothesis was equality of the disttions ofd(HR,CTRL) andd(HR,MDD)
against the alternative of stochastic ordering [3gre, we instead use the AWGMWW
statistic (withr = s=2) to conduct the same hypothesis test and obtaivaue.

Figure 2 andFigure 3 compare the quantile-quantile plots of fhevalues obtained by
Park et al. using the MWW statistic [3], and those obtainedtims study using the
AWGMWW statistic, respectively.

If the null hypothesis were true, thevalues for both these plots should lie on the
diagonal i.e. be distributetniform(0,1). Both plots, although with differenp-values,
clearly suggest the alternative of stochastic drdebetween the distributions. This seems
to show that the modified statistic does not attex overall result, but affects the strength
of the underlying conclusion.

3.2.2. Classification: Recall, we have two sampl¢d(HR,CTRL)} and{d(HR,MDD)}
for each HR subject, and thatpavalue of 0.5 indicates that the distributions btde
samples are equal. Thus, we can use the one-sid€¢dRCTRL)<%d(HR,MDD))
AWGMWW p-value (instead of the MWWg-value as implemented in Pagkal. [3]) to
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Figure 2: QQ-plot for the two samples d(HR,CTRL) and d(HR,MDD) from D y-Left USING
the MWW statistic - this verifies the distribution of p-values obtained by Park et al.

[3].
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Figure 3: QQ-plot for the two samples d(HR,CTRL) and d(HR,MDD) from D y-Left USING
the AWGMWW statistic.



classify each HR subject as “closer” to CTRL or MDInhat is, if p<0.5 for some HR
subject, we classify that subject as CTRL, and #0.5, we classify that subject as MDD.
Extending this procedure to every HR subject wouwldow us to assess classifier
performance on the HR group as a whole. In thi®ca® have fixed the HR group as the
population of interest; we can equally fix one bétother groups (namely CTRL or MDD)
as the population of interest, and follow the sgmecedure as above. Also note we can
apply our classifier on the left hippocampi alotlee right hippocampi alone, or both left

and right hippocampi simultaneously. The resulestabulated irTable 1.

LM-Left LM-Right LM-Left&Right
H:CvM 17(19) 13(16) 15(20)
H:MvC 5(3) 8(6) 7(2)
M:HvC 14(5) 12(9) 11(6)
M:CvH 19(28) 21(24) 22(27)
C:HVM 40(48) 30(22) 33(31)
C:MvH 19(32) 29(33) 26(25)

Table 1: Classification of individual subjects based on AWGMWW p-values. The
numbers in parentheses correspond to classification using the MWW statistic from
Park et al. [3]. The column-label “"LM-Left” corresponds to the LM procedure being
applied on the left hippocampi alone, and the row label "H:CvM"” corresponds to the
number of HR subjects classified as CTRL as opposed to MDD, and similarly, "H:MvC”
corresponds to the number of HR subjects classified as MDD as opposed to CTRL.
The rest of the column- and row-labels are defined analogously.

4. Results

Table 1 shows some interesting results, where we obsbatehe general classification trends
for the AWGMWW statistic are consistent with the NMWVstatistic - more HR subjects are
classified as CTRL as opposed to MDpx (0.00005 for MWW ang< 0.01 for AWGMWW
respectively), more MDD subjects are classifiedCa®L than HR p < 0.00005 for MWW and
p< 0.05 for AWGMWW respectively), and CTRL subjeet®e more or less distributed evenly
between the two groupp € 0.2 for alternate hypothesis that CTRL is manglar to HR).

5. Conclusions

The overarching results obtained using the AWGMWatistic are consistent with those
obtained using the MWW statistic; in terms of hippmpus shape, the high-risk group is
more similar to the control group than the deprdsgeoup, the depressed group is more
similar to the control group than the high-risk gpe and the control group cannot be
distinguished as more similar to one group or thleen Considering the hippocampus
shape of the three populations in the one-dimemdi&uclidean spac®' a la Parket al.

[3], we again show that the control group is appmately in the middle between the high-
risk and depressed groups (sé&égure 4). However, we have demonstrated that
AWGMWW, a PAE-optimal statistic, has more statiatipower and eliminates the loss of
efficacy for this analysis, which increases theidiy and veracity of the results obtained.
The AWGMWW statistic shows promise for future applions involving nonparametric
statistical testing.
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Figure 4: Hippocampus shape-space if viewed in one dimension, similar to the
representation depicted by Park et al. [3].
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