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Abstract. Exploiting features of high density wireless sensor networks
represents a challenging issue. In this work, the training of a sensor net-
work which consists of anonymous and asynchronous sensors, randomly
and massively distributed in a circular area around a more powerful de-
vice, called actor, is considered. The aim is to partition the network
area in concentric coronas and sectors, centered at the actor, and to
bring each sensor autonomously to learn to which corona and sector
belongs. The new protocol, called Cooperative, is the fastest training
algorithm for asynchronous sensors, and it matches the running time
of the fastest known training algorithm for synchronous sensors. More-
over, to be trained, each sensor stays awake only a constant number of
time slots, independent of the network size, consuming very limited en-
ergy. The performances of the new protocol, measured as the number
of trained sensors, the accuracy of the achieved localization, and the
consumed energy, are also experimentally tested under different network
density scenarios.

Key words: : wireless sensor network, training, localization, distributed algo-
rithms.

1.1 Introduction

Miniaturized, low-cost, battery-operated nodes, which integrate sensing abilities,
signal processing and wireless communication are well known as sensors. In this
work, Wireless Sensor and Actor Networks (WSAN) are considered, which con-
sist of massively and randomly deployed sensors plus few more powerful entities,
called actors.

The random deployment results in sensors initially unaware of their spatial
coordinates. Since the sensed data is of scarce utility unless related to the lo-
calization of the sensors that collect them, each actor organizes the sensors in
its range of transmission (the so called actor-zone) in a dynamic virtual infras-
tructure which provides the sensors with a coarse-grained localization awareness.
Specifically, the actor arranges its zone into equiangular sectors and equiwidth
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concentric coronas centered at the actor itself, imposing a discretized polar coor-
dinate system. In doing so, the actor-zone is subdivided into small regions, one
for each corona-sector intersection.

The task that allows each sensor in the actor-zone to acquire its corona
(sector, resp.) coordinate is known, in the literature, as the corona (sector, resp.)
training process. The new protocol, called cooperative, is analytically studied
under the assumption that the density of the random distributed network is
sufficiently high to guarantee that each sensor is trained. The new protocol
is the fastest training algorithm for asynchronous sensors, and it matches the
running time of the fastest known training algorithm for synchronous sensors.
Moreover, during the training, each sensor stays awake only a constant number
of time slots, independent of the network size, saving thus energy.

The remainder of this paper is organized as follows. Section 1.2 defines the
network model. Section 1.3 presents the cooperative training algorithm by spec-
ifying the actor and sensor behaviors. Assuming the network to be sufficiently
dense to train all the sensors, Section 1.4 studies the algorithm performances
measured in overall running time, drained energy per sensor, number of trained
sensors and accuracy of the achieved localization. Section 1.5 experimentally
validates the results in Section 1.4, and argues on the actual network density
needed to train all the sensors. Finally, Section 1.6 offers concluding remarks
and open problems.

1.2 The network model

In this section, network model and assumptions are described. At first, the virtual
coordinate system to be established in the network is as follows:

1. Coronas: The actor-zone area is divided into k coronas C0, C1, . . . , Ck−1 of
fixed width ρ > 0, centered at the actor, determined by k concentric circles
whose radii are ρ, 2ρ, · · · , kρ, respectively;

2. Sectors: The actor-zone area is divided into h equiangular sectors
S0, S1, . . . , Sh−1, originated at the actor, each having a width of 2π

h
radi-

ans.

The actor is equipped with a long-range radio and an isotropic antenna and
it is able to broadcast with variable-range R in order to reach all the sensors at
distance at most R ≤ kρ.

The time is ruled into slots, with sensors and actor using in-phase and equally
long slots. Nonetheless, since the asynchronous model is adopted, the sensors are
not engaged in any explicit synchronization protocol and each sensor starts to
count the time from when it wakes up for the first time. Thus, the same time
slot corresponds to different local times for sensors which woke up at different
times. The time slot when the training process starts is numbered 0 at the actor.
From now on, the time slot numbering done at the actor is called global time,
whereas that at each sensor is indicated as local time.
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Each sensor is anonymous, that is, it has no individual unique ID and works
unattended. A sensor is called of type x, with x ∈ [0, k − 1], if it wakes up for
the first time at the global time x. However, each sensor is only aware of its own
local time, and it has no idea of the global time. Each sensor alternates between
awake and sleep periods. The sensor awake-sleep cycle has a total length of L
time slots, out of which each sensor is awake for d slots and in sleep mode for
L− d slots. The i-th, with i ≥ 1, awake-sleep period of a sensor of type x starts
and finishes at the global time slots x + (i− 1)L and x + iL− 1, respectively. In
order to save energy, a sensor which is not required to be active in an awake-sleep
cycle can skip it staying in sleep mode for L time slots.

The sensors are equipped with a small-range radio and an isotropic antenna,
and during an awake period they can transmit or listen to either the actor or
the sensor neighbors. A sensor can transmit in two modalities: with transmission
range equal to r = ρ for routing purposes or equal to r < ρ/2 for the cooper-
ative training algorithm. If an awake sensor receives more than one message at
the same time, we assume that it correctly receives the message only if all the
transmissions refer to the same message. Otherwise, the sensor hears noise.

1.3 The Cooperative Corona Training Algorithm

In this section we present the cooperative training algorithm, which localizes
each individual sensor in the actor-zone. From now on, we will assume the corona
width ρ = 1 and the awake-sleep period L = k.

The cooperative training consists of three stages: the first stage is determin-
istic and it is the only one that involves the actor. Immediately after deploy-
ment, the actor starts to transmit. Let |a|k denote the modulo operation, that
is the nonnegative remainder of the division of a by k. At time slot t, with
0 ≤ t ≤ k + d− 2, it transmits the beacon |k − 1− t|k at a power level sufficient
to reach all the sensors up to corona C|k−1−t|k , but not those beyond C|k−1−t|k .

For sensors, the protocol has three stages. The first stage deterministically
trains a certain percentage of sensors. In the other two stages, in contrast, the
percentage of sensors trained strictly depends on the network density.

Each sensor has its own local time τ , which is set to 0 when the sensor wakes
up for the first time, and a counter j of the awake-sleep cycles passed from the
beginning of the training protocol.

The pseudo-code for the sensor protocol is given in Appendix Figure 1.6. The
first stage lasts one awake-sleep cycle for each sensor. The sensors alternate an
awake period of d time slots with a sleep period of L − d = k − d time slots. At
time slot t of the awake period, with 0 ≤ t ≤ d − 1, each sensor listens to the
actor and stores in C[t] either the beacon received by the actor or the mark ∅
when no beacon is received. A sensor in corona γ which is awake while the actor
transmits beacon b receives such a beacon if and only if b ≥ γ. A sensor becomes
trained by the actor, and hence it becomes a seed, when one of the two following
Training Conditions is verified.
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TC 1: A sensor residing in corona 0 receives beacon 0. In fact, only sensors inside
corona 0 can receive such a beacon.
TC 2: A sensor residing in corona γ receives beacon γ but not beacon γ−1 when
it knows that the actor is transmitting beacon γ − 1.

Since the above training condition TC2 can only be verified if d ≥ 2, from
now on, we assume 2 ≤ d < k.

In the second stage of the corona training protocol, the sensors communicate
among them in order to broadcast the corona identity from the seeds to the
untrained sensors. In other words, the seeds boost the cooperative process. For
each sensor, the second stage lasts for at most two awake-sleep cycles. The sensors
of type d− 1 ≤ x ≤ k − 1 enter in the second stage as soon as their 2-nd awake-
sleep cycle starts. The sensors of type 0 ≤ x ≤ d− 2 skip their second cycle and
enter in the second stage within their 3-rd awake-sleep cycle. During the second
stage, the seeds broadcast their corona identity for two awake periods if they
have type d − 1 ≤ x ≤ |2d − 3|k, or for one awake period, otherwise. The awake
untrained sensors are listening until they become either trained or white-flag.

An untrained sensor that receives all concordant messages from its neighbors
becomes trained and broadcasts for the remaining time slots of its awake period.
Contrary, if an untrained sensor hears noise, that is, it receives more than one
message from two or more neighbors transmitting different corona identities, it
becomes a white-flag. It stops to listen and it waits the third stage to eventually
acquire an approximation of its location.

The third stage of the sensor training protocol is also distributed and lasts for
a single awake-sleep period for each sensor. Each trained sensor, which belongs
to an even corona, transmits its corona identity, whereas all the awake white-flag
sensors are listening. Since a white-flag is a sensor that in the second stage has
received simultaneously two consecutive corona identities, it is surely covered by
a sensor in an even corona. Such a sensor trains the white-flag during the 3-rd
stage. Hence, at the end of the third phase, all the white-flag sensors are trained
and they learn to belong to an even corona. Thus, the white-flags that belong to
an odd corona acquire a localization that differs of at most ±1 from the actual
one. As a macroscopic effect, at the end of the third stage, the even coronas of
the virtual infrastructure will expand over the odd coronas. It is worth noting
that this approximation has little effects on the estimate of the distance from
the sensors to the actor. Indeed, recalling that the sensors uses a transmission
radius r < 1/2 during the training protocol and a transmission radius r = 1 to
route messages from the sensors to the actor, a wrong sensor, which believes to
be in corona γ but it is indeed in corona γ ± 1, is at most at one extra hop from
the actor.

Note that an untrained sensor that at the end of the second stage has heard
nothing will not be involved in the third stage and it will remain untrained.
Finally, sensors that acquire a localization that differs of more than ±1 from the
actual one are called mistrained.

However, as experimentally tested, if the network is sufficiently dense, very
few sensors become mistrained or remain untrained.
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1.4 Algorithm properties

In order to analyze which sensors become seeds in the first stage in each corona,
let us recall that, the sensors of type x, with x ∈ [0, . . . , k − 1], start the first
awake period at the global time slot x and stay awake up to time x+d−1, while
the actor broadcasts beacons |k−1−x|k, |k−1−x−1|k, . . . , |k−1−x−d+1|k.
Note that the sensors of type x receive the same beacons independent of the
corona to which they belong, but they behave differently from one corona to
another. In fact:

Lemma 1. The seed in corona γ, 1 ≤ γ ≤ k − 1, are the sensors of type x =
|k − 1 − γ − w|k with w = [0, d − 2], or equivalently:

x ∈

{

[|k − γ − d + 1|k, |k − 1 − γ|k] if |k − γ − d + 1|k ≤ |k − 1 − γ|k
[|k − γ − d + 1|k, k − 1] ∪ [0, |k − 1 − γ|k] if |k − γ − d + 1|k > |k − 1 − γ|k

(1.1)
Similarly, the seeds in corona 0 are those with type x = |k − 1 − w|k with w =
[0, d − 1], or:

x ∈ [|k − d|k, |k − 1|k] (1.2)
⊓⊔

The second stage lasts 2k time slots, starting from the global time slot k+d−
1. Recalling that a sensor of type x wakes up for the i-th awake period, with i ≥ 1,
at time slot x+(i−1)L, and that L = k, in the interval t ∈ [k+d−1, 2k+d−2],
all types of sensors enter in the second stage. In fact, at time t, the sensors of
type x = |t|L = |t|k wake up. Thus, during the interval t ∈ [k + d− 1, 2k− 1] the
sensors of type x ∈ [d− 1, k− 1] wake up because they enter in the second stage
in their 2-nd awake period, while during the period t ∈ [2k, 2k + d − 2] those of
type x ∈ [0, d − 2] wake up because they enter in the second stage during their
3-rd awake period. Moreover:

Lemma 2. In the interval t ∈ [k + 2d − 2, 2k + 2d − 3], all the sensors of the
d − 1 types |t − w|k, with w = [0, d − 2], are awake simultaneously.

⊓⊔

While so far the results were independent of the network density, in what
follows, the density plays an important role.

The cooperative process becomes operative in each corona when all the seeds
are awake and broadcast. Thus, this happens for the first time, by Lemma 1, in
corona γ = |k−2d+2|k at time slot k+2d−3. Since by the training condition TC2
all the seeds are awake simultaneously for two time slots, the seeds in corona
γ = |k − 2d + 2|k are awake simultaneously and broadcast also at time slot
k+2d−2. At that time, the sensors of the type |2d−2|k, which are untrained in
corona |k−2d+2|k, wake up and, listening to their seed neighbors, they become
trained. Then, the new trained sensors start to broadcast for the remaining d−1
time slots of their awake period, replacing the seed of type |t − d + 1|k = d − 1
that go back to sleep. This is repeated for k−d time slots up to time 2k+2d−3,
training all the type of sensors in corona |k − 2d + 2|k.
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Hence, during the cooperative process, an untrained sensor becomes trained
only if it has in its neighborhood at least one trained sensor awake at the same
time. This might happen or not depending on the network density. From now
on, we assume that the network is sufficiently dense for the above condition
to be verified. For the same reason, we consider the cooperative process to be
operative starting from the time slot when all the d−1 seeds are simultaneously
awake. We discuss the effects of density only in Section 1.5, where experiments
with different densities are reported.

Theorem 1. Assuming that the network is sufficiently dense, the cooperative
training process becomes effective in corona γ = |k − 2d + 2 − y|k at time slot
k + 2d − 2 + y and, in such a corona, a new type of sensors is trained in each
subsequent time slot 2k + d − 2 + y, with 0 ≤ y ≤ k − 1.

⊓⊔

Observe that the last corona to be trained is corona |k − 2d + 3|k where the
process lasts from time 2k + 2d − 3 up to 3k + d − 3. Moreover, note that at
time slot 3k +d−3 the sensors of type d−2, which entered as last in the second
stage, have just completed their third sleep-awake cycle.

So far, it has been assumed that during the second stage each untrained
sensor receives concordant and correct corona identities. Nonetheless, since all
the sensors of the same type are always awake simultaneously independent of
the corona to which they belong, but their status (i.e., seed, untrained, trained)
depend on their corona, it may happen that the sensors in the corona borders
listen to sensors of the same type but in different status. Consider, for example,
the sensors of type x = |k − γ − d + 1|k, with 0 ≤ γ ≤ k − 1 during the second
stage. When such sensors wake up, they start to broadcast in corona γ where
they are seed, whereas they listen in corona γ − 1 where they are untrained.
A sensor of type x on the border of corona γ − 1 can receive only the corona
identity γ and thus it acquires a wrong localization. In this case, however, the
correct localization may still be derived exploiting the fact that the sensor in
corona γ − 1 has received beacon γ − 1 in the first stage.

Unfortunately, this is not always the case that the right corona information
can be retrieved. There are cases when the sensors cannot acquire the exact
localization or no localization can be derived during the second stage of the
training protocol. For example, consider an untrained sensor in the corona bor-
der that hears two trained sensors of the same type belonging to two different
coronas. Such a sensor can only hear noise and it cannot be localized. It will be
a white-flag sensor, and it has to wait the third stage to be trained.

Theorem 2. At the end of the third stage, all the white-flag sensors in the even
coronas are turned into trained sensors, while those on the odd coronas become
±1-trained.

⊓⊔

Finally, in order to evaluate the power consumption per sensor during the
cooperative algorithm, observe that, when a sensor is awake, its micro-controller
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is active and its radio is listening, receiving, or transmitting. Contrary, when
a sensor is sleeping, its micro-controller is not active, its timer is on, and its
radio is off. Let pawake, pTX, and psleep be the power consumption by a sensor
when it is listening/receiving, transmitting, or sleeping, respectively. Since the
radio startup and shutdown require a not negligible overhead, let ptrans denote
the power consumption for a sleep/wake transition followed by a wake/sleep
transition.

Observing that a sensor wakes up at most for 4 times, that it transmits at
most for 3 awake periods if it is a seed, and that the entire algorithm lasts 4
awake periods for each sensor, the maximum power consumed pmax per sensor
can be upper bounded as:

pmax < 4ptrans + dpawake + 3dpTX + 4(k − d)psleep (1.3)

In conclusion, recalling that 2 ≤ d ≤ L = k, one has:

Theorem 3. The cooperative training process terminates in O(k) time slots.
During the training, each sensor is awake for O(d) time slots and consumes at
most 4ptrans + dpawake + 3dpTX + 4(k − d)psleep power.

⊓⊔

Comparing the above results with the literature, the new cooperative training
process is as fast as the best synchronized training algorithm and it is the fastest
asynchronous training algorithm [2, 4]. Moreover, in this protocol, since d is
independent of k, each sensor can stay awake for a very short interval of time,
almost constant. Instead, each sensor is awake for O(log k) and up to O(k) time
slots in the synchronous and asynchronous protocols, respectively. However, one
cannot forget that this new protocol is probabilistic (i.e., we are not sure that
all the sensors will be trained), while the previous algorithms are deterministic
(i.e., all the sensors are trained).

1.5 Experimental tests

In this section, the performances of the cooperative training algorithm, shortly
denoted with Coop, are experimentally evaluated when the network density
varies with respect to the accuracy of the localization, and the power consump-
tion per sensor. In the simulation, each corona has a unit width and N sensors
are uniformly distributed within a circle of radius k, centered at the actor. More-
over, each sensor generates its type x, as an integer uniformly distributed in the
range [0, k − 1].

By varying the total number of sensors N , the number of coronas k, and
the sensor radius r, we consider three different settings for our simulations. For
each setting, let E(Nx) = O(N

k
) be the expected number of sensors of the same

type x ∈ [0, k − 1] and δ = O( N
πk2 ) be the network density, that is the expected

number of sensors that belong to a unit area of the actor zone.
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Table 1.1. Experiment settings

N k r E(Nx) δ q

S1 310000 8 1

5
38750 1541.8 2.29

S2 700000 12 1

7
58333 1547.3 0.75

S3 819200 32 1

4
25600 254.65 0.15

Table 1.2. Estimate of sensor power consumption

Sensor Mode Power consumption

µC sleep with timer on 60 µW

µC switch on, radio startup 30 mW

µC switch off, radio shutdown 30 mW

µC active, radio idle listening 60 mW

µC active, radio TX 80 mW

Moreover, we consider the constant q =
N

k

log( N

k )
r2

k2 which is approximately

the ratio between the number of the sensors of the same type x in a circle of
radius r and the logarithm of the overall number of the sensors of the same type
log(N

k
). Roughly speaking, q is a measure of the connectivity of the network. Very

informally, if q > 1, it means that in a circle of radius r there are log(N
k

) sensors
of the same type, and hence the sensors of such a type have a minimum degree
of about log(N

k
) and therefore the network of such nodes is log(N

k
)-connected

[8].
Table 1.1 reports, the parameters N , k, r, as well as E(Nx), δ, and q for the

three settings S1, S2 and S3 used in the experiments.
In the settings S1, S2 and S3, assuming the corona width ρ = 100 meters,

there are 0.15, 0.15, and 0.025 sensors per square meter, respectively. At the
present state of the technology, small sensors, supporting communications in a
range varying from 10 to 100 meters, like TinyNode 584 produced by Shockfish
S.A. or T-node developed by SOWNet Technologies can be used for built such
massive networks [5, 9].

Moreover, in order to evaluate the power consumption per sensor during the
Coop algorithm, Table 1.2 reports the power consumption, measured in the field,
of a T-node in different operational modes [9] to have a realistic setting. The data
refer to the power consumed operating using 10 dBm transmission power, and
hence attaining a transmission range around twenty meters, at a low bandwidth
of 75 Kbit/s. Note that such a bandwidth is sufficient because the sensors have
to transmit just their corona identity, which consists of O(log k) bits.

The Coop algorithm has been tested on each setting fixing L = k and varying
the sensor awake period d between 2 and 10. In fact, as proved by Lemma 1 and
Theorem 1, the awake period d influences the number of seeds in the first stage
as well as the number of trained sensors that are awake and broadcast in each
time slot of the second stage.

In order to evaluate the quality of the localization, observe that, at the end
of the Coop algorithm, a sensor can be in one of the following status:
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– trained, if it has learnt the actual corona to which it belongs
– ±1-trained, if it has learnt to belong to a corona which differs of ±1 from

the correct one
– mistrained, if it has acquired a corona which arbitrarily differs from the

correct one
– white-flag, if it cannot decide to which corona it belongs although it is in

the neighborhood of trained sensors
– untrained if it does not belong to the neighborhood of any trained sensor

In our experiments, statistics are taken on how many sensors are in each status at
the end of the Coop algorithm. Specifically, Figures 1.1 and 1.2 report the results
of the experiments on settings S1 and S2 along with S3, respectively, when the
awake period d varies, with d ≥ 2. The results are averaged over 3 independent
experiments, which differ in the deployment distribution of the sensors and in
the sensor type generation.
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Fig. 1.1. Sensor statistics at the end of the Coop algorithm on setting S1.

At first, it is worth noting that there are no untrained sensors for all the
experiments on the settings S1 and for the experiments on S2 with d ≥ 3.
Moreover, on S3, the number of untrained sensors rapidly decreases when d
increases. This confirms the first setting has enough sensors to satisfy the density
assumed in Theorem 1. Settings S2 and S3 are not sufficiently dense when d = 2.
Increasing d, however, the number of untrained sensors decreases up to 0. We can
say that the density assumed in Theorem 1 is achieved for S2 and S3 when d = 3
and d = 9, respectively. Not surprisingly, since S3 has a value of q smaller than
the one of S2, a greater value of d is needed. Indeed, in all the experiments when
(d − 1)q > 1, at the end of the Coop algorithm, more than 98% of the sensors
acquire a satisfying localization (i.e. trained or ±1-trained), and the 89% are
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Fig. 1.2. Sensor statistics at the end of the Coop algorithm on setting S2.
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Fig. 1.3. Sensor statistics at the end of the Coop algorithm on setting S3.

correctly trained. In Table 1.3, for a detailed analysis of the trained sensors, the
number of seeds, sensor trained, ±1-trained, and white-flag sensors are reported
at the end of the second stage (Coop2) of the training algorithm as well as at the
end of the third stage (Coop). Moreover, half of the sensors which are white-flag
at the end of the second stage become trained at the end of the third stage and
half become ±1-trained.

The white-flag and ±1-trained sensors are placed at the borders of the coro-
nas. When d increases, since more sensors are awake simultaneously the number
of white-flag sensors increases, while that of the ±1-trained sensors decreases.



1 Cooperative Training in WSAN 11

Table 1.3. The acquired localization in S2 and S3 after Coop2 and Coop

S2, d = 2 S2, d = 3 S2, d = 4 S3, d = 4 S3, d = 6 S3, d = 8 S3, d = 10

Coop2 trained 624787 620148 618647 639778 662189 666610 669426
seed 58731 117131 175377 76934 127828 179162 230158

±1-trained 15610 8176 5677 62218 24771 15213 10337
white-flag 59596 71676 75676 116470 132216 137372 139436

Coop trained 653052 654238 654735 695667 726559 733865 737996
seed 58731 117131 175377 76934 127828 179162 230158

±1-trained 46532 45050 44302 115506 87460 81664 78598
white-flag 409 712 963 7293 5157 3664 2605

Table 1.4. Acquired localization in A-Seed and Coop2

S1, d = 2 S2, d = 2

A-Seed Coop2 A-Seed Coop2
trained 260535 263877 623201 624787

±1-trained 823 6657 5751 15610
white-flag 48642 39466 71036 59596
untrained 0 0 12 7

It is worthy to note that we do not report the mistrained sensors because
they are zero in all experiments but one. Thus, as expected, the network density
guarantees that the corona identity propagation is confined in each corona.

About the ±1-trained sensors, their number also depends on the fact that
the cooperative process does not start simultaneously in all the coronas because
different coronas have different seeds. In fact, sensors at the border that wake up
earlier than the seeds on their own corona might be ±1-trained. This behavior
has been tested in Table 1.4, where a new algorithm, called A-Seed, is intro-
duced. The A-Seed algorithm performs only the second stage of the cooperative
training algorithm and assumes that the seeds are the sensors of a given type
x ∈ [0, k−1], selected initially at random. Clearly, during the A-Seed algorithm,
the cooperative process becomes effective at the same time slot in all the coronas
and the number of white-flag sensors increases at the expenses of that of the ±1
trained.

With respect to the power consumption, substituting the values in Table 1.2
in Equation 1.3, the maximum power consumed pmax per sensor can be upper
bounded as:

pmax < 4 ∗ 2 ∗ 30 + d ∗ 60 + 3 ∗ d ∗ 80 + 4 ∗ (k − d) ∗ 0.060mW (1.4)

The results of the experiments on settings S2 and S3 are reported in Fig-
ures 1.4.

The behavior of the Coop algorithm is compared with that of the asyn-
chronous training protocol Flat [2]. The Flat and Coop algorithms assume the
same parameter values, except that Flat uses an awake-sleep cycle of length
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L = k + 1 instead of k. Indeed, when L = k, Flat cannot complete the training
process [2], and thus the smallest value of L for which Flat trains all the sensors
has been used.
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Fig. 1.4. Power consumption per sensor during the Coop algorithm on setting S2.
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Fig. 1.5. Power consumption per sensor during the Coop algorithm on setting S3.

For each algorithm, it has been measured the maximum pmax (minimum pmin,
resp.) power consumed by each sensor along with the average pavg power.
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One can note that although Coop and Flat consume overall almost the same
power as shown in Figure 1.4, the difference between the sensor maximum and
minimum power consumption in the Coop algorithm is much less than that
measured for Flat. In other words, the Coop training algorithm drain the sensors
in a balanced way, and therefore it works in favor of the network lifespan.

When k increases, like in Figure 1.4 scenario S3, the power effectiveness of
the Coop algorithm is neat. The power pmax of Coop is smaller than or equal to
the pavg of the Flat Algorithm for any value of d.

1.6 Conclusion

In the context of anonymous, asynchronous and randomly distributed sensor
and actor networks, we have proposed a new cooperative training algorithm
which exploits the high density features of the considered kind of network. After
describing the phases of the algorithm, we have provided analytical and experi-
mental results with respect to the accuracy for the localization and the consumed
energy. The new training algorithm is particularly suitable in large and dynamic
networks, that need to frequently and quick raise up the network, for instance
in presence of an actor moving to track an intruder. Moreover, once the pro-
posed course-grain localization has been performed, easy routing algorithms can
be applied with respect to the obtained virtual infrastructure induced by our
algorithm.

As an open problem, it remains to study analytically the minimum sensor
network density which guarantees that the algorithm trains, with high probabil-
ity, all the sensors. Moreover, as future works, one can investigate larger networks
where the actors move. Even more challenging would be the comparisons of Flat
and Coop in a test-bed wireless sensor network.

References

1. I.F. Akyildiz and I. Kasimoglu. Wireless sensor and actor networks: research chal-
lenges. Ad Hoc Networks, 2, 351–367, 2004.

2. F. Barsi, A.A. Bertossi, F. Betti Sorbelli, R. Ciotti, S. Olariu & M.C. Pinotti,
“Asynchronous Corona Training Protocols in Wireless Sensor and Actor Networks”,
IEEE Transactions on Parallel and Distributed Systems, to appear.

3. Y. Baryshnikov. Connectivity in Geometric Graphs: Beyond the Standard Model.
Private Communications.

4. A. A. Bertossi, S. Olariu, and M.C. Pinotti. Efficient corona training protocols for
sensor networks. Theoretical Computer Science, 402 (1):2–15, 2008.

5. N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: Ultra-low power data
gathering in sensor networks. In Proc. IPSN’07, Cambridge, MA, April 2007.

6. Gautschi, W. The Incomplete Gamma Functions Since Tricomi. In Tricomi’s
Ideas and Contemporary Applied Mathematics. Atti dei Convegni Lincei, Accademia

Nazionale dei Lincei, Roma, 147:203–237, 1998.



14 Betti Sorbelli et al.

7. S. Olariu, A. Waada, L. Wilson, and M. Eltoweissy. Wireless sensor networks lever-
aging the virtual infrastructure. IEEE Network, 18(4):51–56, 2004.

8. Penrose, M. D. Random Geometric Graphs. Oxford Studies in Probability, 2003.
9. The Sensor Network Museum Project http://www.snm.ethz.ch/Main/HomePage.

http://www.snm.ethz.ch/Main/HomePage
10. Temme, N. Uniform asymptotic expansions of the incomplete gamma functions

and the incomplete beta functions. Math. Comput., 29: 1109–1114, 1975.
11. Temme, N. The asymptotic expansion of the incomplete gamma function. SIAM

J. Math. Anal., 10: 757–766, 1979.
12. A. Waada, S. Olariu, L. Wilson, M. Eltoweissy, and K. Jones. Training a wireless

sensor network. Mobile Networks and Applications, 10(1):151–168, 2005.
13. Q. Xu, R. Ishak, S. Olariu, and S. Salleh. On asynchronous training in sensor

networks. Proc. 3rd Intl. Conf. on Advances in Mobile Multimedia, K. Lumpur,
September 2005.

14. Xue, F. and Kumar, P. R. The number of neighbors needed for connectivity of
wireless networks. Wireless Networks, 10: 169–181, 2004.



1 Cooperative Training in WSAN 15

Appendix

Procedure Sensor

Input: x, d, L, k, r, j;
1. case j :

j = 1 :
2. for t := 0 to d − 1 {Initialize}
3. C[t] := −1;
4. trained := white-flag := seed := false;
5. corona := −∞; τ := −1;
6. for t := 0 to d − 1 {First stage}
7. C[t] := listen-actor(γ);
8. if C[t] = 0
9. then trained:= seed := true; corona:= 0;
10. else if (t ≥ 1 and C[t] = ∅ and C[t − 1] = γ)
11. then trained:= seed:=true, corona:= C[t − 1];
12. τ := τ + 1;
13. if x ≥ d − 2
14. then j := 2; set-alarm-clock(τ + L − d);
15. else j := 3; set-alarm-clock(τ + 2L − d);

j = 2, 3 :
16. for i := j to 3 {Second stage}
17. for t := 0 to d − 1
18. if trained
19. then broadcast(corona)
20. else if ¬ white-flag
21. then listen-sensor(corona);
22. if corona 6= ∅ then corona := compatible(corona); trained := true;
23. if corona =noise then white-flag:=true;
24. τ := τ + 1;
25. if (white-flag or (trained and ¬ seed) or (seed and x 6∈ [d − 1, |2d − 3|k]))
26. then j := 4; set-alarm-clock (τ + (3 − i)L + L − d);
27. else j := j + 1; set-alarm-clock (τ + L − d);

j = 4 :
28. for t := 0 to d − 1 {Third stage}
29. if trained and |corona|2 = 0
30. then broadcast(corona)
31. else if white-flag
32. then listen-sensor(corona);
33. if corona 6= ∅ then trained:=true;
34. τ := τ + 1;
35. set-alarm-clock(τ + L − d);

Fig. 1.6. The corona training protocol for the sensor.


